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Preface to the First Edition 

AT THE TIME THE FIRST VOLUME OF THIS BOOK WAS WRITTEN (BETWEEN 1941 
and 1948) the intere~t in prQbability was nQt yet widespread. Teaching was 
Qn a very limited scale and tQpics such as :MarkQv chains, which are nQW 
extensively used in several disciplines, were highly specialized chapters Qf 
pure mathematics. The first vQlume may therefQre be likened to. an all
purpQse travel guide to. a strange cQuntry. To. describe the nature Qf 
prQbability it had to. stress the mathematical CQntent Qf the theQry as well 
as the surprising variety Qf PQtential applicatiQns. It was predicted that 
the ensuing fluctuatiQns in the level Qf difficulty WQuld limit the usefulness 
Qf the bQQk. In reality it is widely used even tQday, when its nQvelty has 
WQrn Qff and its attitude and material are available in newer bQQks written 
fQr special purpQses. The bQQk seems even to. acquire new friends. The 
fact that laymen are nQt deterred. by passages which prQved difficult to. 
students Qf mathematics shQWS that the level Qf difficulty cannQt be measured 
Qbjectively; it depends Qn the type Qf infQrmatiQn Qne seeks and the details 
Qne is prepared to. skip. The traveler Qften has the chQice between climbing' 
a peak Qr using a cable car. 

In view .Qf thi~ success the secQnd vQlume is written in the same style. 
It invQlve$ harder mathematics, but mQst Qf the text can be read Qn different 
levels. The handling Qf measure theQry may illustrate this PQint. Chapter 
IV cQntains an infQrmal intrQductiQn to. the basic ideas Qf measure theQry 
and the cQnceptual fQundatiQns Qf prQbability. The same chapter lists the 
fe~ facts Qf measure theQry used in the subsequent chapters to. fQrmulaie . 
analytical theQrems in their simplest fQrm and to. aVQid futile discussiQns Qf 
regularity conditiQns. The main functiQn Qf measure theQry in this cQnnectiQn 
is to. justify fQrmal QperatiQns and passages to the limit that WQuld never be 

. questiQned by a nQn-mathematician. Readers interested primarily in practical 
results will therefQre nQt feel any need fQr measure theQry. 

To. facilitate access to. the individual tQpics the chapters are rendered as 
self-cQntained as PQssible, and sQmetimes special cases are treated separately 
ahead Qf the general theQry. VariQus tQpics (such as stable distributiQns and 
renewal theQry) are discussed at several places frQm different angles. To. 
aVQid repetitiQns, the definitiQns and' illustrative examples are cQllected in 
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chapter VI, which may be described as a collection of introductions to the 
subsequent chapters. The skeleton of the book consists of chapters V, VIII, 
and XV. The reader will decide for himself how much of the preparatory 
chapters to read and which excursions to take. 

Experts will find new results and proofs, but more important is the attempt 
to consolidate and unify the general methodology. Indeed, certain parts of 
probability suffer from a lack of coherence because the usual grouping and 
treatment of problems depend largely on accidents of the historical develop
ment. In the resulting confusion closely related problems are not recognized 
as such and simple things are obscured by complicated methods. Consider
able simplifications were obtained by a systematic exploitation and develop
ment of the best available techniques. This is true in particular for the 
proverbially messy field of limit theorems (chapters XVI-XVII). At other 
places simplifications. were achieved by treating problems in their natural 
context. For example, an elementary consideration of a particular random 
walk led to a generalization of an asymptotic estimate which had been 
derived by hard and laborious methods in risk theory (and under more 
restrictive conditions independently in queuing). 

I have tried to achieve mathematical rigor without pedantry in style. For 
example, the statement that 1/(1 + e) is the characteristic function of 
ie- Ixl scem~ to me a desirable and legitimate abbreviation for the logically 
correct version that the function which at the point ~ assumes the value 
1/(1 + ~2) is the characteristic function of the function which at the point 
x assumes the value ie- Ixl • 

I fear that the brief historical remarks and citations do not render justice 
to the many authors who contributed t6 probability, but I have tried to give 
credit wherever possible. The original work is now in many cases superseded 
by newer research, and as a rule full references are given only to papers to 
which the reader may want to turn for additional information. For example, 
no reference is given to my own work on limit theorems, whereas a paper 
describing observations or theories underlying an example is cited even if it 
contains no mathematics.1 Under these circumstances the index of authors 
gives no indication of their importance for probability theory. Another 
difficulty is to do justice to the pioneer work to which we owe new directions 
of research, new approaches, and new methods. Some theorems which were 
considered strikingly origi naI and deep now appear with simple proofs 
among more refined results. It is difficult to view such a' theorem in its 
historical perspective and to realize that here as elsewhere it is the first step 
that counts. 

1 This system was used also in the first volume but was misunderstood by some subsequent 
writers; they now attribute the methods used in the book to earlier scientists who could 
not have known them. 
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In trod tiction 

11iE CHARACTER AND ORGANIZATION OF THE BOOK REMAIN UNCHANGED, BUT 

the entire text has undergone a thorough revision. Many parts (Chapter 
XVII, in particular) have been completely rewritten and a few new sections 
have been added. At a number of places the exposition was simplified by 
streamlined (and sometimes new) arguments. Some new material has been 
incorporated into the text. 

While writing the first edition I was haunted by the fear of an excessively 
long volume .. Unfortunately, this led me to spend futile months in shortening 
the original text and economizing on displays. This damage has now been 
repaired, and a great effort has been spent to make the reading easier. 
Occasional repetitions will also facilitate a direct access to the individual 
chapters "and make it possible to read certain parts of this book in con
junction with Volume I. 

Concerning the organization of the material, see the introduction to the 
first edition (repeated here), starting with the second paragraph. 

I am grateful to many readers for pointing out errors or omissions. I 
especially thank D. A. Hejhal, of Chicago, for an exhaustive and penetrating 
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January 1970 
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Abbreviations and Conventions 

Iff is an abbreviation for if and only if. 

Epoch. This term is used for points on the time axis, while time is 
reserved for intervals and durations. (In discussions of 
stochastic processes the word "times" carries too heavy a 
burden. The systematic use of "epoch," introduced by 
J. Riordan, seems preferable to varying substitutes such as 
moment, instant, or point.) 

- I-I 
Intervals are denoted' by bars: 0, b is an open, a, b a closed interval; 

-I 1-
half-open intervals are denoted by a, band 0, b. This 
notation is used also in higher dimensions. The pertinent 
conventions for vector notations and order relations are 
found in V,l (and also in IV,2). The symbol (a, b) is 
reserved for pairs and for points. 

:JV, :R 2,:Rr stand for the line, the plane, and the r-dimensional Cartesian 
space. 

1 refers to volume one, Roman numerals to chapters. Thus 
1; XI,(3.6) refers to section 3 of chapter XI of volume 1. 

~ indicates the end of a proof or of a collection of examples. 
nand 91 denote, respectively, the normal density and distribution 

function with zero expectation and unit variance. 
0, 0, and I"J. Let u "and v depend on a parameter x which tends, say, 

to a. Assuming that v is positive we write 

u = O(v») u {remains bounded 
u = o(v) J if ~ 0 
Ul"Jv v ~1. 

I(x) U{dx}. For this abbreviation see V,3. 
Regarding Borel sets and Baire functions, see the introduction to chapter V. 
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CHAPTER I 

The Exponential and 

the Unifortn Densities 

1. INTRODUCfION 

In the course of volume 1 we had repeatedly to deal with probabilities 
defined by sums of many" small terms,. and we used approximations of the 
form . 

(1.1) P{a < X·~ b} "" f fez) tIx. 

The prime example is the normal appr<?ximation to the binomial distribution. l 

An approYimation of this kind ,is usually formula~ed in ~he form of a limit 
theore'm involving a succession of more and more refined·discrete probability 
models. In many cases this passage, t~ the limit leads conceptually to; a new 
sample space, and' the latter may be intuitively simpler than the original . 
diScrete modeL ..' ". , .. . 

Examples. (a) Exponential waiting ti1Ms~ To describe waiting 'times by 
a discrete modd we had to. quantize the titne· and pretend that. changes 
can. occur only at epochs2 <5, 2<5, • • •• The simplest waiting time' T is the 
waiting time' for the first success in a sequence, of Bernoulli triaJs with 
probability P6 for success. ,Then P{T > n<5} = (I,-P6)" and the expect~d 
waiting time is E(T) = li/P6' ~efinements of this model are ·ob~ained, by . 
letting <5 grow smaller in such a way thatthe expectation <5/P6 -:- ex remains 

1 Further examples from volume 1: The arc sine distribution, chapter III, section 4; 
the distributions for the number of returns to the origin and first passage times tn 111,7; the 
limit theorems for random walks in XIV; the uniform distribution in problem 20 of XI,7. 

2 Concerning the use of the term epoch, see the list of abbreviations at the front of the 
book~ 
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2 THE E"PONENTIAL AND THE UNIFORM DENSITIES 1.1 

fixed. To a time interval of duration t there correspond n ~ f/O trials, 
and hence for small 0 

(1.2) 

approximately, as can be seen by taking logarithms. This model considers 
the waiting time as a geometrically distributed discrete random variable, 
and (1.2) states that "in the limit" one gets an exponential distribution. 
From the pOint of view of intuition it would seem more natural to start 
from the sample space whose points are real numbers and to introduce 
,the exponential distribution directly. 

(b) Random choices. To "choose a point at random" in the intervaP 
0, 1 is a conceptual experiment with an obvious intuitive meanin~. It can 
be described by discrete approximations, but it is easier to use the whole 
interval as sample space and to assign to each interval its length as prob
ability. The conceptual experiment of making two independent random 
choices of points in 0,1 results in a pair of real numbers, and so the natural 
sample space is a unit square. In this sample space one equates, almost 
instinctively, "probability" with "area." This is quite satisfactory for some 
elementary purposes, but sooner or later the question arises as to what the 
word "area" really means. ~ 

As these examples show, a continuous sample space may be conceptually 
simpler than a discrete model, but the definition of probabilities in it depends 
on tools such as -integration and measure theory. In denumerable sample 
spaces it was possible to assign probabilities to all imaginable events, 
whereas in. general spaces this naive procedure leads to logical contra
dictions, and our intuition has to adjust itself to the exigencies of formal logic. 
We shall soon see that the naive approach can lead to trouble even in relatively 
simple problems, but it is only fair to say that many probabilistically 
significant problems do not require a clean definition of probabilities. Some
times they are of an analytic character and the probabilistic background 
serves primarily as a support for our intuition. More to the point is the 
fact that complex stochastic processes with intricate sample spaces may lead 
to significant and comprehensible problems which do not depend on the 
delicate tools used in the analysis of the whole process. A typical reasoning 
may run as follows: if the process can be described at all, the random 
variable Z must have such and such properties, and its distribution must 
therefore satisfy such and such an integral equation. Although probabilistic 
arguments can greatly influence the analytical treatment of the equation in 
question, the latter is in principle independent of the axioms of probability. 

3 Iniervals are denoted by bars to preserve the symbol (a, b) for the coordinate notation 
of points in the-plane. Se~ the list of abbreviations at the-front of the book. 



1.2 DENSITIES •. CONVOLUTIONS 3 

Specialists in various fields are sometimes so familiar with problems of 
this type that they deny the need for measure theory because they are unac-. 
quainted with problems of other types· and with situations where vague 
reasoning did Ie.ad to wrong results.4 

This situation will become clearer in the course of this chapter, which 
serves as an informal introduction to the whole theory. It describes some 
analytic properties of two important distributions which will be used 
throughout this book.· Special topics are covered partly because of significant 
applications, partly to illustrate the new problems confronting us and the 
need for appropriate tools. It is not necessary to study them systematically 
or in the order in 'which they appear. 
Througho~t this chapter probabilities are defined by elementary integrals, 

and the limitations of this definition are accepted. The use of a probabilistic 
jargon, and of terms such as random variable or expectation, may be justified 
in two ways. They may be interpreted as technical aids to intuition based on 
the formal analogy wit~ similar situations in volume 1. Alternatively, every
thing in this chapter m~y be interpreted in a logi.cally impeccable manner 
by a passage to the limit fro~ the discrete modej' described in example 2(a). 
Although neither necessary nor desirable in principle, the latter procedure 
has the merit of a good exercise for beginners. 

2. DENSITIES. CONVOLUTIONS 

A probability density on the line (or :IV) is a function f such that 

(2.1) f(x) > 0, r+ co 
J-co f(~) dx = 1. 

For the present we consider only piecewise continuous densities (see V,3 
for the general notion). To each density f we let correspond its distribution 
function 5 F defined by 

(2.2) F(x) = f/(Y) dy. 

4 The roles of rigor and intuition are subject to misconceptions. As was pointed out in 
volume 1, natural intuition and natural thinking are a poor affair, but they gain strength 
with the development of mathematical theory. Today's intuition and applications depend 
on the mo'>t sophisticated theories of yesterday. Furthermore, strict theory represents 
economy of thought rather than luxury. Indeed, experience shows that in applications 
most people rely on lengthy calculations rather than simple arguments because these 
appear risky. (The nearest illustration is in example 5(a).J 

. 5 We recall that by "distribution function" is meant a right continuous non-decreasing 
function with limits 0 and 1 at ± 00. Volume 1 was concerned mainly with distributions 
whose gr:owth is due entirely to jumps. Now we focus our attention on distributio,:, functi<:>ns 
defined as integrals. General distribution functions will be studied in .chapter V. . 



4 THE EXPONENTIAL AND THE UNIFORM DENSITIES 1.2 

It is a monotone continuous function increasing from 0 to 1. We say that 
f and F are concentrated on the interval a < x <b if f vanishes outside 
this interval. The density f will be considered as an assignment of prob-
abilities to the intervals of the line, the interval a, b = {a < x < b} having 
probability 

(2.3) F(b) - Pea) = f.bf(X) dx. 

Sometimes this probability will be denoted by P{a, b}. Under this assign
ment an individual point carries probability zero, and the closed interval 
'a < X ~ b has the same probability as a. b. 

In the simplest situation the real line serves as "sample space," that is, 
the outcome of a conceptual experiment is represented by a number. (Just 
as in volume 1, this is only the first step in the construction of sample spaces 
representing sequences of experiments.) Random variables are functions 
defined on the sample space. For simplicity we shall for the time being 
accept as random variable only a function U such that for each t the event 
{U < t} consists of finitely many intervals. Then 

(2.4) G(t) = P{U < t} 

'is well defined as the integral of f over these intervals. The function G 
defined by (2.4) is called the distribution function of U. If G is the integral 
of a function g, then g is called the density of the distribution G or (inter
changeably) the density of the variable U . 
. The basic random variable is, of course, the coordinate variable6 X as 

such, and all other random variables are functions of X. The distribution 
function of X is identical with the distribution F by which probabilities 
are defined. Needless to say, any random variable Y = g(X) can be taken 
as c~ordinate variable on a new line. 

As stated above, these terms may be justified 'by mere analogy with the 
situation in volume 1, but the following example shows that our model 
may be obtain¢d by a passage to the limit from discrete models. 

Examples. Cd) Grouping of data. Let F be a given distribution function. 
Choose a fixed <5 > 0 and consider the discrete random variable XeS which 
for (n-I)<5 < x <n<5 assumes the constant value n<5. Here n = 0, ± 1, 
±2, .... 'In volume' 1 we would have used the multiples of 0 as sample 

6 As far as possible we shall denote random variables (that is, functions on the sample 
space) by capital boldfa~ letters, reserving small letters for numbers or location parameters. 
This holds in particular for the coordinate variable X, namely the function defined by 
X(x) = x. 
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space, and described the probability 'distribution of X,J by saying that 

(2.5) P{X,J=n<5} = F(ntJ) - F«n-l)tJ). 

Now X,J becomes a random variable in an enlarged sample space, and its 
distribution function is the function that for ntJ ~ x < (n+ l)tJ equals 
F(ntJ). In the continuous model, X~ serves as an approximation to X 
obtained by identifying our i!ltervals with their right-hand endpoints (a proce
dure known to statisticians as grouping of data). In the spirit of volume 1 we 
should treat X,J as the basic random variable and tJ as a free parameter. 
Letting tJ -- 0 we would obtain limit theorems stating, for example, that 
F is the limit distribution of X,J. 

(b) For x > 0, the event {X2 < x} is the same as {-.J; < X ~ .J;}; 
the random 'variable X2. has a distribution concentrated on 0, 00 and 

given there by F(.J;) - F( -.J;). By differentiation it is seen that the 
density g of X2 is given by . 

g(x) . l[f(.J;) + f( -~;)]/.J; for x > 0 g(x) = 0 for x < o. 
The distribution function of X3 is given for all x by F(~;) and has 
density If(~;)/~ x2 •. 

The expectation of X is defined by 

(2.6) E(X) = f:oo
oo 

xf(x) dx, 

provided the integral converges absolutely. The expectations of the approxi
mating discrete variables X,J of example (a) coincide with Riemann ~ums 
for this integral, and so E(X,J) -+ E(X). If u is a bounded continuous 
function the same argument applies to the random variable u(X) , and the 
relationE(u(X,J» -+ E(u(X» implies 

(2.7) 
f+oo . 

E(u(X» = J-oo u(x)f(x) dx; 

the point here is that tRis formula makes no explicit use of the distribution of 
u(X). Thus the kn'owledge of the distribution of a random variable X 
suffices to calculate the expectation of functions of it. 

The second moment of X is defined by 

(2.8) E(X2) = f_+oooo x~(x) dx, 

provided the integral converges. Putting I' = E(X), the variance of X IS 

again defined by 

(2.9) Var (X) = E«X-fl)2) = E(X2) - 1'2. 
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Note. If the variable X is positive (that is, if the density f is concen

trated on O~ co) and if the integral in (2.6) diverges, it is harmless and 
convenient to say that X has an infinite expectation and write E(X) = 00. 

By the same token one says that X has an infinite variance when the integral 
in (2.8) diverges. For variables assuming positive and negative values the 
expectation remains undefined when the integral (2.6) diverges. A typical 
example is provided by the density 7T-1(I +X2)-I. ~ 

The notion of density carries over to higher dimensions, but the general 
discussion is postponed to chapter III. Until then we shall consider only 
the analogue to the product probabilities introduced in definition 2 of 1; 
V,4 to describe combinations of independent experiments. In other words, 
in this chapter we shall be concerned only with product densities of the form 
f(x) g(y), f(x) g(y) h(z), etc., where f, g, . .. are densities on the line. 
Giving a density of the formf(x) g(y) in the plane jt2 means id~ntifying 
"probabilities" with integrals: 

(2.10) P{A} =ff f(~) g(y) dx dy. 
A 

Speaking of "t~ro independent random variables X and Y with densities 
f and g" is an abbreviation for saying that probabilities in the (X, Y)-plane 
are assigned in accordance with (2.10). This implies the multiplication 
rule for intervals, for example P{X > a, Y > b} = P{X > a}P{Y > b}. 
The analogy with the discrete case is so obvious that no further explanations 
are required. 

Many new random variables may be defined as functions of X and Y, 
but the most important role is played by the sum S = X + Y. The event 
A = {S < s} is represented by the half-plane of points (x, y) such that 
x + y < s. Denote the distribution function of Y by G so that one has 
g(y) = G' (y). To obtain the distribution function of X + Y we integrate 
in (2.10) over y < s - x' with the result 

(2.11) P{X + Y < s} = f_+oo<Xl G(s- x)f(x) dx. 

For reasons of symmetry the roles of F and G can be interchanged without 
affecting the result. By differentiation it is then seen that the density of 
X + Y is given by either of the two integrals 

(2.12) 
f

+oo f+oo 
-00 f(s-y) g(y) dy = -00 fey) g(s- y) dy. 

The operation defined in (2.12) is a ~pecial case of the convolutions to 
be introduced in V,4. For the time being we use the term convolution 
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only for' densities: The convolution of two densities f and g is the function 
defined by (2.12). It will be denoted by f* g. 

Throughout volume 1 we dealt with convolutions of discrete distributions, 
and the rules are the same. According to (2.12) we have f * g = g * f 
Given a third density h we can form (f * g) * h and this is the density of 
a sum X + y + Z of three independent variables with densities f, g, ~. 
The fact that summation of random variables is commutative and associative 
implies the same properties for convolutions, and so f * g * h is independent 
of the order of the operations. 

Positive random variables play an important role, and it is therefor~ 

useful to note that if f and g are concentrated on 0, 00 the convolution 
f * g of (2.12) reduces to 

(2.13) f * g(s) = f.i(S-y) g(y) dy = f.i(X) g(s-x) dx. 

Example. (c) Let f and, g be concentrated on 0, 00 and defined there 
by f(x) = rJ.{!-flU: and g(x) = fJe~U:. Then 

. -flU: -fJu: 
(2.14) f* g(x) = a{3 e - e 

{3-rx. 
x> 0. 

(Continued in problem 12.) 

Note on the notion .of random variable. The use of the line or the Cartesian 
spaces 9{, n as sample spaces sometimes blurs the distinction between random' 
variables and "ordinary" functions of one or more variables .. In volume 1 
a random variable X could assume only denumerably many values and it was 

. then obvious whether we were talking about a function (such as the square 
or the exponential) defined on the line, or the random variable X2 or eX 
defined in the sample space. Even the outer appearance of these functions 
was entirely different inasmuch as the "ordinary" exponential assumes all 
positive values whereas eX had a denumerable range. To see the change in 
this situation, consider now "two independent random variables X and Y 
with a common density f" In other words, the plane jt2 serves as sample 
space, and probabilities are defined as integ~ah of f(x)f(y). Now every 
function of two variables can be defined in the sample space, and then it 
becomes a random variable, put it must be borne in mind that a function of 
two variables can be defined also without reference to our sample space. For 
example, certain ,statistical problems compel one to introduce the random 
variable f(X)f(Y) [see example·VI,12(d)]. On the other hand, in introducing 
our sample space jl,2 we have evidently referred to the "ordinary" functionf 
defined independently of the sample space. This "ordinary" function induces 
many random variables, namely f(X), f(Y), f(X± V), etc. Thus th~ 
samef may serve either as a random variable or as an ordinary function. 
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. . 

~ a rule (and in each individu·al case) it will be clear whether or not 
we are concerned with a random variable. Nevertheless, in the general 
theory there arise situations in which functions (such. as conditional prob
abilities and expectations) can be considered either as free functions &r as 
random variables, and this is somewhat confusing if the freedom of choice 
is not properly underst.ood. 

Note on terminology and notations .. To avoid overburdening of sentences it is customary 
to call E(X), interchangeabiy, expectation of the variable X, or of the density t, or of 
the distribution F. Similar liberties will be taken for other terms; For example, convolution 
really signifies an operation, but the term is applied also to the ·result of the operation and 
the function f. g is referred to as "the conv<,>lution." 

In the older literature the terms 4istribution and frequency . function were applied to 
what we call densities; our distribution functions were described as "cumulative," and the 
abbreviati()n c.d.f. is still in use, 

3. THE EXPONENTIAL DENSITY 

For arbitrary but fixed (X > 0 put 

(3.1) F(x) = 1 - e-a.:r., for x > 0 

and F(~) = f(x) = 0 for x < o. Then f is an exponential density, Fits 
distribution function. A trite calculation s~ows that the expectation equals 
(X-I, the variance (X-2. . . 

In example I (a) the. exponential distribution was derived as the limit 
. . 

of. geomet.ric distributions, and the method of example 2(a) leads to the 
same result. We recall that in stochastic processes the geometric distribution 
frequently governs waiting times or lifetimes, and that this is due to its 
"lack of memory," described in 1; XIII,9: whatever the present age, the 
resJduallifetime is unaffected by the past and has the same distribution as the 
lifetime itself. It will now be shown that this property carries over to 
the exponential limit and to no other distribution. 

Let T be an· arbitrary positive variable to be interpreted as life- or 
waiting time. It is convenient to replace the distribution function of T 
by its tail 

(3.2) U(t) = P{T > t}. 

Intuitively, U(t) is the "probability at birth of a lifetime exceeding. t." 
Given an age s, the event that the residual lifetime exceeds t· is the same 
as {T > s+t} and the conditional probability of this event (given age s) 
equals the ratio U(s+t)/U(s). This is the residual lifetime distribution, and it 
coincides with the total lifetime distribution iff 

(3.3) U(s+t) = U(s) U(t), s, t > o. 
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It was shpwn in 1; XVII,6 th~ta positive solution ~fthis"equatiQnj& necessarily 
of the form U(t) == ,e-d

, and hence the lacfr, of aging des~ribed above in 
italics holds true if the lifetime distribution is exponential. 

We shall refer to, this lack of -memory as~e Markov property of the 
exponential distribution. AnaJyticaIly it reduces to the statemeiti'that 
only for the' exponential distribution F do the tails' () = I--F satisfy 
(3.3), but thi,s 'explai~s the constant occurren~ of the exponential dis
tribution in Markov processes. (A stronger ve;sion of the Markov property 
will be described in sect~on 6.) Our description referred to temporal processes, 
but the argument is general and the Markov property remains mea~ingful 
when time is replaced by some other parameter. 

Examples. (a) Tensile strength. To obtain a 'Continuous analogue t,o 
the proverbial finite chain whose strength is that of its weakest link denote 
by U(t) the probability that ~ thread of length t (of a given material) can 
sustain a certain fixe<;i load. A threa<;i of length s+ t does not snap iff the 
two segments individually sustain the given load. Assuming that there is no 
interaction, the two events must be considered independeilt and' U must 
satisfy (3.3). _ Here the_ length of the th~ead takes over the role of the t,ime 
parameter, and the length at which the thread will break is an exponentially 
distributed random variable. -

(b) Random ensembles of points in space. play a role in many connections 
so that it is important to have, an appropriate definition for this concept. ' 
Speaking intuitively, the first property that perfect randomness should have 
-is a lack of interaction between different regions:- the observed configuration 
wit~in regio-n Al should not permit conclusions 'concerning the enseyp.ble 
in a ,non-overlapping region A 2• Specifically, the probability p that both 
Al and A2 are empty should equal the product of the probabilities PI and 
P2 that Al and A2 _ be empty. It is plausible that this product rule. cannot 
hold for all partitions unless the probability P depends only on the volume 
of the region A but not on its shape. Assuming this to be so, we denote 
by U(t) , the probabiIitythat -a region of volume t be empty. These prob
abilities then -satisfy (3,3) and hence U(t) = e-crt ; the constant (X depends 
on the 'density of the ensemble or, what amounts to the same, on the unit of 
length. ~t will be shown in the next section that the knowledge of .o(t) 
permits us to calculate the probabilities Pn(t} that a region of volume t 
contains exactly n p0ints of the ensemble; they are given by the Poisso'n dis
tribution Pn(t) = e-«t«(Xt)n/nL We speak accordingly of Poisson ensembles 
of points, this term being less ambiguous than the term random' ensemble 
which may have other connotations. ._ 

(c) Ensembles of circles 'and spheres. Random ensembles of particles 
present a more intricate problem. For simplicity we assume that the particles 
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are of a spherical or circular shape, the radius p being fixed. The con
figuration is then completely determined by the centers and it is tempting to 
assume that these centers form a Poisson ensemble. This, however, is 
impossible in the strict sense since the mutual distances of centers necessarily 
exceed 2p. One feels nevertheless that for small radii p the effect of the 
finite size should be negligible in practice and hence the model of a Poisson 
ensemble of centers should be usable as an approximation. 

For a mathematical model we postulate accordingly that the centers form 
a . Poisson ensemble and accept the implied possibility that the circles or 
spheres intersect. This idealization will have no practical consequences if the 
radii p are small, because then the theoretical frequ~ncy of intersections 
will be negligible. Thus astronomers treat the stellar system as a Poisson 
ensemble and the approximation to reality seems excellent. The next two 
examples show how the model works in practice. . 

(d) Nearest neighbors. We consider a Poisson ensemble of spheres" (stars) 
with clensity (x. The probability that a domain of volume t contains no 
center equals e-a.t. Saying that the nearest neighbor to the origin has a 
distance >r amounts to saying that a sphere of radius r contains no star 
center in its interior. The volume of such a ball equals t1Tr3, and hence in a 

. Poisson ensemble of stars the probability that the nearest neighbor has a 
distance >r is given by e-ha.,.a. The fact that this expression is independent 
of the radius p of t9~ stars shows the approximative character of the model 
and its Iimitations.1 

In the plane, spheres are replaced by circles and the distribution function 
for the distance of nearest neighbors is given by 1 - e~a.rrr2. 

(e) Continuation: free paths. For ease of description we begin with the 
two-dimensional model. The random ensemble of circular disks may be 
interpreted as the cross section of a thin forest. I stand at the origin, which 
is not containe.d in any. disk, and look in the directIon of the positive x-axis. 
The longest interv'al 0, t not intersecting any disk represents the visibility 
or free path in the x-direction. It is a random variable and we denote 
it by L. 

Denote by A the region form~ by the points at a distance ~p from a 
point of the interval 0, t on the x-axis. The boundary of A consIsts of the 
segments 0 ~ x ~ t .on the lines y ,±P and two semicircles of radii p 
about the origin and the point (t ~ 0) on the x-axis. Thus the area of A 
equals. 2pt + 1Tp2: The event .{L> t} occurs iff no disk center is con
tained· within. A, but it is known in advance that the circle of radius p 
about the origin is empty. The remaining domain has area 2pt and we 
conclude that the distribution of the visibility L is exponential: 

P{L > t} = e~·pt. 
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In . space the same argument applies and the relevant region is formed by 
rotating .our A about the x-axis. The rectangle O' < x < t, Iyl < p is 
replaced by a cylinder of volume 'TTp2t. We conclude that in a Poisson en
semble of sp~erical stars the free path L .in any direction has an exponential 
distribution: P{L·> t} = e-7Ta.p

1
t. The mean free path is given by 

E(L) = 1/(1Trxp2). ~ 

The next theorem will be used repeatedly. 

Theorem. If Xb • ~ • ,Xn qre mutually independent random variables 
with the exponential distribution (3.1), then the sum Xl + ... + Xn has a 
density g n and distribution function ,G n given by 

(3.4) (
I) (rxx)n-I-a.lI: 

gn X = rx e 
(n-l)[ 

x>O 

(3.5) ( 
rxx (rxx ) n-l ) 

G,n(x) = 1 - e-a.lI: 1 + -I! + ',' . + 
(n-l)! 

x> O. 

Proof. For n = 1 the assertion· reduces to the definition (3.1). The 
den~ity gn+l is defined by the convolution 

(3.6) 

and assuming the validity of (3.4) this reduces to 

(3.7) 
rxn+l [t (rxt)n 

g~+l(t) = e-a.t x n- 1 dx = rx -- e-a.t 
(n-l)!.,o n! 

Thus (3A) holds by induction for all n. The validity or (3.5) is seen by 
differentiation. ~ 

'The densities gn are among the gamma densities to be'introduced in 
II ,2. They represent the continuous analogue of the negative binomial 
distribution found in 1; VI,8 for the sum of n variables with a common 
geometric distribution. (See problem 6.) 

4. WAITING TIME PARA"lOXES. THE POISSON PROCESS 

Denote by Xb X 2 , • •• mutually independent random variables with the 
common exponential distribution (3.1), and put' So = 0, 

(4.1) S =X +···+X n I n' n=I,2, .... 

We introduce a family of new random variables N(t) as f911ows: N(t) is 
the number of indices k::2: 1 such that S1: ~ t. The event {N(t) = n} 
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occurs iff Sn ~ t but Sn+I > t. As Sn has the distribution Gn the 
probability of this event equals Gn(t) - Gn+l(t) or 

(4.2) P{N(t) = n} = e-«t (oct)n . 
. , n. 

In words, the random variable N(t) has a Poisson distribution with ex
pectation oct . 

. This argument looks like a new derivation of the Poisson distribution 
but in reality it merely rephrases the original derivation of 1; VI,6in terms 
of random variables. For an intuitive description consider·chance occurrences 
(such as cosmic ray bursts or telephone calls), which we call "arrivals." 
Suppose that there is no aftereffect in the sense that the past histo~y permits 
rio conclusions as to the future. As we have seen, this condition requires 
that the waiting time Xl to the first arrival be exponentially distributed. 
But at each arrival the process starts from scratch as a probabilistic replica of 
the whole process: the successive waiting times Xk between arrivals must 
be independent and must have the same distribution. The sum Sn represents 
the epoch of the nth arrival and N(t) the number of arrivals·within the 
interval 0, t. Ip. this form the argument differs from the original derivation 
of the Poisson distribution only by the use of better technical terms. 

(In the terminology of stochastic processes the sequence {Sn} ·constitutes 
a renewal process with exponential interarrival times X k ; for the general 
notion see VI,6.) 

Even this simple situation leads to apparent contradictions which illustrate 
the need for a sophistic~ted approach. We begin by a naive formulation. 

Example. Waiting time pa.radox. Buses arrive in accordance with a 
PoissC'l1 process, the expected time between consecutive buses being ex-I. 
I arrive at an epoch. t. What is the expectation E(Wt) of my waiting time 
W t for the next bus? (It is understood that the epoch t of my arrival is 
independent of the buses; say noontime sharp.) Two contradictory answers 
stand to reason: 

(a) The lack ofinemory of the Poisson process implies that the distribution 
of my waiting time should not depend on the epoch of my arrival. In this 
case E(W t) = E(Wo) = cx.-I . 

(b) The epoch of my arrival is "chosen at random" in the inter-val. 
between two consecutive buses, and for reasons of symmetry my expected 
waiting time ~hould be half the expected time between two consecutive 
buses, that is E(W t) = lex-I. 

Both arguments appear reasonable and both have been used in practice. 
What to do about the contradiction? The easiest way out is that of the 
formalist, who refuses to see a problem if it is not formulated III an 
impeccable manner. But problems are not solved by ignoring them. 
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We now show that both arguments are substantially, ·If not formally, 
correct. The fallacy lies at an unexpected place ~nd we now prc:>ceed to 
explain it. 7 ~ 

Weare dealing with interarrival times Xl = SI' X2 = S2 - SI' . . .. By 
assumption the Xk have a common exponential distribution with expectation 
(X-I. Picking out "any" particular Xk yields a random variable, and one has 
the intuitive feeling that its expectation should be (X-I provided the choice 
is done withou~ knowledge of the sample sequence Xl' X2 : • • •• Bu~ this 
is not true. In the example we chose that element X k for which 

Sk-l < t < Sk' 

where t is fixed. This choice is made without regard to the actual process, 
but it turns out that the Xk so. chosen has the double expectation 2(X-l. 

Given this fact, the argument (b) of the example postulates an expected 
waiting time (X-I and the contradiction disappears. 

This solution of the paradox came as a shock to experienced workers, 
but it becomes· intuitively clear once our mode of thinking is properly 
adjusted. Roughly speaking, a long interval has a better chance to cover 
the point t than a short one. This vague feeling is supported by the following 

Proposition. Let Xh X2, • •• be mutually independent with a common 
exponential distribution with expectation (X-I. Let t > 0 be fixed, but 
arbitrary. The element Xk satisfying the condition Sk-l < t ~ Sk has the 
density 

(4.3) 
(X2xe-a: 

vt(x) = 
. (X(l+(Xt)e-a: 

for 0 < x < t 
for x > t. 

The point is that the density (4.3) is not the common density of the Xk • 

Its explicit form is of minor interest. [The analogue for arbitrary waiting 
time distributions is contained in XI,(4.16).] 

Proof. Let k be the (chance-dependent) index such that Sk-l < t < Sk 
and put L t equal to Sk - Sk-l. We have to prove that I' t has density 
(4.3). Suppose first x < t. The event {Lt < x} occurs iff' Sn = y and 
t-y < Xn+I ~ x for some combination n, y. This necessitates 

t-x ~ y ~ t. 

Summing over all possible nand y we obtain 

(4.4) P{L, < x} = ~, L.gn(Y)· [e-'(H) - e~'l dy. 

, For a variant of the paradox see example VI,7(a). The paradox occurs also in general 
renewal theory where it caused serious trouble and contradictions before it was properly 
understood. For the underlying theory see {G,4. 
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But gl(Y) + g2(Y) + ... = (X identically, and so 

(4.5) 

By differentiation we get (4.3) for x < t. For x > t a similar argument 
applies except that Y ranges from 0 to t and we must add to the right side 
in (4.4) the probability e-ai - e-ax that 0 < t < Sl < x. This completes 
the proof. ~ 

'The break in the formula (4.3) at x = t is due to the special role of the 
origin as the starting epoch of the process. Obviously 

(4.6) lim vt(x) = (X2xe-ax, 
t .... ClC' 

which shows that the special role of the origin wears out, and for an "old" 
process the dist::1bution of Lt is nearly independent~bf t. One expresses 
this conveniently by saying that the "steady state" density of L t is given 
by the right side in (4.6). 

With the notations of the proof, the waiting time W t considered in the 
example is the random variable ,Wt ::;:: Sk - t. The argument of the proof 
shows also that 

(4.7) 

I -ax = -e 

Thus W t has the same exponential distribution as the Xk in accordance 
with the reasoning (fl). (See problem 7.) 

Finally, a word about the Poisson process. The Poisson variables N(t) 
were'introduced as functions on the sa!I1ple space of the infinite sequence 
of random variables Xl' X2 , •.••• This procedure is satisfactory for many 
purposes, but a different sample space is more natural. The conceptual 
experiment "observing the number of incoming calls up to epoch t" yields 
for each positive t an integer, and the result is therefore a step function with 
unit jumps; The appropriate sample space has these step functions as sample 
points; the sample \Space is a funct.ion space-th~ space of all conceivab~e 
"paths." In this space N(t) is defined as the value of the ordinate at epoch 
t and Sn as the coordinate of the nthjump, etc. Events can now be considered 
that are not easily expressible in terms of the original variables X n • A typical 
example of practical interest (see the ruin problem in VI,S) is the event that 
N(t) > a + hi for some t. The' individual path (just as the individual 
infinite sequence of ± 1 in binomial trials) represents the natural and un
avoidable object of probabilistic inquiry. Once one gets used to the new 
phraseology, the space of paths becomes most intuitive. 
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Unfortunately the introduction of probabilities in spaces of sample 
paths is 'far from simple. By comparison, the step from discrete sample 
spaces, to the line, plane, etc., and even to infinite ,sequences of random 
variables, is neither conceptually nor technically difficult. Problems of a 
new type arise'in connection with function spaces, and the reader is warned 
that we shall not deal with, them in this volume. We shall be satisfied with' 
an honest treatment of sample spaces of sequences (denumerably many 
coordinate variables). Reference to stochastic processes in general, and to 
the Poisson process' in particular, will be made freely, but only'to provide 
an intuitive backgrpund or to enhance interest in our problems. 

Poisson Ensembles of Points 

As shown in 1; VI;6, the Poisson law governs not only "points dis
tributed randomly along the time axis," but also ensembles of points (such 
as flaws in materials or raisins in a cake) distributed randomly in plane or 
space, provided t is interpreted as area or volume. The basic assumption 
was that ~he probability of finding k points in a specified domain depends 
only on the area or volume of the domain, but not on its shape,~ and that 
occurrences in non-overlapping -domains are independent. In example 
3(b) we used the same assumption to show that the probability that a domain 
of volume f be empty is given by e-«t. This corresponds to the exponential 
distribution for the waiting time for the first event, and we see now that the 
Poisson distribution for the number of events is a simple consequence of it. 
The same argument applies to random ensembles of points in space, and w.e 
ha ve thus a new proof for the fact that the number of points 'of the. ensemble 
contained in a given domain is a Poisson variable. Easy formal calculations 
may lead to 'interesting results concerning such random ensembles of points, 
but the remarks about- the J»oisson process' apply equally to Poisson en
sembles; a complete probabilistic description is complex and beyond the 
scope of the present volume. ' 

s. tHE PERSISTENCE OF BAD LUCK 

As everyone knows, he who joins a waiting lin~ is sure to wait for an 
abnormally long time, and similar -bad luck follows us on all occasions. 
How much can pro,bability theory contribute towards an explanation? 
For a part~~l answer we consider three examples typical of a variety of 
situations. They illustrate u~expected general features of chance fluctuations. 

Exampl~. (a) Record values. Denote by Xo my waiting time (or financial 
loss) at some chance event. Suppose that friends of mine expose themselves 
to the same type of experience, and denote the results by Xl' X2, •••• 

To exclude bias we assume that Xo, Xl' .... are mutually independent 
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random variables with a common <:fistribution. The nature of -the latter 
really does not matter but, since the exponential distribution serves as a 
model for randomness, we assume the Xi exponentially distributed in 
accordance with (3.1). For simplicity of description we treat the sequence 
{Xi} as infinite. ' . 

To find a measure for my ill luck I ask how long it will take before a 
friend experiences worse luck (we neglect the event of probability zero that 
XI: = Xo). More formally, we introduce the waiting time N as ·the value of 
the first subscript n such that Xn > Xo. The event {N > n-l} occurs 
iff the maximal term of the n-tuple Xo, Xl' ... , Xn - l appears at the initial 
place; for reasons ofsymmetty the probability of this event is n-l . The 
event {N = n} is the same as {N> n-l} - {N > n}, and hence for 
n=I,2, ... , 

(5.1) P{N=n}=! __ 1 = 1 -' 
n n+l n(n+l)' 

This result fully confirms that I have indeed very bad luck: The random 
variable N has infinite expectation! It would be'bad enough if it took on the 
average 1000 trials to beat the record of my ill luck, but the actual waiting 
time has infinite expectation. 

It will be noted that the argument does not depend on the . condition that 
the Xk are exponentially distributed. It follows that whe'never the variables 
Xi are independent and have a common continuous distribution function 
F the first record value has the distribution (5.1). The fact that this 
distribution is independent of F is used by statisticians for tests of independ-
ence. (See also problems 8~11.) '. . 

The striking and general nature of the result (5.1) combined with the 
simplicity of the proof are apt to arouse suspicion. The argument is really 
impeccable (except for the informal presentation), bu~ those who prefer ~o 
rely on brute calculation can easily verify the truth of (5.1) from the. direct 
definition of the probability in question as the (n+ 1 )-tuple integral of 
ocn+le-cz(xo+"-+:rn) over the region defined by the inequalities 0 < Xo < Xn 

and 0 < ~i < Xo for I = I, . . . , n-1. 

An alternative derivation of (5.1) is an instructive exercise in conditional probabilities; 
it is less simple, but leads to additional results (problem 8). Given that Xo = x, the 
probability of a greater value at later trials is p = e-czx, and we are concerned with the 
waiting time for the first "success" in Bernoulli trials with probability p. ,The conditional 
probability that N = n giVen Xo = x is therefore p(1-p)n-l. To obtain P{N = n} 
we have to multiply by the density a.e- fIIX of the hypothesis Xo= x and integrate with 
respect to x. The substitution 1 - e- CZX = t reduces the integra~d to t n - l (1-t), the 
integral of which equals n- l - (n+ 1)-1 in agreement with (5.1). 

(b) Ratios. If X and Yare two independent variables with a common 
exponential distribution, the ratio Y/X is a new random variable. Its 
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distributiori fun~ion is obtained by integrating (X2e-IZ(Z+v! over 0 < y < tx, 
o < x <: 00. Integration with respect to y leads to ' ' 

(5.2) P - ~ 1 = (Xe-«Z(1- e-lZtZ) d x = --: . (
y )' ' itO t 
X ',' 0 " 'I +1 

The corresponding density js given by (I +J)-2. It is noteworthy that the' 
variable Y IX has infinite expectation. 

We fincfhere a new confirmation for the persistence of bad luck. Assuredly 
Pet~r has reason for complai.ntif he has to wait three tim~s as long as Paul, 
but the distribution, (5.2) ,attributes to this event probability t. It follows' 
that, on the average, in one out of two cases either Paul or Peter,has reason 
for complaint. The obsened frequency incn~ases in practice because very 
short waiting times- naturally pass unnoticed. , 

(c) Parallel waiting lines. I arrive in my' car at the car inspection station 
(or ,at a tunnel entrance, car ferry, etc.). There are two waiting lines to 
~h()ose from, but once I have joined a !jne I have to stay in it. Mr. Smith, 
who drove-behind me, occupies the place that 1 mjght have chosen and I 
keep watching whether he is ahead of or behind 'me. Most of the time we 
stand still, but occasionally one'line or the other moves one car-length, 
forward. To maximize the influence of pure chance we assume the two 
lines stochasticaUyind~pendent; also, the time intervals between successive 
moves are independent ,variables with ~ common exponential distribution. 
Under these circumstances the successive moves constitute Bernoulli trials 
in which "success'~ means Jhat I move ahead, "failure'" that Mr. Smith 
moves. The probability of success being i, we are, in substance, dealing with 
a 'symmetric random walk, and the curious properties of fluctuations in 
random walks find a striking, interpretation. (For. simplicity of description 
we disregard the fact that only finitely many cars are present.) Am I ever 
going to be ahead of Mr. ~mith? In the rap.dom walk interpretation the 
question is whether a first passage through + 1 will ever take place. As we 
know, this event has probability one, but the expected waiting time for it is 
infinite. Such waiting gives ample apportunity to bemoan my bad luck, and 
this only' grows more irritating by the fact that Mr. Smith argues iIi the same 
way. ~ 

6. WAITING TIMES AND ORDER STATISTICS 

An ordered n-tuple (Xl" .. ' x TI ) of real numbers, may be reordered in 
increasing order of magnitude to obtain the new n-tuple 
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This operation applied to all points of the space j\n induces n well-defined 
functions, which will be denoted by Xu>,"" X(n)' If probabilities are 
defined in 3{n these functions become random variables. We say that 
(XUh ... ,X(n» is obtained by reordering (Xl"." Xn) according to 
increasing magnitude. The variable X(k) is called kth-order statisticS of 
the given sample Xl" .. ,Xn. In particular, Xu> and X(n) are the sample 
extremes; when n = 2v + 1 is odd, X(v+u is the sample median. 

We apply this notion to the particular case of independent random 
variables Xl' .... ,Xn with the common exponential density rxe-a.x. 

Examples. (a) Parallel waiting lines. Interpret Xh •.. ,Xn as the lengths 
of n service times commencing at epoch 0 at a post office with n counters. 
The order statistics repre~ent the successive epochs of terminatio,ns or, as 
one might say, the epochs of the successive discharges (the,"output process"). 
In particular, X(l) is the waiting time for the first discharge. Now if the 
assumed lack of aftereffect is meaningful, the waiting time X(l) must have 
the Markov property, that is, X(l) must be exponentially distributed. As 
a matter {)f fact, the event {XU) > t} is the 'simultaneous realization of 
the n events {Xk > t}, each of which has probability e-t ; because of the 
assumed independence the probabilities multiply and we have indeed 

(6.1) 

We can now proceed a step further and consider the situation at epoch 
X(l). The assumed lack of memory seems to imply that the original situation 
is restored except that now only n - 1 counters are in operation; the 
continuation of the process should be independent of X(t) and a replica of the 
whole process, In p.articular, the waiting time for the next discharge, 
namely X(2) - XUh should have the distribution 

(6.2) P{X X >t} -(n-lia.t 
(2)"'- U) = e 

analogous to (6.1). This reasoning leads to the following general proposition 
concerning the order statistics for independent variables with a common 
exponential distribution. 

8 Strictly speaking the term "sample statistic" is synonymous with "function of the 
sample variables," ttiat is, with random variable. It is used to emphasize linguistically the 
different role played in a given context by the· primary variable (the sample) and some 
derived variables. For example, the "sample mean" (Xl + ... + Xn)/n is called a statistic. 
Order statistics occur frequently in the statistical literature. We conform to the standard 
terminology except that the extremes are usually called extreme "values." 
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PropositionS. The n variables XU" X(2) - X(l), ... , X(n) - X(n-u are 
independent and the density of XU,~l) - XU,) is given by (n-k)(ur( n-ld czt. 

Before verifying this proposition formally let us consider its implications. 
When n = 2 the difference X(2) - X(l) is the residual waiting time after the 
expiration of the shorter of two waiting times. The proposition asserts that 
this residual wajting time has the same exponential distribution as the original 
waiting time and is :ndependent of XU). This is an ex,tension of the Markov 
property enunciated for fixed epochs t to the chance-dependent stopping 
time X(l). It is called the strong Markov property. (As we are dealing with 
only finitely many variables we are in a position to derive the strong Markov 
property from the weak one, but in more complicated stochastic processes the 
distinction is essential.) 

The proof of the proposition serves as an example of formal manipula.tions 
with integrals. For typographical simplicity we let n = 3. As in many 
similar situations we use a symmetry argument. With probability one, no 
two among the variables Xi are equal. Neglecting an event of probability 
zero the six possible orderings of Xh X2, X3 according to magnitude there.. 
fore iepresent six mutually exclusive events of eqi~al probability. To cal
culate the distribution of the order statistics it suffices therefore to consider 
the contingency· Xl < X2 < X3• Thus 

. . 

(Purely analytically, the space 3t3 is partitioned into six parts congruent to the 
region defined by Xl <X2 < X3, each contributing the same amount to the 
integral. The boundaries where two or more coordinates are equal have 
probability zero and play no role.) To evaluate the right side in (6.3) we 
haye to integrate oc3e-CZ(Zl+Z2+Z 3) over the region defined by the ,inequalities 

A. simple integration with respect to X3 leacis to 

(6.4) 
= 3e-:zt3-2czt2J,tO oce-3«z l dX

l 
= e-t3-2«h~tl. 

tt 

9 This proposition has been discovered repeatedly for purposes of statistical estimation 
but the usual pr ofs are computational instead of appealing to the Markov property. See 
also problem 13. 
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Thus the joint distribution of the three variables X(l), X(2) - X Uh X(3) - X(2) 

is a product of three exponential distributions, and this proves the proposition. 
It follows in particular that E(X(k+l) - X(k» = l/(n-k)(I.. Summing over 

k = 0,1, ... ,v-I we obtain 

(6:5) E(X(v» = !("! + _1_ + ... + 1 )". 
(I. n n-l " n-v+1 

Note that this expectation was calcula~ed without knowledge of the distri
bution of X(v) and we have here another example of the advantage to be 
derived from the representation of a random variable as a" sum of other 
variables. (See 1; IX,3.) _ 

(b) Use of the strong Markov property. For picturesque language suppose 
that at epoch 0 three persons A, B, and C arrive at a post office"and find 
two counters free. The three service times are independent random variables 
X, Y, Z with the same exponential distribution. The service times of A. 
and B commence immediately, but that of C starts at the epoch X(I) 

when either A or B is discharged. We show "that the Markov property 
leads to simple answers to various questions. 

(i)' What is the probability that C wilJ not be the last to leave the post 
office? The answer is i, because epoch X(I) of the first departure establishes 
symmetry between C and the other person being served. 

(ii) What is the distribution of the time T spent by C at the post office? 
Clearly T = X(l) + Z is the sum of two independent variables whose 
distributions are exponential with parameters 2IX and (I.." The convolution 
of two exponential distributions is given by (2J4), and it is seen that T has 
density u(t) = 2(1.(e-czt - e-2czt

) and E(T), = 3/(2(1.). 
(iii) What is the distribution of the epoch of the last departure? Denote 

the epochs of the successive departures by X Uh X(2h X(3")' The difference 
X (3 ) - X (I): is the sum" of the two variables X(3) - X(2) and X(2) - X(I). 

We saw in the preceding example that these variables are independent and 
have exponential distributions with p~rameters 2(1. and (I.. It foHows that 
X(3~ - X(l) has. the same density u as the variable T. Now X(I) is 
independent of X(3) - X(l) and has density 2(1.e-2czt

• The convolution 
formula used in (i"i) shows therefore that X(3) has density" 

and E(X(3» = 2/(1.. 
The advantage of this method becomes clear on comparison with direct 

calculations, but the latter apply to arbitrary service time distributions 
(problem 19). " 

(c) Distribution of order statistics. As a final exercise we derive the 
distribution of X(k)' The event {X(k) < t} signifies that at least k among 
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the n' variables Xi are ~t. This represents at least k "successes" in n 
independent trials, and hence 

(6.6) P{Xu:) ~ t} = .i (~) (l __ e-(%t)ie-(n-i)l%t. 

. i=-k J -

By differentiation it is seen that-the density of X(k) is given by 

(6.7) n (n -1) (1 _e-(%t)k-I~-"(:"-k)l%t • rx.e-:-t't. 

k-l ' 

This result may be obtained directly by the following loose argument. 
We require (up to tenns negligible inthe.Iimit ash ~ 0)' the probability 
of the joint event that, one among. the variables Xi lies between t a,nd 
t + h and that k - 1 'among the remaining n - I' variables are ~t, while 
the other n - k variables are > t + h. Multiplying the number 9f choices 
and the corresponding probabilities leads to (6.7). Beginners are advised to 
formalize this ar.gument, and also to derive (6.7) from the discrete model. 
(Continued in problems 13, 17.). ~ 

7. THE UNIFORM' DISTRIBUTION, 

The random variable X is distributed uniformly in the interval a, b if 
its densi'ty.is constant = (b-a)-l for a < x < b and vanishes outside 
this interval. In this case the variable (X ..... a)(b-a)-l is distributed uniformly 
in 0, 1, and we shall usually use this interval as standard. Because of the 
appearance of their graphs the densities of the uniform distribution function 
are called • 'rectangular. " 

With the uniform distribution the interval 0, 1 becomes a sample space 
in which probabilities of intervals are identical with their lengths. The 
sample' space corresponding to two independent variables ,X and Y' that. 
are uniformly distributed over 0, 1 is-the unit square in jt2., and probabilities 
in it are defined by their area. The same idea applies to triple,s and n·,tuples. 
, A uniformly distributed random variable is often called a "point X chosen 

at random." The result of theconcepttial experiment "n independent 
random choices of a point in 0, 1 " requi~es an n-dimensional hypercube 
for its probabilistic description, but the experiment as such yields n points 
X~, .. ; ,Xn in the same interval. With unit probability no two of them are 
equal, and hence they partition 0, 1 into n + 1 subintervals. Reordering 
the 11 points Xl"" ,Xn ~n their)latural order from left to right we get n 
new random variables which will be denoted by X(l)"'" X(n)' These are 
the order statistics defined in the last section. The subintervals of the 

partition are now 0, X (1) , then X(l), X(2)' etc. 
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The notion of a point chosen at random on a circle is self-explanatory. To 
visualize the result of n independent choices on the circ1e we imagine the 
circ1e oriented antic1ockwise, so that intervals have left and right endpoints 
and may be represented fn the form 0, b. Two points Xl and X2 chosen 
independently and at random divide the circ1e into the two intervals Xl' X2 

and X2 , Xl' (We disregard again the zero-probability event that Xl = X2.) 

Examples. (a) Empirical interpretations. The roulette wheel is generally 
thought of as a means to effect a "random choice~' on the circle. In numerical 
calculations to six decimals the rounding error is usually treated as a random 
variable distributed uniformly over an interval oflength 10-6• (For the error 
committed by dropping the last two decimals, the discrete model with 100 
possible values is more appropriate, though less convenient in practice.) 
The waiting time of a passenger arriving at the bus station without regard to 
the schedule may be regarded as uniformly distributed over the interval 
between successive departures. Of wider theoretical interest are the appli
cations to random splittings discussed in section 8. In many problems of 
mathematical statistics (such as non-parametric tests) the uniform distri
bution enters in an indirect way: given an arbitrary random variable X 
with a continuous distribution F th~ random variable F(X) is distributed 
uniformly over 0, 1. (See section 12.) , 

(b) The induced partition. We prove the following proposition: n in-

dependently and randomly chosen points Xb ••. , Xn partition 0, 1 into 
n + 1 intervals whose lengths have the common distribution given by 

.(7.1) P{L > t} = (l-t)n, . O<t<1. 

This result is surprising, because intuitively one might expect that at least the 
two end intervals should have different distributions. That aU n + 1 
intervals have the same distribution becomes clear on considering the 
equivalent situation on the (oriented) circle of unit length. lo Here n + 1 
points Xl"'" Xn+l 'chosen independently and at random partition the 
circle into n + 1 intervals, and for reasons of symmetry these intervals 
must have the same distribution. Imagine now the circle cut at the point 
Xn+l to obtain an interval in which Xl"" ,Xn are chosen independently 

10 For a computational verification note that the probability ofthe event 

(X(i+I) - X(i) > t} 

equals the integral of the constant function lover the union of the n! congruent regions 
defined either by the string of inequalities xl < ... < Xi < Xi + t < zi+l < ... < xn or 
by similar strings obtained by permuting the su~ripts. A more streamlined calculation 
leading to a stronger result is contained in example III, 3(e). 
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and at random. The lengths of the n + 1 intervals of the induced partition 
are the same, and they have a common distribution. That this distribution is 

given by (7.1) may be seen by considering the leftmost interval 0, X(l). Its 

length exceeds t iffall n points Xl' ... ,Xn are in t,l, and the probability 
of this event is (I-t)n. 

It is a good exercise to verify the proposition in the special case n = 2 by 
inspection of the three events in the unit square representing the sample 
space. (Continued in problems 22-26.) 

(c) A paradox (related to the waiting time paradox of section 4). Let two 
points Xl and X2 be chosen independently and at random on the circle of 

unit length. Then the lengths of the two intervals Xl' X2 and X2, Xl are 
uniformly distributed, but the length A of the one coniaining the arbitrary 
point P has a different distribution (with density 2x). 

In particular, each of the two intervals has expected length i, but the 
one containing P has. expected length i .. The point P being fi~ed; but 
arbitrary, one has the feeling that the interval covering P is chosen "without 
advance knowledge of its properties" (to borrow a phrase from the philos
ophers of probability). Certainly naive intuition is not prepared for the 
great difference between covering or not covering an arbitrary point, but after 
due reflection this difference bec~mes ."intuitively obvious." In fact, how~ 
ever, rather experienced writers have fallen into the trap. ' 

For a proof imagine the circle cut at P leaving u& with two points chosen 

independently and at random in 0, 1. Using the same notation as before the 
event {l. < t} occurs iff X(2) - X(l) > 1 - t and by (7.1) the probability 
for this equals t 2• The variable l. has therefore density 2t, as asserted. 
(Beginners are advised to try a direct computational verification.) 

(d) Distribution of order statistics. Jf Xl"" ,Xn are independ~nt and 
distributed uniformly in Q,l, the number of variables satisfying the in
equality ° < X; ::;; t < 1 has a binomial distribution with probability of 
"success" equal to t . . Now the event {X(k)·~ t} occurs iff at least k among 
the variables are ~ t and hence 

(7.2) P{X(k) < t} = i (~)t;(1_t)n-; .. 
;=k ) 

This gives us the distribution function of the kth-order statistics. By 
differentiation it is found that the density of X(k) is given by 

(7.3) n (~=~) tk-l(l_t)n-k. 

This may be seen directly as follows: The probability that one among the 
X; lies between t and t + h, and that k - 1 among the remaining ones 
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are less than t while n - k are greater than t + h, equals 

n (n -1) tk-1(1-t_h)n-kh. 
k-l 

Divide by h and let h -+- 0 to obtain (7.3). 

1.7 

(e) Limit theorems. To see the nature of the distribution of X(I) wren 
n is large it is best to introduce E(X(I) = (n+l)-l as a new ll:nit of meaSure
menta As n -+- 00 we get then for the tail of the distribution function 

(7.4) - ( .t)n P{nX(I) > t} = 1 - ~ -+- e-t
• 

It is customary .to describe this relation' by saying that in the limit X(l) is 
exponentially distributed with expectation n-1• Similarly 

( 
t )n () t ( t )n-l . (7.5) P{nX(2l > t} = 1 - ~ + ; ~ 1 --~ -+- e-t + te-t

, 

and on the right one recognizes the tail of the gamma distribution G2 of 
(3.5). In like manner it is easily verified that for every fixed k as n -+- ex:> 

the distribution of nXu:) tends to the gamma dislributionGlt (see problem 33). 
Now G lt is the distribution of the sum of k independent exponentially 

distributed variables while X(lt) is the sum o(the first k intervals considered 
in example (b). We can therefore say that the lengths 'of the successive 
intervals of our partitl.()n behave in the iimit as if they were mutua~iy in
dependent exponentially distrib:uted variables. 

[In view of the obvious relation of (7.i) with the binomial distribution .. . 

"the' central limit theorem may be used to obtain apptQximations ~o the 
distribution of X(lt) when both nand k are large. See problem 34.] 

(f) ~atios. Let X be chosen at random in 0, 1 and df.:'note by U the 
length of ~he shorter of the intervals 0, X and X, 1 and by V = 1 - U 
the length of the longer. The random variable U is uniformly distributed 
between 0 and 1 because the event {U < t < l} .occurs iff either X < t or 
1 - X < t and therefore has probability 2t. For ·reasons of symmetry V 
is uniformly di~tributed between I and 1, and so E(U) = i, E(V)- 1. 
What can we say about the ratio V/U? It necessarily exceeds 1 and it lies 
between 1 and t > I i·ff either 

-L~X<l 
l+t _ . 

or 1<X~~. 
"f. 1 +t 

For t > 1 it follows that' 

(7.6) I
v 1 ·t-1 

p U ~ t = t+l' 
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and the density of this distribution is given by 2(t+ 1)-2. It is seen that 
V IU has infinite expectation. This example shows how little information 
is contained in the observation that E(V)/E(U) = 3. ~ 

8. RANDOM SPLITI1NGS, 

The problem of this section concludes the preceding parage 'of ~xamples 
and is separated from them partly, '?ecause of its importance in physics, 
and partly because it will serve as a prototype for general Markov chains. 

Formally we are concerned with products of the form Zn = XI X2 • •• Xn 
where Xl'. ., Xn are mutually independent variables distributed uni-

formly in 0, I. 

Examples, for applications. In certain collision, proc~sses a physical 
particle is split into two and its mass in divided between them. Different' 
laws of partition may fit different processes, but it is frequently assumed 
that the' fraction of parental mass received by each descendant particle is 

distriJ;mted uniformly in 0, 1. If one of the two particles is chosen at random 
and subject to a new collision then (assuming that there is no interaction 
so that the collisions are independent) the masses of the two second~generation 
particles are given by products mXI X2, and so'on. (See problem 21.) With 
trite verbal changes this model applies also to splittings of. mineral grains or 
pebbles, ~tc. Instead of masses one considers' also energy losses under 
collisions, ,and the descript~on simplifies somewhat if one is concerned with 
changes of energy of the same particle in successive collisions. As, a last 
example consider the changes in the intensity of light when passing through' 
matter. Ex~mple 10(a) shows that when a light ray passes through a sphere 
of radius R "in a random direction'" the distance traveled througp, the 
sphere is distributed 'uniformly between ° and 4R. In the presence of uniform 
absorption such a passage would reduce the intensity of the incident ray ,by a 

factor, that~ is ,uniformly distributed in an, interval 0, a (where a < 1 
depends on the strength of absorption) . .Tq.e scale factor does not seriously. , 
affect our model and it is seen that n ind~pendent passages would reduce' 
the.intensity of the light by a factor of the form Zn. ~ 

To find the distribution of Zn we can proceed in two ways. 
(j) Reduction to exponential diStributionS. Since sums are, generally, 

preferable to products we pass to logarithms putting YA: ' -log XA:. The 
VA: are mutually indepe~dent,.and for t > 0 ,,' 

, , 

(~.1) P{YA: ~ t} =,P{XA: ~ e-~} = e-t
• 

'Now. the distribution, function Gn of the sum Sn = YI + ... + Y n' of 11 

indepen~ent~ ex~nentially distributed va~iables'·was calculated' in (J..,~), 
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and the distribution function of Zn = e-sn is given by 1 - G~(log 1-1) 

where 0 < I < 1. The density of this distribution function is l-lgn(lOg I-I) 
or 

(8.2) 1 ( l)n-l fn( t) = - log - , 
n-l t 

O<t<1. 

Our problem is solved explicitly. This method reveals the advantages 
to be derived from an appropriate transformation, but the success depends 
on the accidental equivalence of our problem with one previously solved. 

(ii) A recursive procedure has the advantage that it lends itself also to 
related problems and generalizations. Let· Fn(t) = P{Zn < I} and 
o < I < 1. By definition Fl(t) = I. Suppose Fn- l known and note that 
Zn = Zn-lXn is the product of two independent variables. Given Xn = x 
the event {Zn < I} occurs iff Zn-l < If x and has probabili' Fn-l(tfx). 
Summing over all possible x we obtain'for 0 < I < 1 

(8.3) Fn(t) = f.lFn_l(t/X) dx = f.lFn_l(t/X) dx + t. 

This formula permits us in principle to calculate successively F2 , F3 , •••• 

In practice it is preferable to operate with the corresponding densities In. 
By assumption 11 exists. Assume by induction the existence of In-I' 
Recalling that In-l(s) = 0 for s > 1 we get by differentiation from (8.3) 

(8.4) f. l (l)dX fn(t) = fn-l - -, 
. t X X 

o < t < 1, 

and trite calculations show that In is indeed given by (8.2). 

9. CONVOLUTIONS AND COVERING THEOREMS 

The results. of this section have a mild amusement value in themselves 
and some obvious· applications. Furthermore, they turn up rather un
expectedly in connection with seeminglY,unrelated topics, such as significance 
tests in harmonic analysis [example III,3(f))' Poisson processes [XIV,2(a)], 
and random flights [example 10(e)]. It is therefore not surprising that all 
formulas, as well as variants of them, have been derived repeatedly by 
different methods. The method used in the sequel is distinguished by its 
simplicity and applicability to related problems. 

Let a > 0 be fixed, arid denote by Xl' X2,. •• mutually independent 

random variables distributed uniformly over 0, a. Let Sn = Xl + ... + Xn· 
Our first problem consists in finding the distribution Un of Sn and its 
density Un = ' U~. 
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By definition Ul(X) = a-I for 0 < x < a and u1(x) = 0 elsewhere 
(rectangular density). The higher Un are defined by the convolution formula 
(2.13) which in the present situation reads 

(9.1) un+1(x) = J raUn(x_y) dy = ! [Un(x) - U n(x-a)]. 
a Jo a 

It is easily seen that 

(9.2) 

, 

xa-2 

U2(X) = 
(2a-x)a-2 

O:!5:x<a 

a :!5: x :!5: 2a, 

and, of course, U2(X) = 0 for all other x. The graph of U2 appears as an 
isosceles triangle with basis 0,2a, and hence U2 is called triangular density. 

Similarly Us -is concentrated on 0, 3a and is defined by three' different 
quadratic polynomials in the three thirds of this interval. For a general 
formula we introduce the fc;>llowing 

Nota,tion. We write 

(9.3) x+ Ixl 
x+ = 2 

for the positive part of the real number x. In the following the ambiguous 
symbol x+ stands for (x+)n, namely the function that vanishes for x :!5: 0 
and equals xn when x ~ O. Note that (x-a)+ is zero for x < a and a 
linear function when x > a. With this notation the uniform distribution 
may be written in the form 

(9.4) 

Theorem 1. Let Sn be the sum of n independent variables distributed 

uniformly over 0, a. Ler Un(x) = P{Sn :!5: x} and denote by Un = U~ the 
density of this distribution. Then for n = I, 2, . .. and x ~ 0 

(9.5) 1 n (n) Uix) = ~ 1(-1)" (x-"a)~; 
an! ",.,.0 " 

(9.6) 
. 1 n+l (n+1) 

Un+l(X) = 1 ~ (-1)" (x-"a)~. 
an+ n! ",.,.0 " 

(These formulas remain true also for x < 0 and' for n = 0 provided 
~ is defined Ito equal 0 on the negative half-axis, and 1 on the positive.) 

Note that for a point x between (k...:.. I),a and ka only k terms of the 
sum are different from zero. In practical calculations it is convenient to 
disregard the limits of summation and to pretend that " varies from - 00 
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to 00. This is possible, because with the standard convention the binomial 
coefficients in (9.5) vanish for v < 0 and v > n (see I; II,8). 

Proof. For n =' 1 the assertion (9.5) reduces to (9.4) and is obviously 
true. We now Pfove the two assertions simultaneously by induction. 
Assume (9.5) to be true for some n > I. Substituting into (9.1) we get 
Un+! as the difference of two sums. Changing the summation index v In 

the second sum to l' - 1 we get 

Un+1(X) = an~'n I (-1)'[ (:) + (. n 1) ]<x-va)~ 
which is identical with (9.6). Integrating this relation leads to (9.5) with n 
replaced by n + 1, and this completes the proof. ~ 

(An alternative proof using a passage to the limit from the discrete model 
is contained iIi problem 20 of I; XI,7.) 

Let a = 2b. The variables Xk - b are then distributed uniformly over 
the symmetric interval -b, b, and hence the sum of n such variables has 
the same distribution as Sn - nb. It is given by Un(x+nb). Our theorem 
may therefore be reformulated in the following equivalent form. 

Theorem la. The density of the sum of n independent variables distributed 
uniformly over - b, b is given by 

(9.7) uix+nb) = L( -I)" (x + (n-2v)b)~-1. 1 n (n) 
(2b)n(n-l)! ,,=0 v 

We turn to a theorem which admits of two equivalent formulations both of 
which are useful in many special problems arising in applications. By 
un~xpected good luck the required probability can be expressed simply in 
terms of the density Un. We prove this analytically by a method of wide 
applicability. For a proof based on geometric arguments see problem 23. 

Theorem 2. On a circle of length t there are given n ~ 2 arcs of length a 
whose centers are chosen independently and at random. The probability 
lPn(t) that these n arcs cover the l't-'hole circle is 

(9.8) 

which is the same as 

(9.9) <fn(t)=L(-I)" I-v-n (n) ( a)n-l 
,,=0 v t + 

Before proving it, we reformulate the theorem in a form to be used later. 
Choose one of the n centers as origin and open the circle into an interval of 



1.10 RANDOM DIRECTIONS 29 

length t. The remaining n - 1 centers are randomly distributed in 0, t 
and theorem ~ obviously expresses the same thing as 

Theorem 3. Let the interval 0, t be partitioned into n subintervals by 
choosing independently at random n - 1 points Xl, ... , Xn - l of division. 
The probability ((In(t) that none of these subintervals is of length exceeding a 
equals (9.9). 

Note that ((In(t), considered for fixed t as a function of a, ·represents the 
distribution function of the maximal length among the n interuals into which 
0, t is partitioned. For related questions see problems 22-27 . 

. Proof. It suffices to prove theorem 3. We prove the recursion formula 

(9.10) '1'.(/) ="(n-l) fcp.-,(t-X)e ~ xr2~x" 
Its truth follows directly from the definition of ({In as an (n- I)-tuple 
'integral, but it is preferable to read (9.~0) probabilistically as follows~ The 
smallest among Xl' .. ; "Xn - l must be less than a, and there are n-I 
choices for it. Given that Xi = x, the probability that Xi is leftmost 
equals [(t-x)/t]n-2., The remaining variables are distributed uniformly over 
Z, t and the conditional probability that they satisfy the conditions of the 
theorem is ({In-l(t-X). Summing over all possibilities we get (9.10).11 

Let us for the moment define Un by (9.8). Then (9.10) reduces to 

(9.11) 

. . ' ' . 
which is exactly the recursion-formula (9..1) which served to define Un. It 
suffices therefore to prove the theorem, f9r n = 2. But it is obvious that 
({J2(t) = I. for 0 < t < a and ({J2(t) = (2a-t)/t for a < t < 20, III 

agreement with (9.8). ~ 

10. RANDOM DIRECTIONS 

Choosing a random direction in the plane j{2 is the same as choosing 
'. at random a point on the circle. If one wishes to specify the direction by 
its angle with the right x-axis, the circle should be referred to its arc length 
8 with 0:!5: 8 < 217. For random' directions in the space j{3 the unit 
sphere serves as sample space; each domain has a probability equal to its 
'area divided QY 417. Choosing a random direction in j{3 is equivalent to 

11 Readers who feel uneasy about the use of conditional probabilities in connection with 
densities should replace the hypothesis Xi == x by the hypothesis x - h < Xi < x, which 
has positive probability, and pass to the limit as h - o. 
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choosing at random a point on this unit sphere. As this involves a pair of 
random variable~ (the longitude and latitude), consistency would require 
postponing ~the discussion to chapter III, but it appears more naturally in 
the present context. 

Propositions. (i) Denote by L the length of the projection of a unit vector 
with random direction in j{3 on a fixed line, say the x-axis. Then L is 
uniformly distributed over 0, 1, and E(L) ...:.... i. 

(ii) Let U be the length of the projection l!f the same vector on a fixed 

plane, say the x,y-plane. Then U has density t/J 1 - t 2 for 0 < t < I, 
and E(U) = 117. 

The important point is that the two projections have different distributions. 
That th~ first is uniform is not an attribute of randomness, but depends on 
the number of dimensions. 'T'he counterpart to (i) in j{2 is contained in 

Proposition. (iii) Let L be the length of the projection of a random unit 
vector in j{2 on the x-axis. Then L has density 2/(l7J l-x2), and 
E(L) = 2/17. 

Proofs. (iii) If () is the angle between our random direction and the 
y-axis, then L = Isin ()I and hence for 0 < x < 1 we get by symmetry 

(10.1) P{L < x} = P{O < () < arc sin x} = 2 arc sin x. 
17 

The' assertion now follows by differentiation. 
(i), (ii). Recall the elementary theorem that the area of a spherical zone 

between two parallel planes is proportional to the height of the zone. For 
o < t < 1 the event {L;!5: t} is represented by the zone' IXII =:;; t of 

height 2t, whereas {U ;!5:,t} corresponds to the zones IX31 ~ Jl-t 2 of 

total height 2 - 2.JI"-t2• This determines the two distribution functions 
up to numerical factors, and these follow easily from the condition that both 
distributions equal 1 at t = 1 ~ 

Examples. (a) Passage through spheres. Let 1: be a sphere of radius r 
and N· a point on it. A line drawn through N in a random direction 
intersects ~ in P. Then: The length of the segment NP is a random variable 
distributed uniformly between 0 and 2r. 

To see this consider the axis NS of the sphere and the triangle NPS 
which has a right angle at P and an angle, e at N. The length of NP is 
then 2, cos 0. But cos e is also the projection of a unit vector in the 
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line NP into the diameter NS, and therefore cos E> is uniformly distributed' 
in 0, 1. 

In physi.cs this model is used to describe the passage of light through 
"randomly distributed spheres." The resulting absorption of light was 
used as one example for the random-splitting process in the last section. 
(See problem 28.)- . 

(b) Circular objects under the microscope. Through a microscope. one 
observes' the projection of a cell on the Xl, x2-plane rather than its actual 
shape. In certain' biological experiments the cells are lens-shaped and 
may be treated as circular disks. Only the horizontal diameter of the disk 
projects in its natural length, and the whole disk projects into an ellipse 
whose minor axis is the projection of the steepest radius~ Now it is generally 
assumed that the orientation of the disk is random, meaning that the direction 

. of its normai is chosen at random. In this case the projection of the unit 
normal on the x3-axis is distributed uniformly in 0, I. But the angle between 
this normal and the x3-axis equals the angle between the steepest radius and' 
the Xl' x2-plane and hence the ratio of the minor to the major axis is dis-
tributed uniformly in 0, I. Occasionally the evaluation of experiments was 
based on the erroneous belief that the angle between the steepest radius 
and the Xl, x2-plane should be distributed uniformly. 

(c) Why are two violins iwice as loud as one? (The question is serious 
because the loudness is proportional to the square of the amplitude of the 
vibration.) The incoming waves may be represented by random unit vectors, 
and the superposition effect of two violins corresponds to the addition 
of two independent randoin vectors. ,By th~ law of the cosines the square 
of the length of. the resulting vector is 2 + 2 cos 0. Here 0 is the angle 
between the two random vectors, and hence cos 0. is uniformly distributed 
in -I, 1 and has zero expectation. The expectation of the square of the 
resultant length is therefore indeed 2. 

In the plane cos () is not uniformly distributed, but f"Or reasons of symmetry 
its expectation is still zero. Our result therefore holds in any number of 
dimensions. See also example V ,4(e). ~ 

By a random vector in jt3 is meant a vector drawn in a random direction 
with a length L which is a random variable independent of its direction. 
The probabilistic properties of a random vector are completely determined 
by those of its projection on the x-axis, and using the latter it is' frequently 
possible to avoid analysis in three dimensions. For this purpose it is impor
tant to know the relationship between the distribution function V of the 
true length L and the distribution F of the length Lz of the projection on 
the x-axis. Now Lz = XL, where .,t is the length of the projection of a 
unit vector in the given direction. Accordingly t X is distributed uniformly 
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over 0, I and is independent ofL.·· Given X= z, the event {~:!5: t} 
occurs iff L < tlx, and S012 . 

(10.2) f(t) = f.l V(tfx) dx t > O. 

For the corresponding densities we get by differentiation 

f. l (t) dx f.oo dy /(t) = v - - = v(y) - , 
o x X t y 

and differentiation leads to 

(10.3) 

(l0.4) v(t) = -tf'(t), , t> O. 

We have thus found the analytic relationship between the density v of the 
length of a random vector in 3',3, and the density f of the length of its pro
jection on a fixed direction. The relation (l0.3) is used to find f when v 
is known, and (10.4) in the opposite direction. (The asymmetry between 
the two formulas is due to the fact that the direction is not independent of 
the length of the projection.) 

Examples. (d) Maxwell distribution for velocities. Consider random 
vectors in space whose projections on the' x-axis have the normal density 
with zero expectation and unit yariance. Since length is taken positive we 
have 

(10.5) 

From (10.4) then 

(10.6) 

f(t) = 2n(t) = J2/7T e-1tl , . t > O. 

1> O. 

This is the Maxwell density for velocities in' statistical mecnanics. The 
usual derivation cqmbines the preceding argument with a proof that f must 
be of the form (lO.S). (For an 'alternative derivation see III,() 

'(e) Lord Rayleigh's ran40m Jlights in !R.a• Consider n 'unit vectors whose 
directions are chosen independently and at ,random~ We seek the distribution 
of the lengt~ Ln of thei~ resultant (or vector sum). Instead of studying this 
resu1tant directly we consider its projection on the ~~axis. This projection is 
obvjously the su~ of ,n. . independent random variables distributed uniformly' 
over ~ I, 1. The density of this sum'is given by (9.7) with b = 1: SU9-
stituting into (10.4) one sees that the density of the length L~ is given bylS 

(10.7) , vn(x) = "-1 ~X ' . "i( _'I)~(n)(x+n_2,,)~~2, X > O. 
2 (n--2)! \'-0 . ," 

12 This argUment ~ts the proof'of (8.3). . '. . 
laThe standardreferenoe is to a paper by S. Chal)d~ l~rbUed iri Wax (1954)J 

who calculated va' v".v, and the Fourier transform~( .';ta~"lic!cauie he ~. polar coordi
nates, his Wn(x) mus~ be ~ultiplied by 4trz2 to ob~ our ~. ," 
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This problem occurs in physics and chemistry (the vectors representing, 
for example, plane waves or molecular links). The reduction to one dimension 
. seems to render this famous problem trivial. . 

The same method applies to random vectors with arbitrary length and 
thus (1.0..4) enables us to reduce random-walk problems in :R,3 to simpler 
problems ·in :R,I. ~veri when explicit solutions ~re hard' to get, the central 
limit theorem provides valuable information [see example VIII,4(b)]. ~ 

Random vectors in 312 are defined in like manner. The distribution V of the true iength 
and the distribution F of the projection are related. by the obvious analogue to (10.2), 
namely 

(10.8) . 'F(~) = ~ f."/2 V(~ )dO. 
'1f . SID 0 o . 

However, the inversion formula (10.4) has no simple analope, and to express V in terms 
of . F we must depend on the relatively deep theory of Abel's inte~1 equation. 1, We state 
without proof that if F has a continuous density f, then. 

(10.9) 1 ,.... Vex) = ~f."/2 f( . x 0) .d~ 0 . 
o SID SID 

(See problems 29-,-30.) 

Example. (j) Binary orbits. In obserVing a spectroscopic binary orbit astronomers 
can measure only the projections of vectors onto a plane perpendicular to the line of Sight. 
An ~lIipse in space projects into an ellipse in this plane. The major axis of the true ellipse 
lies in the plane determined by theIine of sight and its projection, and it is therefore 
reasonable to assume that the angle between the major axis and its projection is uniformly 

. distributed. Measurements detennine (in principle) the distribution of the projection. The 
distribution of the true major axis is then given by the solution (10.9) of Abel's int~gral 
equation. ~ 

11. THE USE OF LEBESGUE'MEASURE 

If a set A in 0., I is the union of finitely many non-overlapping intervals 
I}, 12 , • •• of lengths . ';~I' Ai, ' ... , the uniform distribution attributes to it 
probability 

(11.1) P{A} = Al + A2 + .... 
The following examples will show that some simple, but significant, problems 

14 The transformation to Abel's integral equation is by means of the change of variables 

Fix) = F( ~x). Vi") = v( ~x}~ and x sin' 8 = y. 

Then (10.8) takes on the form 

F
1
(t) = (t. V1(y) dy, 
. Jo vy(t-y) 
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lead to unions of infinitely many non-overlapping intervals. The definition 
(11.1) is still applicable and identifies P{A} with the. Lebesgue measure of 
A. It is consistent with our program to identify probabilities with the integral 
of the density f(x) = 1, except that we use the Lebesgue integral rather than 
the Riemann integral (which need not exist). Of the Lebesgue theory we 
require only the fact that if A is the union of possibly overlapping intervals 
11 ,12 , ••• the measure P{A} exists and does not exceed the sum Al + A2 + ... 
of the lengths. For non-overlapping intervals the equality (11.1) holds. The 
use of Lebesgue measure conforms to uninhibited intuition and simplifies 
matters inasmuch as many formal passages to the limit are justified. A set N 
is called a null set if it is contained in sets of arbitrarily small measure, that is, 
to each £ there exists a set A::> N such that P{A} < £. In this case 
P{N} = O. 

In the following X stands for a random var~able distributed uniformly 
in 0, 1. 

ExampleS. '(a) What is the probability of X being rational? The sequence· 
t, t, i, 1, i, t: ... con~ains a/l the rationals in 0, 1 (ordered according to 
increasing denominators). Choose £ <! and· denote by J k an interval of 
length £k+1 centered at the kth point of the sequence. The sum of the 
lengths of the Jk is £2 + £3 + ... < £, and their union covers the rationals. 
Therefore by our definition the set of al/ rationalS has probability zero, and 
so .. X is irrational with probability one. . 

It is pertinent to ask why such sets should be considered in probability 
theory. One answer is that nothing can be gained by excluding them and that 
the use of Lebesgue theory actually simplifies matters w~thout requiring new 
techniques.' A second answer may be more convincing to beginners and 
non-mathematicians; the following variants lead to problems of un-
doubted probabilistic nature. . 

(b) With. what probability does the digit 7 occur in the decimal expansion 
of X? In the de~imal expansion of each x in the open interval between 0.7 
and 0.8 the digit 7 appears at the first place. For each n there are 9n- I 

intervals of length lo"':n containing only numbers such that the digit 7 appears 
at the nth place but not before. (For n = 2 their endpoints are 0.07 and 
0.08, next 0.17 and 0.18, etc.) These intervals are non-overlapping, and 
their total length is 110(1 + -h + (190)2 + . ~.) = 1. Thus our event has 
probability 1. 

Notice that certain numbers have two expansions, for example 0.7 = 
= 0.6999 . . .. To make our question unequivocal we should therefore 
specify whether the digit 7 must or may occur in the expansion,but our . 
argument is independent of the difference.. The reason is that only rationals 
can have two expansions, and the set of all rationals has probability zero. 
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(c) Coin tossing and random choice. Let us now see how a "random 
choice of a point X between 0 and 1" can be described in tenns of discrete 
random variables. Denote by Xk(x) the kth decimal of x. (To avoid 
ambiguities let us use terminating expansions when possible.) The random 
variable Xk assumes the values 0, 1, ... , 9, each with probability T\-' and 
the Xk are mutually independent. By the definition of a decimal expan~~on, 
we have the identity 

(11.2) 

This formula reduces the random choice of a point X to successive choices 
of its decimals. 

For further discu~sion we switch from decimal to dyadic expansions, that 
is, we replace the basis 10 by 2. Instead of (11.2) we have now ' 

(11.3) 

where the Xk are mutually independent random variables assuming tbe 
values 0 and 1 with probability 1. These variables are defined on the interVal 
0, 1 on which probablIity is equated with Lebesgue measure (length). This 
fonnulation brings to mind the coin-:-tossing game of volume 1, in which the 
sample space consists of infinite sequences of heads and tails, or zeros and 
ones. A new interpretation of (11.3) is now p,?ssible in this sample space. 
In it, the Xk are coordinate variables, and X is a random variable defined by 
them; its distribution function is~ otcourse~ unifonn. Note that the second 
fonnulation contains two distinct sample points 0111111 and 1000000 'even. 
though the corresponding dyadic expansions ~epresent the' same point 1. 
Nevertheless, the nO,tion of zero probability enables us to identify the two 
sample spaces. Stated in more intuitive terms, neglectinga~e~nt ofprob
ability zero Jhe random choice of a point X between 0 and 1 can be effected 
by a sequence of coin tossings; conversely, the result of an infinite coin-
tossing game may be represented by a point x of 0, 1. Every random variable 
of the coin-tossing game may be represented by a function on 0, 1, etc. 
This convenient and intuitive device has been used since the beginning of 
probability theory, but it depends on neglecting events of zero probability. 

(d) Cantor-type distributions. A distribution with unexpected properties 
is found by considering in (11.3) the contribution of the even-numbered 
terms Ot:, what amounts to the same, by considering the random variable 

«i" 

(11.4) Y = 3~4-TXv. 
v-I 

(The factor 3 is introduced to sjmplify the discussion. The contribution 
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of the odd-numbered terms has the same distribution as IY.) The distri
bution function F(x) = P{Y < x} will serve as example for so-caHed 
singular distributions. 

In the calcllation we refer to Y as the gain of a gambler who receives 
the amount 3· 4-k if the kth toss of a fair coin results in tails. This gain 
lies between 0 and 3(4-1 +4-2 + ... ) = 1. If the first trial results in 1 the 
gain is >i, while in the contrary case Y < 3(4-2+4-3 + ... ) = 4-1 • 

Thus the inequality ! < Y < ! cannot be realized under any circumstances, 
and so F(x) = i in this interval of length t. It foHows that F can have no 
jump exceeding t· 

Next notice that up to a factor i the contribution of the trials number 
2, 3, ... constitute a replica of the whole sequence, and so the graph of F 

in the interval 0, 1 differs from the whole graph only by a similarity 
transformation 

(11.5) F(x) = tF(4x), 0< x < 1. 
It foIIows that F(x) = i throughout an interval of length t centered at 
x = i. For reasons of symmetry, F(x) =! throughout an interval of 
length i centered at x = 1. We have now found three intervals of total 
length t + t =! in each of which F assumes a constant value, namely 
1, i, or 1· Consequently, F can have no jump exceeding i. There remain 
four intervals of length 116 each, and in each of them the graph of F differs 
from the whole graph only by a similarity transformation. Each of the 
four intervals therefore contains a subinterval of half its length in which 
F assumes a constant value (namely i, t, j, t, respectively). Continuing 
in like manner we find in n· steps 1 + 2 + 22 + ... + 2n-:-1 intervals of 
total length 2-1 + 2-2 + 2-3 + ... + 2-n = I - 2-n in each of which F 
assumes a constant value. 

Th us F is a continuous function increasing from F(O) = 0 to E(l) = 1 
in such a 11'ay that the intervals of constancy add up to length 1. Roughly 
speaking: the whole increase of F takes place on a set of measure O. We 
have here a continuous distribution function F without density f ~ 

12. EMPIRICAL DISTRIBUTIONS 

The" empirical distribution function" Fn of n points a1 , • •• ,an on the 
line is the step function with jumps l/n at a1 , ••• , an' In other words, 

. I 
n Fn(x) equals the number of points ak in - 00, x, and Fn is a distribution 
function. Given n random variables Xl' .... Xn , their values at a particu
lar point of the sample space form an n-tuple of numbers and its empirical 
distribution function is called the empirical sample distribution. For each 
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x, the value F n(x) of the empirical sample distribution defines a new 
random variable, and the empirical distribution of (Xh ... , Xn) represents 
a whole family of random variables depending on the parameter x. (In 
technical language we are concerned with a stochastic process with x as 
time parameter.) No attempt will be made here to develop the theory of 
empirical distributions, but the notion may be used to illustrate the occurrence 
of complicated random variables in simple applications. Furthermore, the 
uniform distribution will appear in a new light. 

Let Xh ... , Xn 'stand for mutually independent random variables with 
a common continuous distribution F. The probability that any two variables 
assume the same value is zero, and we can therefore restrict our attention 
to samples of n distinct values. For fixed x the number of variables Xk 

such that Xk :::; x has Po binomial distribution with probability of "success" 
p = F(x), and so the random variable Fn(x) has a binomial distribution with 
possible values 0, lIn, ~ .. , 1. For large n and ~ fixed, Fn(x) is therefore 
likely to be close to F(x) and the central limit theorem tells us more about 
the probable deviations. More interesting is the (chance-dependent) graph 
of F n as a whole and how close it is to F. A measure for this closeness is 
the maximum discrepancy, that is, 

(12.1) 

This is a new random variable' of great interest to statisticians because of 
the following property. The probability distribution of the random va'riable 
Dn is independent of F (provided, of course, that F is continuous). 

For the proof it suffices to verify that the distribution of Dn remains 
unchanged when F is replaced by a uniform distribution. We begin by 
showing that the variables .Yk = F(Xk) are distributed uniformly in 0, 1. 

For that purpose we restrict t to the interval 0, 1, and in this interval we 
define v as the inverse function of F. The event {F(Xk ) < t} is then identical 
with the event {Xk :::; vet)} which has probability . F(v(t) = t. Thus 
P{Y k ~ t} = t as asserted. 

The variables YI , .•• , Yn are mutually independent, and we denote 
their empirical distribution by Gn • The argument just used shows also that 
for fixed t the random variable Gn(t) is identical with F n(v(t)). Since 
t = F(v(t» this implies that at every point of the sample space :R,r. 

sup IGn{t) - tl = sup IFn(v(t» - F(v(t» I = Dn· 

This proves the proposition. 
The fact that the distribution of Dn is independent of the underlying dis

tribution F enables statisticians to devise tests and estimation procedures 
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applicable in situations when the underlying distribution is unknown. In 
this connection other variables related to Dn are of even greater practical use. 

Let Xl"'" Xn, X/!'" . ,X;: be 2n mutuaIIy independent random 
variables .with the common continuous distribution F, and denote the 
empirical distributions of (XI~"'" Xn) and (X I#, ... , X:) by F nand 
F:, respectively. Put 

(12.2) 

This is the maximum discrepancy between the two empirical distributions. 
It shares with Dn the property that it does not dependon the distribution 
F. For this reason it serves in statistical tests of "the hypothesis that 
(Xh .•. , Xn) and (X/! ' ... , X:) are random samples from the same 
population." 

The distribution of Dn.n was the object of cumbersome calculations 
and investigations but in 1951 B. V. Gnedenko and V. S. Koroljuk showed 
that the whole question reduces to a random-walk problem with a well-known. 
sol,ution. Their' argument is pleasing by its elegance and we use it as 
illustration of the power of simple combinatorial methods. 

Theorem. P{Dn·. n < rln} equals the probability in a symmetric random 
. walk that a path of length 2n starting and terminating at the origin does not 
reach the points ±r. 

Proof. It suffices to consider integral ~. Order the 2n va,riables Xh : .• , 

X: in order of increasing magnitude and put Ek = 1 or Ek = -1, a'cco'rdipg 
to whether the kth place is occupied by an Xi or an Xr. The resulting 

arrangemerit contains n plus ones and n minus ones. and all e:) orderings 

are equally likely. The resulting 2n-tuples (Eb"" E2n) are therefore in a 
one-to-one correspondence with the paths of length 2n starting and tennin
ating at the origin. Now if EI + ... + Ej = k the first j places contain 
(j+k)/2 un superscripted and (j-k)/2· superscripted variables, and so 
there exists a P?int x such that Fn(x) = (j+k)/2n and F:(x) = (j-k)/2n. 
But then IFn(x) - F:(x)1 = Iklln and hence D n.n > Iklln. The same 
argument in reverse completes the proof. ~ 

An explicit expression for the probability in question is contained in 1, XIV,(9.1). In fact 

P{Dn,n < rln} =: wr.n 

is the probability that a particle starting at the origin returns at epoch 2n to the origin 
without touching ± r. The last condition can be realized by putting absorbing barriers at 
±r, and so wr.n is the probability of a return to the origin at epoch 2n when ±r are 

absorbing barriers. [In 1; XIV,(9.1) the interva1.is 0, a rather than -r, r. Our w r •n is 
identical with ur •2n(r).] 
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It was shown in 1; XIV that a limiting procedure leads from random walks to diffusion 

processes, and in this way it is not difficult to see that the distribution of V;;Dn.n tends to 
a limit. Actually this limit was discovered by N. V. Smirnov as early as 1939 and the 

similar limit for V~Dn by A. Kolmogorov in 1933. Their calculations are very intricate 
and do not explain the connection with diffusion processes, which is inherent in the 
Gnedenko-Koroljuk approach. On the other hand, they have given impetus to fruitful 
work on the convergence of stochastic processes (P. Bimngsley, M. F. Donsker, Yu. V. 
Prohorov, A. V. Skorohod, and others). 

It may be mentioned that the Smirnov theorems apply equally to discrepancies Dm •n of 
the empirical distributions of samples of different sizes m and n. The random-walk 
approach carries over, but loses much of its elegance and simplicity (B. V. Gnedenko, 
E. L. Rvateva). A great many variants of Dm •n have been investigated by statisticians. 
(See problem 36.) 

13. PROBLEMS FOR SOLUTION 

In all problems it is understood that the given varial?les are mutually independent . 
. 1. Let X and Y haye densities 'a,e-rzz concentrated on 0, 00. Find the densities 

of . 
(i)_ X3 (ii) 3 + 2X . 

(iii) X - Y (iv) .IX - YI 
(v) The smaller of X and y3. (vi) The larger of X and y3. 

-2. Do the same· problem' if the densities of X and Y equal! in '-I, 1 and 0 
elsewhere. . 

3. Find the densities for X + Y and X - Y if X has density oce-rzz(x > 0) and 
~e density.-of Y equals h-1 for 0 < x < h. 

4. Find the probability that ).2 - 2a). + b has complex roots if the coefficients 
a and bare rando~ variables. whose common density is ' 

(i) 'uniform, that is, . h-1 for .0 < x < h 
(ii) exponential, ·that is, ( oce-rzz for x > o. 
5. Find the distribution functions of X + Y/X and X + Y/Z if the variables X, . 

Y, and' Z have a' commo~exponential distribution. 
, 6. Derive the convolution formula (3.6) 'for the exponential distribution by a 
direct passage to the limit froin the' convolution formiJla for the "negative 
binomial" distribution of 1; VI,(S.I) . 
. 7. In the Poisson process 9f section 4, denote by Z the time between epoch t 

and the last preceding arrival or 0 (the."age" of the current interarrival time). Find 
the distribution of Z and show that it tends to the exponential distribution as 
t _ 00. 

S. In example 5(a) show that the probability of the first record value occurring' 
at the nth place and being ~x equals 

. 1 
--,-_...,.. (l-e-rzz)n+l. 
n(n+I)' . 

. Conclude that the probability distribution of the first record value is 1 - (l + ocx)e-rzz• 
[More generally, if the Xi are positive and subject to an arbitrary continuous, 

distribution F, tI:te fi~t probability ~quals [n(n + 1)]-1 pn+l(x) and the distribution 
of the first reCord value is F - (1 - F) log (l - F)-I.] . 
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. 9. Downward runS., The random variable N is defined" as the unique index 
such that Xl ~ X2 ~ .•• ~ XN -1 < XN • If the Xi have a common continuous 
distribution F prove that P{N = n} = (n-l)/n! and E(N) = e. 

Hint: Use the method of· example 5(a) concerning record values. 
10. Platoon formation in traffic.Is Cars start successively at the origin and travei 

at different but constant speeds along an infinite road on which no passing is possible. 
When a car reaches a slower car it is compelled to trail it at the same speed. In this 
way platoons will be formed whose ultimate size depends on the speeds of the cars 
but not on the times between successive departures. 
\ Consider the speeds of the <:ars as independent random variables with a common 
continuous distribution. Choose a car at random, say the next car to depart. 
Using the combinatorial method of example 5(a} show that: " 

(a) The probability that the given car does not trail any other car tends to t. 
(b) The probability that it leads a platoon of total size n (with exactly n - 1 

cars trailing it) tendS' to I/(n+l)(n+2). 
(c) The probability that the given car is the last in a platoon of size n tends to 

the same limit.' 
11. Generalizatio~16 of the record value example 5(a). Instead of ~kiIig the single 

preliminary observation Xo we start from a sample (Xh ••• , Xm) with order statistics : 
(X(I)' .- .. ,X(m)' (The common distribution F plays no role as long as it is 
continuous.) 

(a) If N is the first indexn such that Xm+n ~ X(~) show that P{N > n} =. 
=m/(m +n). [In example 5(a) we had m = 1.] 

(b) If N is the first index n such that Xm+n > X(m-r+I) show that 

P{N >n} = (7) / (m~n). 
For r ~ 2 'we have E(N) < 00 and 

P{N ~ mx} ~1 
1 

m - co. 

(c) If N is the first index such that Xm+n falls outside the interval between 
X(I) and X(m) then 

P{N} 
.m(m-I) > n = , 

(m+n)(m+n-l) 
and E(N) < 00. 

12. (Convolutions of exponential distributions)~ For j = 0, ... ,n let Xi have 
density Aie-liZ Ifor x > 0 where Aj ~ Ak unless j = k. Put . 

'Pic.n = [(Ao -Ak) ... (Ak-1 -Ak)(Ak+l -A~ ... (An -AJ:l1. 

S~ow that Xo + : ., + Xn has a density. given by 

(*) Pn(t) = Ao' .. An-I['PO,ne- lot + ... + 'Pn.ne-l"t]. 

Hint: Use induction, a symmetry argument, and (2.14). No calculations are 
necessary. 

15 G. F. Newell, Operations Research, vol. 7 (1959), pp. 589-598. 
16 S. S. Wilks, J. Australian Math. Soc., vol. 1 (1959) pp. 106-112. 
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13. (Continuation). 'If Yi has the density je-iZ, the density of the' sum 
Y I + . . . + Y" is given by 

f,,(x)=n i (_l)k-l(n-I)e-kz, x > O. 
k-I k...;..1 

Using the proposition of example 6(b) conClude that f~l is the density. of the 
spread XC") - XCI) of a $ample' Xb •.• ,Xn if ~e Xi have the common 
density e-Z • -

14.' Pure birth processes. In the pure birth process of 1; XVII,3 the system passes' 
through a sequence of states Eo -- £1 - ... , staying at Ek for a sojourn'time Xk 
with density A~-lkZ. Thus S" = Xo + ... + Xn is the epoch of the transition 
E" - En+!' Denote by P,,(t) the probability of E" at epoch t. Sho~ that, 
P,,(t) = P{S" > t} - P{Sn-l > t} and hence thatP" is given by formula (*) of 
problem 12. The differential equations of the process, namely 

P~(t) = -AoPo(t), P~(t) = -A"P,,(t) + An-IPn-I(t), n ~ I, 

should be derived (a) from (1), and (b) from the properties of the sums, S". 
Hint: Using inductively a symmetry argument it suffices to consider the 

factor of e-Aot• 

15. In example 6(a) for parallel waiting lines we say that the system is in state 
k if k counters are free. Show that the birth process model of the last example 
applies with Ak = (n -k)a.. Conclude that 

P.(I) = (:) (I -e~')·e-(·-k)·,. 

From this derive the distribution of XCk)' 

16. Consider two independent queues of m and n > m persons respectively, 
assuming the same exponential distribution for the service times. Show that the 
probability of the longer queue finishing first equals the probability of obtaining n 
heads before, In tails in a fair coin-tossing game. Find the same probability also 
by considering the ratio X/V of two variables with gamma distributions Gm and 
G" given in (3.5). 

17. Example of statistical estimation. It is assumed that the lifetimes of electric 
bulbs have an exponential distribution with an unknown expectation a.-I. To' 
estimate a. a sample of n bulbs is taken and one observes the lifetimes 

XCI) < X (2 ) < ... < X Cr ) 

of the first r bulbs to fail. The "best unbiased estimator" of a.-I is a linear 
combination U = AIXCI ) + ... + ArXcr) such that E(U) = a.-I and Var (U) 
is the smallest possible. Show that 

'111 
U = (XCl)+' . '+XCr» - + XCr)(n-r)-, and then Var (U) = - a.-2

• 
r r r 

Hint: Dq the calculations in terms of the independent variables X Ck ) - XCk- l ) 

(see example 6(b». 
18. If the variables Xb ••• ,Xn are distributed uniformly in 0, I show that the 

spread XC") - XCl) has density n(n-l)xn- 2(1-x) and expectation, (n-I)/(n+l). 
What is the probability that all n pOints lie within an interval of length t? 
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19. Answer the questions of example 6(b) when the three service times are 
distributed uniformly in 0, 1. (Note: The problem involves tedious calculations, 
but may provide a useful exercise in technical manipulations.~ 

20. Four points are chosen independently and at random on a circle. Find the 
probability that the chords . XIX2 and X 3X, intersect: (a) without calculation 
using a symmetry argument; . (b) from the definition by an integral. 

21. In the random-splitting process of section 8 denote by Xu, Xl2, X21~ X22 
the masses of the four fragments of the second generation, the subscript 1 referring 
to the smaller and 2 to the larger part. Find the densities and expectations of these 
variables. 

Note. The next few problems contain new theorems concerning random par
titions of an interval [see example 7(b )]. The variabl~ Xl"'" Xn are supposed 
independent and uniformly distributed over -0, t. They induce a .partition of this 
interval into n + 1 subintervals whose lengths, taken in proper order, will be 
denoted by L I , ... , Ln+l' [In the notation of order statistics we have 

LI = XCI)' L2 =: X(2) - XCI) •... , Ln+l = t - Xcn ).] 

22. Denote by Pn(t) the probability that all n + 1 intervals,are longer than h. 
[In other words, Pn(t) = P{min Lk > h}, which is the tail of the distribution 
function of the shortest among the intervals.] Prove the recurretl:~e relation 

·"t-h 

(*) Pn(t) = t: Jo xn-Ipn_l(x) dx. 

Conclude that Pn(t) = t-n(t - (n + l)h)~. 
23. From a recurrence relation analogous to (*) prove without calculations that 

for arbitrary Xl > 0, ... , x,,+l ~ ° 
(**) P{LI > Xl • ...• L,,+l > Xn+l} = t-n(t - Xl - ... -xn+l)~' 

[This elegant result was derived by B. de Finettil7 from geometrical considerations. 
It contains many interesting special cases. When Xi = h for all j we get the preced
ing problem. Example7(b) corresponds to the special case where exactIy one among 
the xi is different from zero. The covering theorem 3 of section 9 follows from 
(**) and the formula 1; IV,(1.5) for the realization 9f at least one among n + 1 
events.] 

24. Denote by q,,(t) the 'probabili.ty that all mutual distances of the Xkexceed 
h. (This differs from problem 22 in that no restrictions are imposed on the end 
intervals LI and Ln+1') Find a relation analogous to (*) and hence derive 9,,(t)· 

2~. Continuation. Without using the solution of the preceding problems show a 
priori that p,,(t) = (t-2h)"t~q,,(t-2h). 

26. Formulate the analogue to problem 24 for a circle and show that problem 
23 furnishes its solution. . . 

------
27. An isosceles triangle is formed by a unit vector in thex-dircction and another 

in a random direction. Find the distribution of the. length of the third side (i) in 
jlt and (ii) in ,1ts. 

17 Giomale Istituto Italiano degli Attuari, vol. 27 (1964) pp. 151-173. in Italian. 
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28. A unit circle (sphere) about 0 has the north pole on the positive x-axis. A 
ray enters at the north pole .and its angle with the x-axis is distributed uniformly 
over -11T, 11T. Find the distributi9n of the length of the chord withi~ the circle 
(sphere). 

Note. In .1{.2 the ray has a random direction and we are concerned with the 
analogue to example lO(a). In .1{.3 the problem is new. 

29. The ratio of the expected lengths of a random vector and of its projection' 
on the x-axis equals 2 in .1{.3 and 1T/2 in .1{.2. Hint: Use (10.2) and (10.8). 

30. The length of a random vector is distributed uniformly o.ver 0, 1. Find the' 
density of the length of its projection on the x-axis (a) in .1{.3, and (b) in .1{.2. 

Hint: Use (1004) and (10.9) . 
. 31. Find the ,distribution function of ,the projection on the x-axis of a ~andomly 

chosen direction in .1{. ~. 

32. Find the analogue in .1{.4 to the relation (10.2) between the dis~ributions of 
the lengths of a random vector and that of its projection on the x-axis. Specialize 
to a unit vector to verify the result of problem 31. 

33. A limit theorem for order statistics. (a) Let Xl"'" Xn be distributed 
uniformly in 0, 1. Prove that for k fixed and n - CX) 

P(XCk) :5: ~) - Gk_I(X), x> 0, 

where Gk is the gamma distribution (3.5) [see exampJe 7(e)]. 
(b) If the X k have an arbitrary continuous distribution function F, the same 

limit exists for P{XCk) :5: (])(x/n)} where (]) is the inverse function of F. (Smirnov.) 
34. A limit theorem for the sample median. The nth-order statistic XCn ) of 

(Xl' ... ,X2n- l) is called the sample median. If the Xi are independent and 
uniformly distributed over 0, 1 show that 

P{XCn ) - ! < t/V8n} - 91(t) 

where 91 stands for the standard normal distribution. 
35. Continuation. Let the Xi have a common distribution F with' a con

tinuous density f. Let m be the theoretical median, that is, let F(m) =!. Show 
that 

P{XCn) < x} = (2n_I)(2n~2) rx: Fn-l(y)[I-F(y)]n-If(y)dy 
n 1 )-00 

whence, using the preceding problem, 

P(Xcn) - m < ~ . ) - 91(t). 
f(m) 8n , 

36. Prove the following variant of the Gnedenko-KoroJjuk theorem in section 12: 

p(s~p [F.(x)-F!(x)] > :) = Vnr) / en). 
where r = 1,2, . ; . ,n. (In contrast to the original formulation the absolute 
values on the left are omitted and so only one absorbing barrier at r occurs in the 
associated random walk.) 
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37. Generation of exponentially distributed variables from uniform ones. 18 Let 
Xl' X2, • •• be independent and uniformly distributed in 0, 1. Define the random 
variable N as the index such that Xl > X2 ~ ••• > XN_ I < XN (see problem 9). 
Prove that 

xn - l 

P{XI < X, N = n} = (n-I)! 

whence P{XI < X, N even} = 1 - e-X • 

-,' n. 

Define Y as follows: A "trial" is a sequence Xl' ... ' X N; it is a "failure" 
if. N is odd. We repeat independent trials as long as necessary to produce a 
"success." Let Y equal the number of failures plus the first variable in the 
successful trial. Prove that P{Y < x} = 1 - e-X • 

18 J. von Neumann, National Bureau of Standards, Appl. Math. Series, No. 12 (1951) 
pp.36-38. 



CHAPTER II 

Special D ensi ties. 

Randomization 

The main purpose of this chapter is to list for reference the densities 
that will occur most frequently in' the following chapters. The randomization 
procedure described in the second part is of general use. Its scope is 
illustrated by deriving certain distributions connected with Bessel functions 
which occur in various applications. It turns out that this simple probabilistic 
app~oach replaces involved calculations and hard analysis. 

1. NOTATIONS AND CONVENTIONS 

We say that a density f and its distribution Fare concentrated l on an 

interval I = a, b if f(x) = 0 for all x outside /. Then F(x) = 0 for 
x < a and F(x) = 1 for x > b. Two distributions F and G, and also 
their densities f and g, are said to be of the same type if they stand in the 
relationship 

(l.1) G(x)' = F(ax+b), g(x) = af(ax+b), 

where a > O. We shall frequently refer to b as a centering parameter, to 
a as a scale parameter. These term~ are readily understood from the fact 
that when F serves as distribution function of a random variable X then 
G is the distribution' function of 

(1.2) y = X - b . 
a 

In many contexts only the tJ:pe of a distribution really matters. 

1 According to common usage the closed interval I should be called the support of f. 
A new term is introduced because it will be used in the more general sense that a distribution 
may be 'concentrated on the set of integers or rationals. 

45 
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The t:xpectation m and variance a2 of / (or of F) are defined by 

(1.3) . 

[
+<Xl 

m = .. -<Xl xJ(x) dx, 

provided the integrals converge absolutely. It is clear from (1.2) that in 
this case g has expectation (m-b)ja and variance a 2ja2• It follows that 
for each type there exists at most ohe density with zero expectation and unit 
varIance. 

We recall" from 1,(2.12) that the convolution /'= II * /2 of two densities 
/1 and /2 is the probability density defined by 

(1.4) J(x) = L+?Ofl(X- Y)J2(Y) dy. 

When /1 and /2 are concentrated on 0, ex) this formula reduces to 

(1.5) 
'"x 

J(x) = Jo Jl(X-y)Jz(y) dy, x> o. 

The former represents the density of the sumof two independent random var
iables with densities /1 and /2. Note that for gi(X) = /i(x+b~)' the con
volution g = gl * g2 is given by g(x) = f(x+b1 +b2) as is obvious from 0.2). 

Finally we recall the standard normal distribution function and its density 
defined by 

(1.6) 1 I _!1I
2 

91(x) = /_ e dy. 
-y27T -<Xl 

Our old acquaintance, the normal density with expectation m and variance 
(j2, is given by 

1 (x-m) -n --
a a 

a> O. 

Implicit in. the central limit theorem is the basic fact that the family of 
normal denSities is closed under convolutions; in other words, the convolution 
of two normal densities with expectations mb nl2 and variances ai, a~ is 
the normal density with expectation m1 +"'2 and variance a2 = ai + a~. 
In view of what has been said it suffices to prove it for ml = m2 = O. It is 
asserted that 

1 . [X2] 1 J"'+<Xl [(X - y)2 y2] (1-.7) - exp - -2 = exp - 2 - -2 dy 
.J27T a 2a 27Ta1a2 -<Xl 2a1 2a2 

and the truth of this assertion becomes obvious by the change of variables 
z = y(aja1a2) - x(a2jaa1) where x is fixed. (See problem 1.) 



II.2 GAMMA DisTRIBUTIONS 

2. GAMMA DISTRIBUTIONS. 

The gamma function r is defi9.ed by 

r(t) = f.. 00 xt-ie-a:dx, 
o ' 

(2.1) 

[See 1; II,(l2.22).] It interpolates the factorials in the sense that 

r(n+l)=n! for n=O,I,.~ .. 

47 

t> O. ' 

Integration by parts shows that r(t) = (t-l). r(t-l) for all t > O. 
(Problem 2.) 

The gamma densities concentrated on 0', 00 are defined, by 

(2.2) f •. ,(x) = r~p) ""x~'e--", v > 0; x > O. 

Here IX > 0 is the trivial scale parameter, but" > 0 is essential. The 'special 
case fa,l represents the exponential density, and the densities gn of 1,(3,4) 
coincide with fa,n (n = 1,2, ... ). A trite calculation shows that the 
expectation of fa,v equals "flX, the variance "fIX2. 

The family of gamma densities is closed under convolutions: 

(2.3) la,p * la,1 = la,p+v p, > 0, ,,> O. 

This important property generaliL,es the the0.rem ofl,3 and will be in constant 
use; the proof is exceedingly simple. By (l.5) the left side equals 

(2.4) e-«:Z (X_y)P-lyV-l dy. IX
P+v f.a: 

r(p,) r(,,) 0 

After the substitution y = xt this expression differs from fa,p+v(x) . by a 
numerical factor only, and this equals unity since both fa,p+v and (2.4) are 
probability densities. 

The value of the last integral for x == 1 is the so-called beta integral 
B(p" ,,), and as a by-product of the proof we have found that 

(2.5) B(P,,,) =1(1-yt- yV-l tty = rep,) r(,,) 
o r(p+,,) 

for all p, > 0, ,,> O. [For integral p, and v this formula is used in 1; 
VI,(lO.8) and (10.9). See also problem 3 of the present chapter.] 

As to the graph of h,v, it is clearly monotone if " ~ 1, and unbounded 
near the origin when ,,< 1. For ,,> 1 the graph of fl,v is bell-shaped, 
attaining at x == " - 1 its maximum (,,_IY-l e-(V-U fr(,,) which is close 
to [27T(,,-I)]-l (Stirling's formula, problem·12 of 1; II, 12). It follows from 
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the central limit theorem that 

(2.6) r; (" + .J; X) ";!a.v (XV ->rt(x), " -+ 00. 

*3. RELATED DISTRIBUTIONS OF STATISTICS 

The gamma densities playa crucial, though sometimes disguised, role in 
mathematical statistics. To begin with, in the classical (now somewhat 
outdated) system of densities introduced by K. Pearson (1894) the gamma 
densities appear as "type III." A more frequent appearance is due to the 
fact that for a random variable X with normal density n the square X2 
has density x-tn(xt ) = f!.l(x). In view of the convolution property (2.3) 
it follows that: 

If Xl' ... , Xn are mutually independent normal variables with expectation 
o and variance a2

, then Xi + ... + X~ has density fl /2a2 .nI2' 

To statisticians X2 = Xi + ... + X~ is the "sample variance from a 
normal population" and its distribution is in constant use. For reasons of 
tradition (going back to K. Pearson) in this connection f!.!n is called chi
s·quare density with n degrees of freedom. 

In statistical mechanics X~ + X~ + Xi appears as the square of the speed 
of particles. Hence vex) = 2xf!.!3(x2) represents the density of the speed 
itself. This is the Maxwell density found by other methods in 1,(10.6). (See 
also the example in III,4.) 

In queuing theory the gamma distribution is sometimes called Er/angian. 
Several random variables (or "statistics") of importance to statisticians 

are of the form T = XjY, where X and Yare independent random vari
ables, Y > O. Denote their distributions by F and G, respectively, and 
their densities by f and g. As Y is supposed positive, g is concentrated 

on 0, 00 and so 

(3.1) P{T < t}·= P{X < tY}= J.rx> F(ty) g(y) dy. 

By differentiation it is fou~d that the ratio T =: XjY has density 

(3.2) wet) = frx>!(ty)y g(y) dy. 
,J{I 

Examples. (a) If X and Y have densities fl.! m and fl.!n, then X/Y 
has density 

r'(l(m + n» t im- 1 

w( t) - --:..=-2 ~--.,;...;... -----::---
- rOm) rOn) (1 +t)i<m+n) , 

t > O. (3.3) 

* This section treats special topics and is not used in the sequel. 
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In fact, the integral in (3.2) equals 

(3.4) 
ttm-l i oo 

2i (m+nl r(im) rOn) 0 

yl(m+nl-le-i(1+ t ltl dy 

and the substitution 1(1 +t)y = s reduces it to (3.3). 
In the analysis of variance one considers the special case 

x = X2 + ... + X2 and Y = y2 + ... + y2 
1 mIn 

where Xl' ... ' Xm , Yh ••• , Y~ are mutually independent variables with 

the common normal density n. The random variable F = (nX/mY/) is called. 
Snedecor's statistic and its density (mIn) w«mln) x) is Snedecor's density, or the 
F-density. The variable Z = log iF is Fisher's Z-statistic, and its density 
Fisher's Z-density. The two statistics are, of course, merely notational 
variants of each other. 

(b) Student's T-density. Let X, Yh ••• ,Yn he independent with the 
common normal density n. The variable 

(3.5) T = X.J; 
Jy:+ .. ·+Y! 

is known to statisticians as Student's T-statistic. We show that its' density is 
given by 

(3.6) h 
r 1 r(i(n+l») 

were '-'n = /- . 
V ?Tn rHn) 

In fact, the numerator in (3.5) has a normal density with zero expectation and 
variance n~ while the density of the denominator is given by lxf!.!n(x2). 
Thus (3.2) takes on the form 

(3.7) 1 J.FXl -t(1-:·t'/nltl' n d 
I (11/1) e y y. 

V ?Tn 2 n- , .. r(n/2) 0 

The substitution s = 1(1 +t2/n)y2 reduces the integral to a gamma integral 
and yields (3.6.). • 

4. SOl\tE COMMON DENSmES 

In the following it is understood that all densities vanish identicaIly outside 
the indicated interval. 

(a) The bilateral exponential is defined by tlXe-alzl where IX is a scale 
parameter. It has zero expectation and variance 21X-2• This density is 

. the convolution of the exponential density lXe-«z (;e > 0) with the mirrored 
density tXerr.z (x < 0). In other words, the bilateral exponential is the density 
of Xl - Xa when Xl and X2 are independent and have the common 
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exponential density a.e-«2 (x > 0). In the French literature it is usually 
referred to' as the "second law of Laplace," the first being the normal 
distribution. ' 

(b) The uniform (or rectangular) ?ensity Pa and the triangular density Ta 

concentrated on -a, a are defined by' 

(4.1) pix) = - , 'Ta(X) ...;.. - 1 - - , 1 " 1 ( , IXI) 
2a 'a a 

IXI < a. 

It is easily seen that Pa * Pa = 'T2a' In wor-ds: the sum of two uniformly 
distributed variables in -a, a has a triangular density in -2a,2a. [The 
repeated convolutio~s Pa * .' .. * Pa are described in r,(9.7).] 

(c) Beta densities in 0, I are defined by' 

(4.2) {J (x) = r(p+v) (l-X)'P-l X,,-1 
p," r(ll) re,,) , , o < x < 1, 

where Il > 0 and" > 0 are free 'parameters. That (4.2) indeed defines a 
probability density follows from (2.5). By the same formula it is seen that 
{Jp,,, has expectation ,,/{Jl.+,,), and variance p,,/[(P+,,12(P+,,+ 1)]. If 
f' < I, " < 1, the graph of Pp ,,, is U-shaped, tending to 00 at the ,limits. 
For Il > I, " > I the graph is beI1~shaped. 'For p = " = 1, we get the 
uniform densi ty as a special case.' , 

A simple variant of the beta density is defined by 

1. ( 1) rcu+,,) t
p

-
1 

(4.3) (1 +1)2 Pp',,, 1 +t = r(p) F(,,) . (1 +1)#1+" 0 < t < 00. 

If the variable X has density (4.2) then Y = X-I - I has density (4.3). 

In the Pearson system the densitief (4.2) and (4.3) appear as types I and VI. The 
Snedecor density (3.3) is a special case of (4.3). The densities (4.3) are sometimes called 
after the economist Pareto. It was thought (rather naively from a modern statistical 
standpoint) that income distributions should have a tail with a density""'"" Ax-eras x -+ 00, 

and (4.3) fulfills this requirement. 

(d) The so-calied arc· sine densi!] 
1 

(4.4) 7TJ xC; -'x) , 

is actually the same as the beta density Pl.!' but deserves special mention 
because of its repeated occurrence in fluctuation theory. (It was introduced 
in 1; III,4 in connection with the unexpected behavior of sojourn times.) 
The misleading name is unfortunately in general use; actually the distribu-

tion function is given by 27T-1 arc sin Jx. (The beta densities with Il + " = I 
are sometimes referred to as "generalized arc sin{-; densities.") 
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(e) The Cauchy density centered at the origin is defined by 

,1 t 
Yt(x) = _. , 

7T t
2 + x 2 

(4.5) -00 < x < 00, 

where t > 0 is a scale parameter. The corresponding distribution function 
,is ! + 7T-

I arc tan (x/t). The' graph, of Yt resembles that of the normal 
density bur approaches the axis so slowly that an expectation does not ex~t. 

The importance of the Cauchy densities is due to the convolution formula 

(4.6) Ys * Yt = Ystt· 

It states that the family of Cauchy densities (4.5) is closed under convolutions. 
Formula (4.6) can be proved in' an elementary (but tedious) fashion by 

,a routine decomposition of the integrand into partial fractions. A simpler 
proof depends on Fourier analysis. 

The convolution formula (4.6) has the amazing consequence that for 
independent variables Xl>" '. ,X n with the common' density (4.5) the 
average (Xl + ... + Xn)/n has the same density as the Xi' 

Example. Consider a laboratory experiqtent _ in which a vertical mirror 
projects a horizontal light rayon a wall. The mirror is free to rotate about 
a vertical axis through A. We assume that the direction of the reflected 
ray is chosen "at random," that is, the angle cp between it and the perpen
dicular AO to the wall is distributed, uniformly between -!7T and 11T. 
The light ray intersects the wall at a point at a distance 

X = t· tan <p 

from 0 (where t is the distance AO of the center A from the wall). It 
is noW obvious that the random variable X has density (4.5).2 If the 
experiment is repeated n times the average (X1+" ·+Xn)!n has the same 
density and so the averages do not cluster around 0 as one should expect by 
analogy with the law of large numbers. • 

The Cauchy density has the curious property that if X has de.nsity Yt then 2X has 
density Y2t = 'Yt. • Yt. Thus 2X = X + X is the sum of two dependent variables, but its 
density isgiven by the convolutionformula. More generally, if U .md V are two independ
ent variables with common density Yt and X = aU + bV, Y = cU + dV, then X + y 
has density Y(a+b+c+d)t which is the convolution of the densities Y(a+blt of X and Y(C+d)t 

2 A simple reformulation of this experiment leads to physical interpretation of the 
convolution formula (4.6). Our argument shows that if a unit light source is situated 
at the Qrigin then Yt represents the distribution of the intensity of light along the line 
y = t of the x,y-plane. Then (4.6) expresses Huygens' principle, according to which the 
intensity of light along y = s + t is the same as if the source were distributed along the 
line y == t following the density Yt. (lowe this remark to J. W. Walsh.) 
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of Y; nevertheless, X and Yare not independent. (For a related example see problem 
1 in IU,9.) 

[The Cauchy density corresponds to the special case n = 1 of the family (3.5) of 
Student's T- densities. In other words, if X and Yare jndependent random variat!es 
with the normal density n, then X/IYI has the Cauchy density (4.5) with t = 1. For 
some related densities see problems 5-6.] 

The convolution' property (2.3) of the gamma densities looks exactly 
like (4.6) but there is an important difference in that the parameter v of 
the gamma densities is essential whereas (4.6) contains only a scale parameter. 
With the Cauchy density the type.is stable. This stability under convolutions 
is shared by the normal and the Cauchy, densities; the difference is that 
the scale parameters compose according to the rules· a2 = a~ + a; and 
t = 11 + t2 respectively. There exist other stable denSities with similar 
properties, and with a systematic terminology we should call the normal and 
Cauchy densities "symmetric, stable of exponent 2 and 1." (See VI, 1.) 

(f) One-sided stable distribution of index t. If 91 is the normal distribution 
of (1.6), then 

(4.7) FIZ(x) = 2 [I - 91(at/.j;)], x > 0, 

defines a distriQution function with density 

(4.8) fix) = at . 1 e-i-1Z2/~, 
.j27T .j x3 

x> O. 

Obviously no expectation exists. This distribution was fOijnd in 1; 111,(7.7) 
and again in 1; X,l as limit of the distribution of recurrence times, and 
this derivation implies the composition rule 

flZ * fp = fy where 'Y ~ at + {J. 

(A verification by elementary, but rather cumbersome, integrations is' 
possible'. The Fourier analytic proof is simpler.) If Xl,"" Xn are 
independent random variables with the distribution (4.7), then (4.9) implies 
that (Xl + ... +X n)n-2 has the same distribution, and so the averages 
'(~l +' . ,+Xn)n-1 are likely to beof the order of magnitude of n; instead of 
converging they increase over all bounds. (See problems 7 and 8.) 

(g) Distributions of the form e-X-IX(x> 0, IX > 0) appear in connection with order 

statistics (see problem 8). Together with the variant 1 - e-xlZ they appear (rather 
mysteriously) under the name of Weibull distributions in statistical reliability theory. 

(h) The logistic distribution function 

(4.10) 
1 

F(t)=----
1 + e-lZt-P 

IX>O 

may serve as a warning. An unbelievably hu'ge literature tried to establish a transcendental 
"law of logistic growth"; measured in appropriate units, practically all growth processes 
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were supposed to be represented by a function of the form (4.10) with t representing 
time. Lengthy tables, complete with chi-square tests, supported this thesis for human 
populations, for bacterial colonies, development of railroads, etc. Both height and weight 
of plants and animals were found to follow the logistic law even though it is theoretically 
clear that these two variables cannot be subject to the same distribution. Laboratory 
~xperiments 011 bacteria showed that not even systematic disturbances can produce other 
results. Population theory relied on logistic extrapolations (even though they were 

. demonstrably unreliable). The only trouble with the theory is that not only the logistic 
distribution but also the normal, the Cauchy, and other distributions can be fitted to the 
same material with the same- or better goodness of fit. 3 In this competition the logistic 
distribution plays no distinguished role whatever; most contradictory theoretical models 
«an be supported by the same observational material. 

Theories of this nature are short-lived because they open no new ways, and new con
firmations-of the same old thing soon grow boring. But the naive reasoning as such has not . 
been superseded by common sense, and so it may be useful to have an explicit demonstration 
of how misleading a mere goodness of fit can be. 

5. RANDOMIZATION AND MIXTURES 

Let F be a distribution function dependin5 on a parameter 
probability density. Then 

(5.1) 
r+ co 

W(x) = J-co F(x, () u(() d() 

(), and u a 

is a monotone function of x increasing fro,m Q t.o 1 and hence a distribution 
fUll(;tion. If F has a continuous density f, then W has a density w given 
by 

(5.2) 

Instead of integrating with respect to a density u we can sum with respect 
to a discrete probability distribution: if ()h ()2, . •. are chosen arbitrarily 
and if Pk > 0, 'LPk = 1, then . 

(5.3) w(x) = zf(x, ()k) Pk . 
k 

defines a new probability density. The proc~ss may be described proba
bilistically as randomization.. the parameter () is treated as random variable 
and a new probability distribution is defined in the x, ()-plane, which serves 
as sample space. Densities of the form (5.3) are called mixtures, and the term 
is now used generally for distributions and densities of th~ form (5.1) and 
(5.2). 

We do not propose at this jun~tllre to develop a general theory. Our 
aim is rather to ~llustrate by a few examples the scope of the method and its 

3 W. Feller, On the logistic law of growth and its empirical verifications ill biology, Acta 
Biotheoretica, vol. 5 (1940) pp. 51-66.' 
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probabilistic content. The examples serve also as preparation for the notion 
of conditional probabilities. The next section is devoted to examples of 
discrete distributions obtained by randomization of a continuous parameter. 
Finally, section 7ilIustrates the construction of continuous processes out of 
random walks; as a by-product we sh~lI obtain distributions occurring in 
many applications and otherwise requiring hard calculations. 

Examples. (a) Ratios. If X is a ~andom variable with density f, then 
for fixed y > 0 the variable X/y has density f(xy)y. Treating the parameter 
y as random variable with density g we get the new density 

(504) r+ oo 
w(x) = J-oo f(xy)y g(y) dy. 

This is the same as formula (3.2) on which the discussion in se.ction 3 was 
based~ 

In probabilistic language randomizing the denominator y in X/y means 
considering the random variable X/Y, and we have merely rephrased tbe 
derivation of the density (3.2) of X/Yo In this particular case the terminology 
is a matter of taste. 

(b) Ran"dom ·sums. Lei Xl' X2, • •• be mutually independent random 
variables with a common density f' The sum Sn = Xl ~ •.• + Xn has 
the density fn*, namely the n4"old convolution of f with itself. [See I,2.] 
The ~umber n of terms is a parameter which we now randomize by a prob
ability distrib.ution P{N = n} ~ Pn. The density of the resulting sum 
SN with the random' number N of terms is 

00 

(5.5) w = ~Pnfn*. 
I 

As an example take for {Pn} the geometric distribution Pn = qpn-l, and 
for f an exponential density. Then In* = g~ is given by (2.2) and 

ex> (IXX)n-l 
(5.6) w(x) = qlXe-«~ 2 pn

-
1 = qlXe~~ • 

. n=1 (n-I)! 

(c) Application to queuing. Consider a single server with exponenti~l 
servicing tim~ distri~ution (density f(t) = p,e-I't). and assume the incoming 
traffic to be Poisson, that is, the inter-arrival times are'independent 'with 
density Ae-At , A < p,. The model)s described in' 1; XVII,7(b). Arriv~~g 
customers join a (possibly empty) "waiting line" and are s~rved in order 
of arrival without interruption. 

Consider a customer who on his arrival finds n ~ 0 other customers in 
the line. The total time that he spends at the server is the sum of the service 
times of these n customers plus his own service time. This is a random 
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variable with density f(n H )*. We saw in 1; XVII,(7.10) that in the steady 
state the probability of finding exactly n customers in the waiting line e.quals 
qpn with p = Nfl. Assuming this steady state we see that the total time T 
spent by a customer at the server is a random variable with density 

00 00 L qpn l(n+1)*(t) = qfl e-Ilt 2 (pflt}"'/n! = (fl- A) e-(Il-).)t. 

n=O n=O " 

Thus E(T) = l/(fl-A). (See also problem 10.) 
(d) Waiting lines for buses. A bus is supposed to appear ,every hour 

on the hour, but is subject to delays. We treat the successive delays Xk as 
independent random variables with a common.distril,Jtion F and density f. 
For simplicity we assume 0 < Xk < 1. Denote by Tx the waiti:1g time of 
a person arriving at epoch x < 1 after noon. The probability that the bus 
scheduled for noon has already departed is F(x}, and it is easily seen that 

F(t+x) - F(x) 
(5.7) P{Tx < t}= 

1 - F(x) + F(x) F(t+x-1) 

for 0 < t < I-x 

for l,.....x < t < 2-x 

and, of course, P{Tx < t} = 1 for all greater t. The corresponding 
density is given by 

(5.8) 
f(t+x) 

F(x)f(t+x-1) 

for 0 < t < I-x 

for I-x < t < 2-x. 

Here the epoch x of arrjval is a free parameter and it is natural to randomiz~ 
it. For example, for a person arriving "at random" the epoch of arrival is a 

random variable distributed uniformly in 0, 1. The expected waiting time 
in this case equals t + (12· ·where '(12 is the variance of the delay. In other 
words, the expected waiting time is smallest if the buses are punctual and 
increases with the variance of the delay. ' (See problems 11-12.) ~ 

6. DISCRETE D,ISTRffiUTIONS 

This section is devoted to a quick glance at some results of randomizing 
binomial and Poisson distributions. 

The number' Sn of successes in Bernoulli trials has a distribution depending 
on the probability p of success. Treating p as a ·random variable with 
density u leads to the new distribution 

(6.1) P{Sn = k} = (~) J.'pk(l-pr' u(p) dp k = 0, •.. ,n. 

Example. (a) When u(p) = 1 an integration by parts shows (6.1) to be 
independent of k, and (6.1) reduces to the discrete uniform distribution 
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P{Sn = k} = (n+ 1)-1. More illuminating is an argument due to' Bayes. 
Consider n * 1 independent variables Xo, ••• , Xn distributed uniformly 
between 0 and 1. The integral in (6.1) (with u = 1) equals the probability 
that exactly k amon'g the variables Xl' ... ' Xn will be <Xo or, in other 
words, that in an enumeration of the points Xo, ••• ,Xn in order of magni
tude Xo appears at the (k+ 1)st place. But for reasons of symmetry all 
positions are equally likely, and so the integral equals (n+ 1)-1. .. 

IIi gambling language (6.1) corresponds to the situation when a skew coin 
is picked by a chance mechanism and then trials are performed with this coin 
of unknown structure. To a gambler the trials do not look independent; 
indeed, if a long sequence of heads is observed it becomes likely that for our 
coinp is close to 1 and so it is safe to bet on further occurrences of heads. 
:rwo formal examples may illustrate estimation and prediction problems of 
this type . 

. Exampl~. (b) Given that n trials resulted in k successes (= hypothesis 
H), what is the probability of the event that p < ex'1 By the definition of 
conditional probabilities 

(6.2) 

This type of' estimation with u(p) = 1 was used by Bayes. Within the 
framework of our model (that is, if we are really concerned with a mixed 
.population of coins with known density u) there can be no objection to 
the procedure. The trouble. is that it used to be applied indiscriminately to 
judge "probabilities of causes" when there was no randomization in sight; 
this point was fully discussed in example 2(e) of 1; V in connection with a 
so-called probability that the sun will rise tomorrow. 

(~) A variant may be formulated as follows. Given that n trials resulted 
in k successes,. what is the probability that the next m trials will result 

. in j successes'1 The preceding argument leads to the answer 

(;) l' pH>(1- i')Mtft-l-O u(p) dp 

1'Pt(l-p)ft-t u(p) dp 
(6.3) 

(See problem 13.) 

Turning to the Poisso.n distribution let us interpret it as regul~ting the 
number of "arrivals" during a time interval of duration t. The expected 
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number of arrivals is rx.t. We illustrate two conceptually different ran
domization procedures. 

Examples. (d) Randomized time. If the duration of the time interval is a" 
r~ndom :variable with dens~ty u, the probability PIc of exactly k arrivals 
becomes 

(6.4) 1.
00 (t)" " 

PIc = 0 e-
t ~!. u(t) dt. 

For example, if the time interval is exponentially distributed, the probability 
of k = 0, 1, ... new arrivals equals 

(6.5) 1
00 

"-<<<+11) t (rx.t)" {J d f3 (rx.)k Pk = e -- t = . 
k! , (X. + {J rx. + p " 

which is a geometric distribution. 
'(e) Stratification. Suppose there are ,several independent sources for 

random arrivals, each source having a Poisson output, but with different 
parameters. For example, accidents in a plant during a fixed exposure time 
t may be assumed to represent Poisson variables, but the parameter will vary 
from plant to plant. SiI1}ilarly, telephone calls·originating at an individual 
unit may be Poisson ian with the expected number of calls varying from unit 
to unit. In such processes the parameter (X. appears as random variable with 
a density u, and the probability of exactly n arrivals during time t is 
given by 

(6.6) 

For the special case of a gamma density u = III.Y+! we get 
, 

(6.7) Pn(t) - " " _ (n+l1) ( {J )Y+I( t )n 
n {J+t {J+f 

which is the limiting form of the Polya distribution as given in problem 24 of 
1; V,8 and 1; XVII,(JO.2) (setting {J = a-I, v = a-I - 1). ~ 

Note on spurious contagion. A curious and instructive history attaches to the distribution 
(6.7) and its dual nature. , 

The Polya um model and the Polya process which lead to (6.7) are models for true 
contagion where every accident effectively increases the probability of future accidents. 
This model enjdyed great popularity, and (6.7) was fitted ~mpirically to a variety of 
phenomena, a good fit being taken as an indication of true contagion. 

By. coincidence, the same distribution (6.?) has been derived previously (in 1920) by 
M. Greenwood and G. U. Yule with the intent that a good. fit should disprove presence of 
contagion. Their derivation is roughly equivalent to our.stratification model; which starts 
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from the assumption underlying the Poisson process, namely, that there is no aftereffect 
whatever. We have thus the curious fact that a good fit of the same distribution may be 
interpreted in two ways diametrically opposite in their nature as well as in their practical 
implications. This should serve as a warning against too hasty interpretations of statistical 
data. 

The explanation lies in the phenomenon of spurious contagion, described in 1; V,2(d) 
and above in connection with (6.1). In the present situation, having observed In accidents 
during a time interval of length s one may estimate the probability of n accidents during 
a future exposure of duration t by a formula analogous to (6.3). The result will depend 
on m, but this dependence is due to the method of sampling rather than to nature itself; 
the information concerning the past enables us to make better predictions concerning the 
future behavior of our sample, and this should not be confused with the future of the whole 
population. 

7. BESSEL FUNCTIONS AND RANDOM WALKS 

Surprisingly many explicit solutions in diffusion theory, queuing theory, 
and other applications involve Bessel functions. It is usually far from obvious 
that the solutions represent probability distributions, and the analytic theory 
required to derive their Laplace transforms and other relations is rather 
complex. Fortunately, the distributions in question (and many more) may be 
obtained by simple randomization procedures. In this way many relations 
lose their accidental character, and much hard analysis can be avoided. 

By the Bessel function of order p > -1 we shall understand the function 
lp defined for all real x by4 

(7.1) Ip(x) = ~ -. 
a:J 1 (X)2k+P 

k==O k !r(k+ p+ 1) 2 

We proceed to describe three procedures leading to three different types 
of distributions involv:ng Bessel functions. 

(a) Randomized Gamma Densities 

For fixed p > -1 consider the gamma density h.P+k+l of (2.2). Taking 
the parameter k as an integral-valued random variable subject to a Poisson 
distribution we get in accordance with (5.3) the new density -

a:J tk a:J tkXp+k 
(7 2) w (x) = e-t '" - I' . (x) = e-t - x "", ----

• p, k~ k!Jl,P+k+l k':-O k!r(p+k+l) 

Comparing terms in (7.1) and (7.2) one sees that 

(7.3) wi~) = e-t-X~(x/tY li2~tx), 

4 According to standard usage [pis the "modified" Bessel function or Bessel functio.n 
"with imaginary argument." The "ordinary" Bessel function, always denoted by Jp ' IS 

defined by inserting (-1)1< ,on the right in (7.1). Our use of the term Bessel function 
should be understood as abbreviation rather than innovation. 
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If p > -I then wp is a probability density concentrated on 0, 00. (For 
p = -1· the right side is not integrable with respect to x.) Note that t is 
not a scale parameter, so that these densities are of different types. 

Incidentally, from this construction and the convolution formula (2.3) 
for the gamma densities it is clear that 

(7.4) 

(b) Randomized Random Walks 

In discussing random walks one pretends usually that the successive 
jumps occur at epochs I, 2, . . .. It should be clear, however, that this 
convention merely lends color to the description and that the model is entirely 
independent of time. An -honest continuous-time stochastic process is 
obtained from the ordinary random walk by postulating that the time 
intervals be(ween successive jumps correspond to independent random variables 
with' the common density e-t. In othrt" words, the epo~hs of the jumps are 
regulated by a Poisson process, but the jumps themselves are random 
variables assuming the values + I and -I with probabilities p and q 
independent of each other and of the Poisson process. 

To each distribution connected with the random walk there corresponds 
a distribution for the continuous-time process, which i~ obtained forn:tally 
by randomization of the n~mber 0'£ jumps. To see the procedure in detail 
com:ider the position at a given epoch t. In the basic random walk the nth 
step leads to the position r > ° iff among the first n jumps !(n+r) are 
positive and !(n-r) negative. This is impossible unless n - r = 2" is 
even. In this case the probability of the position r just after the nth jump is 

( i5) ( n ) t(n+r) !(n-r) _ (r+2,,) r+v v 
l(n +r) p q - r+" p q. 

In our Poisson process the probability that up to epoch t exactly n = 
= 2" + y jumps occur is e-ttn/n! and so in our tim~dependent process the 
probability of the position r > ° at ep~h t equals 

(7.6) e-t2 . pr+VqV = v (p/qte- tl r (2v pq t) 00 tr+2v (r+2,,) , ,-
v==o (r+2,,)! r+" . 

and we reach two conclusions. 
(i) If we define I-r = Ir for r =.1, 2, 3, ... then for fixed t. > 0, p, q, 

(7.7) ar(t) = .J(p/qYe-t l r(2.Jpqt), r = 0, ±I, ± 2, ... , 

represents a probability distribution (that is, ar > 0, 2 ar == I). 
(ii) In our time-dependent random walk ar(t) equals the probability of 

the position r at epoch t. . 
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Two famous formulas for Bessel functions are immediate corollaries of this result. 

First, with the change of notations 2v pq t = x and p/q = u2,. the identity 2 a/t) = 1 
becomes 

(7.8) 
+00 

eiX(u+u-1
) = .L urI/x). 

This is the so-called generating function for Bessel functions or Sch:iimilch's formula (which 
sometimes serves as definition for I r). 

Second, it is clear from the nature of our process that the probabilities ar(t) must satisfy 
the Chapman-Kolmogorov equation 

00 

(7.9) ar(t+ 'T) = .L ak(t)ar_k( 'T), 
k=-OO 

which expresses the fact that at epoch t the particle must be at some position k and-that 
a transition from k to r is equivalent to a transition from 0 to r - k. We shall return 
to this relation in XVII,3. [It is easily verified directly from the representation (7.6) and 
the analogous formula for the probabilities in the random walk.] The Chapman
Kolmogorov relation (7.9) is equivalent to 

00 

(7.10) Ir(t+'T.j = .L Ik(t)Ir_k('T) 
k==-<Xl 

which is known as K. Neumann's identity. 

(c) First Passages 

For simplicity let us restrict our attention to symmetric random walks, 
p = q = i. According to 1; III,(7.5), the probability that the first passage 
through the point r > 0 occurs at the jump number 2n - r is 

(7.11) r (2n-r)2-2n+r n ~ r. 
2n - r n 

The random walk being recurrent, such a first passage occurs with probability 
one, that is, for fixed r the quantities (7.11) add up to unity. 'In our time
dependent process the epoch of the kth jump has the gamma density h.k of 
(2.2). It follows that the epoch of the first passage throughr > 0 has density 

(7.12) 

Thus: 

(7.13) 

.L r (2n - r) 2-2n+r fl,2n-.,.(t) = 
n 2n - r n 

= e-t.L r. n-r. 2-2n+r = e- t - Ilt). t2n-r-l ( ) (2)' r 

(2n-r-I)!· 2n-r n!(n~r)! t 

(i) for fixed r = 1,2, ... 

vr(t) = e-t !. I r(t) 
t 

defines a probability density concentrated on 0, 00. 
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(ii) The epoch of the first passage through r> 0 has density Dr' (See 
problem 15.) 

This derivation permits another interesting conclusion. A first passage 
through r + p at epoch t presupposes a previous first passage through r 
at some epoch s < t. Because of the independence of the jumps in the time 
intervals 0, sand s, t and the lack of memory of the exponential waiting 
times we must have 

(7.14) 

[A computational verification of this relation from (7.12) is easy if one , 
uses the corresponding convolution property for the probabilities (7.11).] 

Actually the proposition (i) and the relation' (7.14) are true for all positive 
values of the parameters rand p.5 

8. DISTRffiUTIONS ON A CIRCLE 

J-
The half-open interval 0, I may be taken as representing the points of 

a circle of unit length, but it is preferable to wrap the whole line around the 
circle. The circle then receives an orientation, and the arc length runs from 
- 00 to 00 but x, x ± 1, x ± 2, . .. are interpreted as the same point. 
Addition is modulo 1 just as addition of angles is modulo 21T. A probability 
density on the circle is a periodic function qJ ~ 0 such. that 

(8.1) ffP(X) dx= 1. 

Examples. (a) Buffon's needle problem (1777). The traditional formu
lation is as follows. A plane is partitioned into strips of unit width parallel 
to the y-axis. A needle of unit length is. thrown at random. What is the prob
ability that it lies athwart two strips? To state the problem formally 
consider first the center of the needle. Its position. is determined by two 
coordinates, but y is disregarded and x is reduced modulo I. In this way 
"the center of the needle" becomes a' random variable X on the circle 
with a uniform distribution. The direction of the needle may be described 
by the angle (measured clockwise) between the needle and the y-axis. A 
turn through 1T restores the position of the needle and hence the angle is 
determined only up to a mul~iple of 1T. We denote it by Z1T. In Buffon's 
needle problem it is implied that· X 'and Z are independent and uniformly 
distributed vatiablesa on the circle with unit length. 

5 W. Feller, Infinitely divisible distributions and Bessel functions associated with random 
walks, J. Soc. Indust. Appl. Math., vol. 14 (1966), pp. 864-875. 

6 The sample space of the pair (X, Z) is a torus. 
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If we choose to ~epresent X by values between 0 and 1 and Z by values 
between -! and ! the needle crosses a boundary iff ! cos Z1T > X or 
! cos Z1T > 1 - X. For a given value Z between -! and! the probability 
that X < ! cos Z1T is tpe same as the probability that 1 - X < ! cos Z1T; 

namely ! cos Z1T. Thus the required probability is 

(S.2) ii 2 
cos Z1T • dz = - . 

-! 1T 

A random variable X on the line may be reduced modulo 1 to obtain a 
variable oX on the 'circle. Rounding errors in numerical calculations are 
random variables of this kind. If X has density f the density of oX is 
given by7 

+00 

(S.3) <p(x) = ~f(x+n). 
-00 

Every density on the line thus induces a density on the circle. [It will be 
seen in XIX,5 that the same <p admits of an entirely different representation 
in terms of Fourier series. For· the special case of normal densities see 
example XIX,5(e).] . 

Examples. (b) Poincare's roulette problem. Consider the number of 
rotations of a roulette wheel as a random variable X with a density f 
concentrated on the positive h~lf-axis. The observed net result, namely 
the point oX at which the whe~l comes to rest, is the variable X reduced 
modulo, 1. Its density is given by (S.3). 

One feels instinctively that "under ordinary circumstances" the density 
of oX should be nearly uniform. In 1912 H. Poincare put this vague feeling 
on the ,solid basis of a limit ·theorem. We shall not repeat this analysis 
because 'a similar result follows easily from (S.3). The tacit assumption 
is, of course, that the given density f is spread out effectively over a long 
~nterval so that its maximum m is small. Assume for simplicity that f 
increases up to a point a where it assumes its' maximum m '/(a), and 
that f decreases for x > a. For the density <p of the reduced variable oX 
we have th~n 

(S.4) <p{x) - 1 = ~f(x+n) - r:f(S) ds. 

For fixed x denote by X k the unique point of the form x+n such that 

7 Readers worried about cOnvergence should consider only densities f concentrated on 
a finite interval. The uniform convergence is obvious if f is monotone for x and .:...x 
sufficiently large. Without any conditions on f the series may diverge at some points. but 
({J always represents a density because the partial sums in (8.2) re-present a monotone 
sequen~ of functions whose integrals tend to 1. (See IV,2.) 
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a+k ~ X k < a+k+ I. Then (8.4) may be rewritten in the form 

(8.5) 
+00 f.a+k+l 

. <p(X) - 1 = k~oo a+k [f(xk)-f(s)] ds. 

For k < 0 the integrand is <0, and so 

00 

<p(x) - 1 <~ [j(a+k) - f(a+k+l)] = f(a) = m. 
11.==0 

A similar argument shows that <p(x) - 1 > - m. Thus 1<p(x)-ll < m 
and so <p is indeed nearly constant. 

The monotonicity conditions were imposed only for the sake of exposition 
and can be weakened in many ways. [Neat sufficient conditions can be 
obtained using Poisson's summation formula, XIX,5(2).] 

(c) Distribution of first significant digits. A distinguished applied mathe
matician was extremely successful in bets that a number chosen at random in 
the Farmer's Almanac, or the Census Report or a similar compendium, would 
have the nrst significant digit less than 5. One expects naively that all 9 
digits are equally likely, in which case the probability of a digit < 4 would be 
t. In practiceS it is close to 0.7. 

Consider the discrete probability distribution attributing to· the digit k 
probability Pk = Log (k+ 1) - Log k (where Log denotes the logarithm 
to the basis 10 and k = I, ... ,9). These probabilities are approximately 

PI = 0.3010 P2 lC: 0.1761 P3 = 0.1249 P4 = 0.0969 

Ps = 0.0792 P e = 0.0669 P7 = 0.0580 ps = 0.0512 P9 = 0.0458, 

and it is seen that the distribution {Pk} differs markedly from the uniform 
distribution with weights t = 0.111 . . . . . 

We now show (following R. S. Pinkham) that {Pk} is plausible for the 
empirical distribution of the first significant digit for numbers taken at 
random from a large body of physical or observational data. Indeed, such 
a number may be considered as a random variable Y > 0 with some 
unknown distribution. The first significant digit of Y equals k iff 
lonk < Y < 10n(k+ 1) for some n. For the variable X = Log Y this 
means 

(8.6) n + Log k < X < n + Log (k+ 1). 

If the spread of Y is very large the reduced variable oX will be approxi
mately uniformly distributed, and the probability of (8.6) is then close to 
Log (k+ 1) - Log k = Pk' 

• 
S For empirical material see F. Benford, The law of anomalous numbers, Pro'.:.. Amer. 

Philos. Soc., vol. 78 (1938) pp. 551-572. 
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The convolution formula (l.5) and the argument leading to it remain 
valid when addition is taken modulo 1. Accordingly, the convolution of 
1H'O densities on the circle of length 1 is the density defined by 

(8.7) w(x) = f.'.f,(X- Y)!2(Y) dy. 

If Xl and X2 are independent variables with densities fl and f2 then 
Xl + X2 has the density w. Since these densities are periodic, the con
volution of the uniform densit}' with any other density is uniform. (See 
problem 16.) 

9. PROBLEMS FOR SOLUTION 

1. Show that the normal approximation to the binomial distribution established 
in 1; VII implies the convolution formula (1.7) for the normal densities. 

2. Using the substitution x = ty2 prove that r(!) = "/;. 

3. Legendre's duplication formula. From (2.5) for fL = v conclude that 

I 
r(2v) = v'; 22v- l r(v)r(v +!). 

Hint: Use the substitution 4(y _y2) = s in 0 < y < i. 
4. If g(x) = ie-Ixl find the convolutions g * g and g * g * g as well as gh. 
5. Let X and Y be independent with the common Cauchy density Yl(x) of 

(4.5). Prove that the product XY has density 217"-2 (x - 1)-1 glxl 
Hint: No calculations are required beyond the observation that 

a -I 1 1 
(I +s)(a +s) = I +s - a +s . 

6. Prove that if 
2 I . 4 x 

f(x) =;. eX + e-X then f* f(x) = 17"2 e-"t: _ e-X 

(a) by considering the variables log IXI and log IYI of the preceding problem; 
(b) directly by the substitution e2'11 = t and a partial fraction decomposition. 
(See problem 8 of XV,9.) 

7. If X has the normal density n then obviously X-2 has the stable density 
(4.8). From this conclude that if X and Yare independent and normal with zero 
expectations and variances ai and a~, then Z = Xy/v'X2+y2 is normal with 
variance a5 such that l/a3 = l/al + l/a2 (L. Shepp). 

8. Let Xl" .. , Xn be independent and X(n) the largest among them. Show that 
if the X j have: 

(a) the Cauchy density (4.5), then 

P{n-1X(n) ~ x} - .. e-t/(u), 

(b) the stable density (4.8), then 

P{n-2X(n) :5: x} --+ e-«v 2/(l1 x ). 

x>o 

x > o. 
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9. Let X and Y be independent with densities f and g concentrated on 0, ex>. 

If E(X) < ex> the ratio X/V has a finite expectation iff 

f!l·g(y) dy < 00, 

10. In example 5(c) find the density of the waiting time to the next discharge (a) 
if at epoch 0 the server is empty, (b) under steady-state conditions. 

11. In example 5(d) show that 

E(T.) = F(x)(1' + I-x) + f-' tf(t+x) dt, 

where J.l is the expectation of F. From this verify the assertion concerning E(T) 
when x is uniformly distributed. 

12. In example 5(d) find the waiting time distribution when [(I) = 1 for 
O<t<1. 

13. In example 6(c) assume that u is the beta density given by (4.2). Evaluate 
the conditional probability (6.3) in terms of binomial coefficients. 

14. Let X and Y be independent with the common Poisson 'distribution 
P{X = n} = e-ttn/n! Show that 

P{X - Y = r} = e-2t1Irl(2t), r=0,±I,±2, .... 

[See problem 9 of V,Il.] 
15. The results of section 7.c remain vaJid for unsymmetric random walks 

provided the probability of a first passage through r > 0 equals one, that is, 
provided p > q. Show that the only change in (7.11) is that 2-2n+r is replaced by 
pnqn-r, , and the conclusion is that for p > q and r = 1, 2, ... , 

V'(p/qYe-1 i [r(2v' pq t) 

defines a probability density concentrated on t > o. 
16. Let X and Y be independent variables and Ox and °Y be the same 

variables reduced modulo 1. Show that oX +oY is obtained by reducing X + y 
modulo 1. Verify the corresponding formula for convolutions by direct calculation. 



CHAPTER III 

Densities in Higher Dimensions. 

Normal Densities and Processes 

For obvious reasons multivariate distributions occur less frequently than 
one-dimensional distributions, and the material of this chapter will play 
almost' no role in the following chapters. On the other hand, it covers 
important material, for example, a famolls characterization of the normal 
distribution and tools used in the theory of stochastic processes. Their true 
nature is best· understood when divorced from the sophisticated problems 
with which they are sometimes connected. 

1. DENSITIES 

For typographical convenience we refer explicitly to the Cartesian plane 
jV, ~ut it will be evident that the number of dimensions is immaterial. We 
refer the plane to a fixed coordinate system with coordinate variables 
Xl'. X2• (A more convenient single-letter notation will be' introduced in 
section S.) 

A non-negative integrable function f defined in !Jt2 and such that its 
integrar equals one is called a probability densiiy, or density for short. (All 
the densities occurring in the chapter are piecewise continuous, and so the 
concept of integr-ationrequires no comment.) The density f attributes to 
the region n the probability 

(1.1) P{Q} SS /(x,. x,) dx,dx, 
n 

provided, of course, that Q is sufficiently regular for the integral to exist. 
All such probabilities are uniquely determined by the probabilities of 
rectangles parallel to the axes, that is, by the knowledge of 

(1.2) P{al < Xl < bh a2 < X2 ~ b2} =J.b
l

f.b2f (xl, x2) dXI dX2 
al az 

66 
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for all combinations a i < bi. Letting al = a2 = -''X) we get the distribution 
function F of f, namely 

(1.3) F(xl' x2) = P{XI ~'Xl' X2 ~ X2}. 

Obviously F(bl , 'X2) - F(al , x2) is the probability of a semi~finite strip of 
width bl - al and, the rectangle appearing in (1.2) being the difference of 
two such strips, the probability (1.2) equals the so-called mixed difference 

F(bl , b2) - F(al , b2) ~ F(bl , a2) + F(al , a2)·, 

It follows that the knowledge of the distribution function F uniquely 
determines all probabilities (1.1). Despite the formal analogy with the situa
tion on the line, the concept of distribution function F is much less useful 
in the plane and it is best to concentrate on the..assignment of probabilities 
(1.1) in terms of the density its~if. This assignment differs from the joint 
probabilify distribution of two discrete random ~aiiables (1; IX,I) in two 
respects. ' First, integration replaces summation and, second, probabilities 
are now assigned only to "sufficiently regular regions" whereas in discrete 
sample spaces all sets had' probabilities. As the present chapter treats only 
simple examples in which the difference is hardly noticl!abIe, the notions and 
terms of the discrete theory carryover in a self-explanatory manner. Just as 
in. the preceding chapters we employ therefore a probabilistic language' 
without any attempt at a general theory (which wili be supplied in chapter V). 
, It is apparent fro~ (1.3) thatl 

(l.4) P{Xl< Xl} , F(Xl' 00). 

Thus Fl(~) = F(x, (0) ~efines the distribution function of Xl' and its 
density h is' given by 

(1.5) 

When it is desirable to emphasize the connection betwe'en Xl and the pair 
(Xl' X2) we again speak of Fl as marginal distribution2, and of fl as marginal 
density. 

The expectation "1 and variance <1: of Xl-if they exist-are given ~y 

(1.6) J
+ooJ+oo 

f'l = E(Xl) ~ -00 -00 Xl!(Xl;X2) dX l dX2 

and 

1 Here and in the following U( (0) = lim U(x) as X - 00 and the use of the symbol 
U( (0) implies the existence of the limit. 

2 Projectiqn on the axes is another accepted term. 
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By symmetry these definitions apply also to X2 • Finally, the covariance 
of Xl and X2 is 

(1.S) Cov (Xl' X2 ) = f:: f:: (XI-P,I)(X2-P,2)f(xl , x2) dx] dx2· 

The normalized variables XiO'i-
1 are dimensionless and their covariance, 

namely p = Cov (Xl' X2)O'; 10'; 1, is the correlation coefficient of Xl and X2 

(see 1; IX,S). 
A random variable U is a function of the coordinate variables Xl and 

X2 ; again we consider for the present only functions such that the prob
abilities P{U < t} can be evaluated by integrals of the form (1.1). Thus 
each random variable will have a unique distribution function, each pair 
will have a joint distribution, etc. 

In many situations it is expedient to change the coordinate variables, 
that is, to let two variables YI , Y2 play the role previously assigned to 
Xl' X2 • In the simplest case the Y i are defined by a linear transformation, 

(I.9) 

with determinant .1 = an a22 - a12a21 > 0. Generally a transformation 
of the form (1.9) may be described either as a mapping from one plane 
to another or as a change of coordinates in the same plane. Introducing 
the change of variables (1.9) into the integral (1.1) we get 

(1.10) P{ n} = II !(a l1YI +a12Y2' aUYI +a22Y2) . .1 dYI dY2 

the region !l* containing all points (Yb Y2) whose image (~l' x 2) IS In .0. 
Since the eVents (Xl' X2) En and (YI , Y2) E n* are identical it is seen that 
the joint density of (YI , Y2) is given by 

(1.1 I), 

All this applies equally to higher dimensions. 
A $imilar argument applies to more general transformations, except 

that the determinant .1 is replaced by the Jacobian. We shall use explicitly 
only the change to polar coordinates 

(1.12) Xl = R cos 9, X2 = R sin 9 

with (R,9) restricted to R ~ 0, -Tr < 9 <Tr. Here the density of 
(R, 9) is given by 

(1.13) g(r, 0) = I(r cos 0, r sin O)r. 

In three dimensions one uses the geographic longitude cp and latitude 0 
(with -Tr < cp < Tr and -tTr S 0 S !,r). The coordinate variables in the 
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polar system are then defined by 

(1.14) Xl = R cos 4- cos 9, X2 =R sin 4l cos 9, X3 =: R sin 9. 

For their joint density one g'?ts 

(1.15) g(r, cp, 0) = I(r cos cp cosO, r sin cp co.; 0, r sin 0)r2 cos 0. 

In the transformation (1.14) the "planes" 9 = '-t7T and 9 =!7T corre
spond to the half axes in the x3-dir_ection, but this singularity plays no role 
since these half axes have zero probability. A similar remark applies to the 
origin for polar coordinates in the plane .. 

Examples. (a) Independent variables. In the last chapter~ we considered 
independent variables Xl and X2 with densities 11 and 12' This amounts 
to defining a bivariate density by I(x l , x2) = 11 (X l )!2(X2) , and the Ii 
represent the marginal densities. 

(b) "Random choice." Let r be a bounded region ; for simplicity we 
assume r convex. Denote the area· of r by y and put f equal t.o y-l 
within r and equal to 0 outside r. Then I is a density, and the probapility 
of any region ncr equals the ratio of the areas of nand r. By obvious 
analogy with the one-dimensional situation we say that the pair (Xl' X2) 

is distributed uniformly over r. The marginal density of Xl at the abscissa 
Xl equals the width of r. at Xl in the obvious sense of the word. (See 
problem 1.) 

(c) Uniform distribution on a sphere. The unit sphere L in three dimen
sions may be represented in terms of the geographic longitude cp and 

·latitude 0 by the equations 

(1.16) Xl = cos cp cos 0, X 2 = sin cp cos 0, X3 = sin 0. 

To each pair (cp,O) such that -7T < cp S 'FI', -in- < 0 <!7T there cor
responds exactly one point on the sphere and, except for the two poles, 
each point of L is obtained in this way. The exceptional role of the poles 
need not concern us since they will have probability O. A region n· on the 
sphere is defined by its image in the cp, O-plane, and the area of n equals 
the integral of cos 0 dcp dO over this image [see (1.15)]. For the conceptual 
experiment "random choice of a point on L" we should put 47TP{n} = area 
of n. This is equivalent to defining in the qJ, O-plane a density 

(47T)-1 cos 0 for -7T < qJ < 7T, /0/ < t7T 
(1.17) g( cp, 0) = 

. 0 elsewhere. 

With this definition the coordinate variables are independent, the longitude 
I 

being distr.ibuted uniformly over -7T, 7T. 
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The device of referring the sphere L to the cp, O-plane is familiar from 
geographic maps and useful for probability theory. Note, however, that 
the coordinate variables are largely arbitrary and their expectations and 
variances meaningless for the original conceptual experiment. 

(d) The bivariate normal density. Normal densities in higher dimensions 
will be introduced systematically in section 6. The excuse for anticipating 
the bivariate case is to provide an easy access to it. An obvious analogue 
to the normal density n of II,(2.1) is provided by densities of the form 
c· e-Q

(X
lo

X
2

) where q(x1 , x2) = alxi + 2bxl x2 + a~~. It is easily seen that 
e-q will be integrable iff the aj are positive and ala2 - b2 > 0. For pur
poses of probability theory, i! is preferable to express the coefficients ai and 
b in terms of these variances and to define the bivariate normal density 
centere4 at' the origin by 

(1.18) 

() 1 [1 (Xi Xl X2 X~) ] cp Xl' X 2 = exp -, 2 2-- 2p -- + 2 
27T'ala2.Jl- p2 2(1-p) a1 ala2 a2 

where a l > 0, a2 > 0, and -1 < p < 1. The integration with respect to 
X 2 is easily,performed by the substitution t = x2/a2 - P xl/al (completing 
squares), and it is seen that cp indeed represents a density in ~JP. Further
more, it becomes obvious that the marginal distributions for X,. and X2 

are again normaP and that E(X i ) = 0, Var (Xi) = a;, Cov (Xl' X2) = 
= pala2' In other words, p is the correlation coefficient of Xl and X2 • 

Replacing Xi by Xi - Ci' in 0.18) leads to a normal density centered at the 
point (CI' c2 )· 

It is important that linear transformations (1.9) change a normal distribution 
into another normal distribution. This is obvious from the definition and (l.11). 
[Continued in example 2(a).] 

(e) The symmetric Cauchy distribution in ~P. Put 

1 1 
(1.19) U(XI' x2) = - . -:======== 

27T' .J (1 +xi+ X~)3 
To see that this is a density note4 that 

• 
1 

(1.20) 1+00 1 1 y, 
u(x , y) dy = -" - - . 

-00 I 27T' 1 +xi .Jl +X~+y2 -00 7T' 1 + xi . 

3 Contrary to a widespread belief there exist non-normal bivariate densities with normal 
marginal densities (two types are described in problems 2, 3; two more in problems 5 
and 7 of V,I2). In the desire to deal with normal densities, statisticians sometimes introduce 
a pair of new coordinate variables YI =gl(XI ), Y2 =g2(X2) which are normally 
distributed. Alas, this does not make the joint distribution of (Y l' Y 2) normal. 

4 Tile substitution y = VI + xi tan t makes the calculation easy. 
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It follows that u is a density and that the marginal density of XI is the 
Cauchy density 1'1 of II, (4.5). Obvi~usly XI has no expectation. . 

Switching to polar coordinates [as in (1.12)] R 'gets a density independent 
of () and so the variables R and a are stochastically independent. In 
the terminology ofl,10 we can therefore say that with the symmetric Cauchy 
distribution (XI, X2) represents a vector in a randpmly chosen direction with a. 

length R whose. density is given by rv' (1 +r2)-3, whence P{R.~ r} . 

= 1 - J (1 +r~)-I. [Continued in exampie 2(c).] 
(I) The symmetric Cauchy distribution in 3{3. Put 

. 1 1 
(1 21) vex x x) - - . ------

• h 2, 3 - 2.it 2 2 2)2 
11' ~ +XI +X2+X3 

It is easily seens that the marginal density of (Xb X2) is the symmetric 
Cauchy density u of (1.19). The marginal density of XI is therefore the 
Cauchy density 1'1. (Continued in problem 5.) . ~ 

Although it will not play an explicit role in the sequel it should be mentioned 
that we can defiQe convolutions just as in one dimension. Consider two 
pairs (XI' X2) and (YI, Y2) with joint densities f and g, respectively.· 
Saying that the two pairs are independent means that we take· the four-· 
dimensional space with coordinate variables XI; X2 , Y b Y2 as sample space 
and define in it a density given by the product I(xb x2} g(Yb Y).). Just as in 
jtl it is then easily seen that the joint density v of the sum (XI + Yb X2+ Y2) 
is given by the convolution formula 

(1.22) v(z,., ") ~ f:",'" f:","'f(Z~:-X" .,-x,) g(x" x,) dx, dx, 

which is the obvious analogue to 1,(2.12). (See problems 15~17.) 

2. CONDITIONAL DISTRIBUTIONS 

Suppose that the pair (XI' X2) has a continuous density f and that the 
marginal density II of XI is strictly positive. Consider. the conditional 
probability of the event X2 ~ 1J given that ¢ < Xl.~ ¢ + h, namely 

(2.1) 
lHh f" . . ~ dx -«I/( x, 'y) dy 

P{X2 < 1J.j ¢ < XI ~ ¢ + h} = f.Hh . 
fl(X) dx 

~ 

Dividing numerator and denominator by h, one sees that as h -+ 0 the 

5 Use the substitutio.n z = vI + xl + x~ tan t. 
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right side tends to 

(2.2) Uk,) = f)~) tN. y) dy. 

For fixed ~ this is -a distribution function in 'Yj with density 

(2.3) 

We call u~· the conditional denSity of X2 given that Xl = ~. The conditional 
expectation of X 2 given that Xl = ~ ..is defined by 

(2.4) 1 [+CXl 
E(x2 1 Xl = ~) = - Yf(~, y) dy 

fl(~) • -00 . 

provided that the integral converges absolutely. With ~ considered as a 
variable the right side becomes a function of it. In particular, we may 
identify ~ with the coordinate variable Xl to obtain a random variable 
called the regression of X2 'on Xl and denoted by E(X2 / Xl)' The appear
ance of X2 should not obscure the fact that this random variable is a function 
of the single variable Xl [its values being given by (2.4)]. 

So far we have assumed that h(~) > 0 for all ~. The expression (2.4) 
is meaningless at any place where fl(~) = 0, but the set of such points has 
probability zero and we agree to interpret (2.4) as zero at all points where fl 

. vanishes. Then E(X2 1 Xl) is defined whenever t~e density is continuous. 
(In. V,9-11 conditional probabilities will be introduced for arbitrary 
distributions.) 
, Needless to say, the regression E(XI I X2) of XI on X2 is. defined in like 
mann~r. Furthermore, a conditional variance Var (X2 1 Xl) is defined by 
obvious analogy wjth (2.4). 

These definitions carryover to higher dimensions, except that a density 
in :R,3 gives rise to three bivariate and three univariate conditional densities 
(See problem 6.) 

Examples. (a) The normal density. For the density (1.18) obviously 

(2.5) ( ) 
1 [ (y-p(a2/al)~)2J 

u y = exp -
~ .J 27T(1- p2)a~ 2(1- p2)0"~ 

which is a normal density with expectation p(a2/al)~ and vanance 
(1- p2)0"~. Thus 

(2.6) 

It is one of the pleasing properties of the normal distribution that the 
regressions are linear functions. 



111.2 CONDITIONAL DISTRIBUTIONS 73 

Perhaps the earliest application of these relations is due to Galton, ,and 
one of his examples may illustrate their empirical meaning. Imagine that 
Xl and X2 represent the heights (measured in inches' from their respective 
expectations) of fathers and sons in' a human population. The height of a 
randomly chosen son is then a normal variable with expectation 0 and 
variance 0':. However, in the subpop~lation of sons whose fathers have a 
fixed height ~, the height of the sons ils a normal variable with expectation 
p( 0'2/0'1)~ and variance 0'~(1- p2) < O'~. Thus the'regression of X2 on Xl 
indicates how much' statistical' information about X2 is contained in 
observation of Xl' 

(b) Let Xl and X2 be independent and uniformly distributed in 0, 1. ' 
Denote by X(l) the smaller and by X(2) the larger among these variables. 
The pair (XU), X(2» .has a density equal to the constant 2 within the triangle ° S Xl S x2 S 1, and vanishing elsewhere. Integration oVer X2 shows that 
the marginal density of X(l) is given by 2(I-xl ). The conditional density 
of X(2) for given X(l) = Xl therefore equals the constant I/I-xi within 

the interval Xl' 1 and zero elsewhere. ' In other words, given the value Xl 

of X(l) the variable X(2) is uniformly distributed over Xb 1. 
. (c) Cauchy distribution in :R,2. For the bivariate density (1.19) the marginal 
density for Xl is given in (1.20), and so the conditional density of X2 for 
given Xl is 

, 1 1 + e 
u~(y) = - . '. 

2 .J(1 +~2+y2)3 
(2.7) 

Note that u~ differs only by the scale factor .J 1 + ~2 from the density 
uo(y) an.d so all the densities Us are of the same type. Conditional expecta
tions do not exist in this example. (See problem 6.)' .. 

In terms of the conditional densities (2.3) the distribution function 'of 
X2 takes on the forrri 

(2.8) P{X2 < 'y} = f~oo f_+oooo Ui1]) . fl(~) d~ d1]. 

In other words, the distribution of X2 is obtained by randomization of the 
parameter ~ in the conditional densities u~, and so every6 distribution may 
be represented as mixture. Despite this theoretical universality there is a 
great difference in emphasis. In some situations [such' as example (a)] 
one starts from a bivariate distribution for (Xb X2) and derives conditional 
distributions, whereas in true randomization the conditional probabilities 

6 We have so far considered only continuous densities, but the general case will be covered 
iIi V,9. The notion of randomization was discussed in II,S. 
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U:z: are the primary notion and the density lex, y) is actually defined by 
u:r;(Y)h(x). (This procedure of defining probabilities in terms of conditional 
probabilities was explained in an elementary way in 1; V,2.) 

3. RETURN TO THE EXPONENTIAL AND THE 
UNIFORM DISTRmUTIONS 

. The object of this section is to provide illustrative examples to the 
, preceding sections and at the same time to supplement the theory of the 

" fitst chapter. 

Examples. (a) A characteristic property of the exponential distribution. 
Let Xl and X2 be two independent random variables with den~ities /1 and 
f2' and denote the density of thei~ sum S = Xl + X2 by g. The pairs 
,(Xh S) and (Xl' X2)are related by the linear transfiormation Xl = Xl' 
X2 = S - Xl with determinant 1 arid by (l.11) the join! density of the 
pair (Xh S) is given by fi'<x)h(s-x). Integrating over all x we obtain the 
marginal density g of S. The conditional density u, of Xl given that S = s 
satisfies 

(3.1) 

In the special case of expon~ntial densities hex) = !2(X) = a.e-«:r; (where 
x :;> 0) we get us(x) = S-l for ° < x < s. In other words, given that 
Xl + X2 = s, the variable Xl is uniformly distributed over the interval 
0, s. Intuitively speaking, the knowledge that S = s gives us no clue as 

to the possible position of the random point Xl within ~he interval 0, s. 
This result conforms with the notion of complete randomness inherent in 
the exponential distribution. (A stronger version is contained in example 
(d). See also problem 12.) 

(b) Random partitions of an intervaL Let Xl"'" Xn be n points 
chosen independently and at random in the (one-dimensional) interval 

0, 1. As before we denote by X(lh X(2)' ... ,X(n) the random points 
Xl' . , . ,X~ rearranged in increasing order. These' points divide the 

interval 0, 1 into n' + 1 subintervals which we denote by 11,12"" , In+l 

numbering them from left to right so that X(I> is the right endpoint of Ii' 
Our first aim is to calculate the joint density of (X(l)"" , X(n»' 

The sample space corresponding to' (Xl"" ,Xn) is the n-dimensional 
hypercube r defined by ° < xk .< 1, and' probabilities' equal the n
dimensional volume, The natural sample space with the' X(k) as coordinate 
variables is the subset n of r containing all points such that 

° < Xl ~ ••• ~ xn < 1. 
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The volume of n is lin! Evidently the hypercube. r' contains' n! con
gruent replicas of the set n and in each the ordered It-tuple (Xw , ... , X(n») 
coincides with a fixed permutation of Xl' ... ,Xn. (Within r, in particular, 
X(k) = Xk ·) The probability that Xi = Xk for some pair j =;!: k equals zero; 
and only this event causes overlaps among the vaJ;i,?us replicas. It follows 
that for any subset A c n the probability that (X(lb"" X(n») lies in A 
equals the probability that (Xl"" ,Xn) lies in one of the n! replicas of A" 
and this probability in turn equals n! times the volume of A. Thus 
P{(X(lb ... , X(n») E A} equals the ratio of the volumes of A 'and of n, 
which means that the n-tuple (XU),"" X(n») is distribut(!d uniformly over 
,the set n. The joint density 'of our n-tuple equals n! within nand 0 
outside. 

From the joint density of (XU)"'" X(n») the density of X('k) may be 
calculated by keeping X k fixed and integrating over the remaining variables. 
The result is easily seen to agree with the density c'alculated by other methods 
in 1,(7.2). 

This example was treated in detail as -an exercise in handling and com
puting multivariate densities. 

(c) The distribution of the lengths. In the random partition of the preceding 
example denote the length of the kth interval Ik , by Uk' Then 

(3.2) Jor k = 2, 3, . . . ,- n 

This is a linear transformation of the form (1.9) with determinant 1. The 
set n of points 0 < Xl < ... < ~n < 1 is mapped into the set n* of 
points such that Ui > 0, Ul + ... + Un < 1, and hence (UI ,- ••. , Un) 
is distributed uniformly over this region. This result is stronger than the 
previously established fact that the Uk have a common distribution function 
[example I,7(h) and problem in 1,13.] 

(d) Once more the randomness of the exponential' distribution. Let 
Xl' ... ,Xrr+1 be independent with the common density (Xe-a.~ for X > o. 
Put 8i = Xl + ... + Xi' Then (8h 8 2 , ••• ,8n+1) is obtained from 
(Xl' ... ,Xn+l) by a linear transformation of the form (1.9) with deter-, 
minant 1. Denote by n the "octant" of points Xi > O. The density of 
(Xl' ... ,Xn+l ) is concentrated on n and is given by 

if Xi > O. The variables 81 " •• ,8n+1 map n onto the region n* defined 
by 0 < Sl ~ S2 ~ ••• ~ Sn+l < 00, and [see (1.11)] within, n* the density 
of (81";,, 8 n+1) is given by (Xn+le-a.S,,+l. The marginal density of 8n+1 

is known to .be the gamma density (Xn+lsne-d{n! and hence the conditional 
density of the n-tuple (81"", 8n ) given that 8n+1 =·s equals n!s-n for 
o < Sl < .... < Sn < s (and zero elsewhere). In other words, given that 
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8 n+! = s the variables (81 , •.• , 8n ) are uniformly distributed over their 
possible range. Comparing this with example (b) we may say that given 
Sn+! = s, the variables (8h ... ,8n) represent n points chosen independently 
and at random in the interval 0, s numbered in their natural order from left 
to right. ' 

(e) Another distribution connected with ihe exponential. With a view to 
a surprising application we give a further example of a transformation. 
L~t again Xl' ... , Xn be independent variables with a common exponential 
distribution and 8n = Xl + ... + Xn . Consider the variables VI" .. , Un 
defined by 

(3.3) U~,=Xk/8n for k=l, ... ,n-l, Un =8n, 

or, what amounts to the same, 

(3.4) Xk = UkUn for k < n, X = U (l-U _ .. ·-u ) n n I! n-l . 

The Jacobian of (3.4) equals U~-l. The joint density of (Xl': .. ' Xn) is 
concentrated on the region Q defined by Xk > 0, and in it this density is 
given by cxne-Ot(~l+···+~n). It follaws that the joint derisity of (VI' ... , Un) 
is given by Cxnu~-le~Ot2''' in the region Q* define~,by 

k=l, ... ,n 

and that it vanishes outside Q*. An integration with respect to, Un shows 
that the joint density for (UI, ... , Un-I) equals (n-1).~ in Q* and ° 
elsewhere. Comparing with example (c) we see that (Uh.~ .. ·' Un-I) has 
the same distribution as if Uk were the length of the kth interval ina random 
partition of 0, 1 by n - 1 points. 

Cf) A significance test in periodogram analysis and the coveri~g theorem. 
In practice, any continuous function of time t can be approximated by a 
trigonometric pO,lynomial. If the function is a sample functioq. of a stochastic 
process the coefficients become random variables, and the approximating 
polynomial may be written in the form 

n . n 

(3:5) I(Xv cos wvt+ Yv sin wvt) = IRv cos (wvt-~v) 
v=l v=l 

where R~ = X~ + ye aQd tan ~ v = Yv/Xv. Conversely, reasonable 
assumptions on the random variables Xv, Yv lead to a stochastic process 
with sample functions given by (3.5). For a time it was fashionable to 
introduce models of this form and to detect "hidden periodicities" for 
sunspots, wheat prices, poetic creativity, etc. Such ~idden periodicities 
used to be discovered as easily as witches in medieval times, but even strong 
faith must be fortified by a statistical test. The method is roughly as follows. 
A trigonometric polynomial of the forin (3.5) with well-chosen frequencies 
Wh ••• , Wn is fitted to some observational 4ata, and a particularly large 
amplitude Rv is observed. One wishes to prove that this cannot b~ due to 
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chance and hence that Wy is a true period. To test this conjecture one asks 
whether the large observed value of Ry is plausibly compatible with the 
hypothesis that all n components play the same role. For a test one 
assumes, accordingly, that the coefficients Xl"'" Yn are mutually 
independent with a common normal distribution with zero expectation and 
variance 0'2. In this case (see 11,3) the R; are mutually' independent and 
have a common exponential distribution with expectation' 20'2. If alI 
observed value R; deviated "significantly" from this predicted expectation 
it was customary to jump to -the' conclusion that the hypothesis of equal 
weights was untenable, and Ry represented a "hidden periodicity." 

The fallacy of this reasoning was exposed by R. A. Fisher (1929) who 
pointed out that the maximum among n independent observations does 
not obey the same probability distribution as each variable taken' separately. 
The error of treating the worst case statistically as if it had been chosen at 
random is still common in medical statistics, but the reason for discussing 
the matter here is the surprising and amusing connection of Fisher's' test of 
significance with covering theorems. 

As only the ratios of the several components are significant we normalize 
the coefficients by let~ing 

(3.6) 
R~ 

Vi = } 
R~ + ... + R! 

j = 1, ... , n. 

Since the R; have a common exponential distribution we can use the 
preceding example with Xi = R;. Then VI = UI, ... , Vn- l = Un-I, but 
V n = I - UI - ... - Un-I' Accordingly, the n-tuple (VI' .. '.' V n) is 
distributed as the length of the n intervals into which ,Q,T is partitioned by 
a random distribution of n-l points. The probability that all Vi be less 
than a is therefore given by formula 1,(9.9) of the covering theorem. This 
result illustrates the occurrence of unexpected relations between apparently 
unconnected problems. 7 ~ 

*4. A CHARACTERIZATION OF THE NORMAL 
DISTRIBUTION 

Consider a non-degenerate linear transformation of coordinate variables 

(4.1) 

7 Fisher derived the distribution' of the maximal term among the Vi in ,1929 witho,ut 
knowledge of the' covering theorem, and explaiJ?-ed in 1940 the equivalence 'Nith the 
covering theorem after W. L. Stevens had proved the latter. [See papers No. 16 and 37 iJ]. 
Fisher's Contributions to Mathematical Statistics, John Wiley, New York (1950).) For 
an alternative derivation using Fourier analysis see U. Grenander and M. Rosenblatt 
(1957). 

* ~his section treats a special topic and is not used in the sequel. 
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and suppose (without loss of generality) that the determinant ~ = 1. If 
. Xl and X2 are independent normal variables with variances 0'; 

the distribution of the pair (Yb Y2) is normal with covariance 
and 0'2 

2 

[see example 1 (d)]. In this case there exist non-trivial choices of the coeffi
cients aik such that YI and Y2 are independent. The following theorem 
shows that this property of the univariate normal distribution is not shared 
by any other distribution. We shall here .prove it only for' distributions with 
continuous densities, in which case it reduces to a lemma concerning the 
functional equation (4.3). By the use of characteristic functions the most 
general case is reduced to the same equation, and so our proof wiiI really 
yield the theorem in its greatest generality (see XV,8). The elementary 
treatment of densities reveals better the basis of the the<brem. 

The transformation (4.1) is meaningful only if no coefficient aik vanishes. 
Indeed, suppose for example that an = q. Without loss of generality we may 
choo~e the scale parameters so that a12 = 1. Then Y I = X 2 , and a glance 
at (4A) shows that in this case Y2 must have the same density as Xl. In 
other words·, such a transformation amounts to a mere renaming of the 
variables, and need not be considered. 

Theorem. Suppose that Xl and X2 are independent of each other, and 
that the same is true of the pair YI , Y2• If no coefficient a;k vanishes then 
all four variables are normal. 

The most interesting special case of (4.1) is presented by rotations, namely 
transformations of the form 

(4.2) YI = Xl cos W + X 2 sin w, Y 2 = - Xl sin w + X2 cos W 

where w is not a multiple of t7T. Applying the theorem to them we get 

Corollary. If Xl and. X2 are independent and there ex~s'ts one rotation 
(4.2) such that Y I and Y2 are also independent, then Xl and X2 have normal 
distributions with the Same variance. In this case YI and Y2 are independent 
for every w. 

Example. Maxwell distribution of velocities. In his study of the ve)ocity 
distributions of molecules in jl3 Maxwell assumed that in every Cartesian 
coordinate system the three components of the velocity are mutually 
independent random variables with zero expectation. Applied to rotations 
leaving one axis fixed our corollary shows immediately that the three com
ponents are normally distributed with the same variance. As we saw in 
JI,3 this implies the Maxwell distribution for velocities. ~ 
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The theorem has a long history going back to Maxwell's investigations. Purely prob
abilistic studies were initiated by M. Kac (1940) and S. Bernstein (1941), who proved 
our corollary assuming finite variances. An impressive number of authors contributed 
improvements and variants, sometimes by rather deep methods. The development 
culminates in a result proved by V. P. Skitovi~.8 

Now to the proof in the case of continuous densities. We denote the 
densities of Xi and Yi respectively by Uj and fi' For abbreviation we put 

(4.3) 
, 

Under the conditions of the theorem we must have 

(4.4) 

We shall show that this relation implies thai 

(4.5) f;(Y) = ±e/Pi(lI), u;(x) = ±eco;(~) 
where the exponents an; polynomials of degree 2 or lower. The only 
probability densities of this ferm are the normal densities. For distributions 
with continuous densities the theorem is therefore contained in the following 

Lemma. Suppose that four continuous-functions jj and U j are connected 
by the functional equation (4.4), and that no coefficient ajk vanishes. The 
functions are then of the form (4.5) where the exponentS are polynomials of 
degree ~2. 

(It is, of course~ assumed that none of the functions vanishes identically.) 

Proof. We note first that none of our functions can have it zero. Indeed, 
otherwise there would exist a domain n in the Xl' x2-plane in which the 
two .members of (4.4) have no zeros and on whose boundary they vanish. 
But the two sides require on the one hand that the boundary consists of 
segments parallel to the axes,on the other hand of segments parallel to the 
lines y; = const. This contradiction shows that no such boundary exists. 

We may therefore assume our functions to be strictly positive. Passing to 
logarithms we can rewrite ·(4.4) in the form 

(4.6) CfJI(YI) + CfJ2(Y2) = WI(XI) + W2(X2), 

For fixed hI and h2 define the mixed difference operator ~ by 

(4.7) ~V(Xb x2) = v(x i +h l , x2+h2) - v(xi +hJ, x2 -h2) -

- v(xl-hl , x2+h2) + v(:~l-hl' x2-h2)· 

8 Izvestia Acad. Nauk SSSR, vol. 18 (1954) pp. 185-200. The theorem: Let X!'" . , Xn 
be mutually independent, YI = LaiXi , and Y2 = I:.biXi where no coefficient is O. If YI 
and Y 2 are independent the Xi are normally distributed. 
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Because each W; depends oli the ,single varjable Xi it follows that ~Wi = 0, 
Also 

(4.8) ~CPI(Yl) = CJ?I(YI+/I) - CJ?1(YI+/2) - YJI(YI-/2 ) + <PI(YI-1I) 

where we put for abbreviation 

(4.9) 11 = aUhI + a12h2, 12 = aull i - a12h2' 

We have thus ~CPI + ~CJ?2 = 0 with CJ?; depending on the single variable 
Y;· Keeping Y2 fixed one sees that ~CJ?l(Yl) is a constant depending only on 
h~ and h2• We now choose hI and h2 so that 11 = I an,d 12 = 0, where 
I is arbitrary, but fixed. The relation ~CJ?1 = const. thep. takes on the fonn 

(4.10) , CJ?l(Yl +/) + CJ?l(Yl-/) ~ 2CJ?1(Yl) = A(/). 

Near a point Yl at which CJ?1 assumes a minimum the left side is >0, and 
hence such a point can exist only if A(/) > 0 fot aU I in some neighborhood 
of the origin. But in this case CPl cannot assume a maximum. Now a 
continuous functio'n vanishing at three points assumes both a maximum and a 
minimum. We conclude that if a continuous solution of (4.10) vanishes at 
three distinct points, then it is identically zero. 

Every quadrat'ic polynomial q(Yl) = exYi + /3Yl + y s-atisfies an equation 
of the form (4.10) (with a different right side), and hence the same is 'true of 
the difference CJ?1 (Yl) - q(Yl). But q can be chosen such that this difference 
vanishes at three prescribed points, and then CJ?l(Yl) is identical witli q. 
The same argument applies to CJ?2, and this proves the a~sertion concerning 
hand j;. Since' the variables X; and Y; play the same role, the same 
argument applies to the densities u j • .... 

5. MATRIX NOTATION. THE COVARIANCE MATRIX 

The notation employed in section 1 is messy and ,becomes more so in 
higher dimensions. Elegance and econorpy of thought may be achieved by 
the use of matrix notation. 

For ease of reference we summarize the few facts of matrix tlJeory and the notations 
used in the sequel. The basic rule is: first rows, then columns. Thus an IX by fJ matrix A 
has IX rows and fJ columns; its elements are denoted by a;k' the first index indicating the 
row. If B is afJ by y matrix with elements b;k the product AB is the IX by y matrix with 
elements a'lblk + 0 '2b2k + ... + O;pbpk. No product is defined if the number of columns 
of A doe; not ag~ with the number of rows-of B. The associative law (AB)C = A(BC) 
holds, whereas in general AB ¢ BA. The transpose AT is the fJ by IX matrix with elements 
a~ = aki" Obviously (ABT) = BT AT. . 
''A one by IX matrix with a single row is called' a rOw vector; a matrix with a single 

column, a column vector.9 A row vector r = (r I , ••• ,ra) is easily printed, but a column 

9 This is really an abuse of language. In a concrete case xl may represent pounds and 
x 2 cows; then (xl' x 2) is no "vector" in the strict sense. 
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vector is better indicated by its transpose cT = (Cl , ••• ,ccz). Note that cr is an ~ by IX 

matrix (of the "multiplication table" type) whereas rc is a one by one matrix, or scalar .. 
In the case IX = 2 

(

Clrl Clr2) 
cr = , 

C2r l, C2'2 

The zero vector has all components equal to O. 

Matrices with the same number of rows and columns are called square matrices. With 
a square matrix A there is associated its determinant, a number which will be denoted by 
IAI. For our purposes it suffices to know that the determinants are multiplicative: if A 
and B are square matrices and C = AB, then ICI = IAI ·IBI. The transpose AT has 
the same determinant as A. 

By identity matrix is meant a square matrix with ones in the main diagonal and zeros 
at all other places. If f is the identity matrix with r rows and columns and A an r by r 
matrix, obviously fA = Al = A. By inverse of A is meant a matrix A-I such that 
AA-l = A-1A = /. [Only square matrices can have inverses. The inverse is unique, for 
if B is any inverse of A we have AB = I and by the associative law A-I = (A-lA)B = B.] 
A square matrix without inverse is called singular. The multipliCative property of deter
minants implies that a matrix with zero determinant is singular. The converse is also true 
if IA! ~ 0 then A is non-singular. In other words, a matrix A is singular iff there exists 
a non-zero vector x such that xA = O. 

A square matrix A is symmetric if a;k = ak;, that is, if AT = A. The q1ladratic form 
associated with a symmetric r by r matrix A is defined by 

r 

xAxT = 2: a;kxjxk 
;.k=l 

where Xl' ... ,Xr are indeterminates. The matrix is positive dejinitt' if xAxT > 0 for all 
non-zerO vectors x. It follows from the last criterion that a positive ddlnite matrix is non
singular. 

Rotations in jtrZ. For completeness we mention briefly a geometric application of matrix 
cakulus although it will not be used in the sequel. 

The inner prodllct of two row vectors x = (xl' ~ .. , xa) and y = (Yl"'" ;/(1) i-s defined 
by . 

0: 

xyT = yxT = 1: XjY)' 

;=1 

The length ,L of x is given by L2 = :r:xT . I( x and yare vectors of unit iength the angle 
£5 between them is given by cos £5 = xyT. 

An IX by IX matrix A induces a transformation mapping x into ~ = ;-cA; for the 
transpose one has ~T = ATxT . The matrix A is OrThogonal if the induced transform;Hion 
prc.lerves lengths and angles, that is to say, if any two rove vecU'T3 have !he same Ir.ner 
product as their images: Thus A is orthogonal iff for il.flY pair of row ve~tor:; ;t:, Y 

xAATyT = :l'yT. 

This implies that AAT is the identity matrix I as can be seen by choosing for x and y 
vectors with IX -- 1 vanishing components. We have thus found that A is orthogonal iff 
AAT = 1. Since A and AT have the same determinant it follows that it equals + 1 or 
- I. An orthogonal matrix with determinant 1 is called u rotation matrix and the induced 
transformation is a rotation. 
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From now on we denote a point of the r..:dimensional space jtr by a 
single letter to be interpreted as a row vector. Thus x = (xl> ... ,xr ) and 
f(x) = f(x l • ... , xr ), etc. Inequalities are to be interpreted coordinatewise: 
x < y iff Xk < Yk for k ~ 1, ... , r and similarly for other inequalities. 
In the plane :R,2 the relation x < Y may be read as "x lies southwest of 
y." A novel feature of this notation is that two points need not stand in 
either of the relations x ~ y or y < x, that is, in higher dimensions the 
inequality < introduces only a partial ordering. 

We write X = (Xl' ... , Xr) for the row vector of the coordinate variables 
and use this notation for random variables in general (mainly for normally 
distributed variables). 

If the variables Xl"" , Xr have expectations E(X;) we write E(X) for 
the row vector with components E(X;). The vector X - E(X) has zero 
expectation. More generally, if M is a matrix whose elements M;k are 
random variables we write E(M) for the matrix of elements E(M;k) 
assuming that it exists. 

Definition. If E(X) = 0 the covariance matrix Var (X) of X is the sym
metric r by r matrix· with elements E(X;Xk ) (provided they all exist). In 
other words 

(5.1) Var (X) = E(XTX). 

For arbitrary X we define Var (X) to be the same as Var (X-E(X». 

The use of row vectors necessitates writing a linear transformation from 
j{r to ~m in the form 

-(5.2) 

that is, 

(5.3) 

Y = XA, 

r 

Yk = ~a;kx; 
;=1 

k=l, ... ,m 

where A is an r by m matrix. Obviously E(Y) = E(X)A whenever E(X) 
exists. To find the variances we assume without loss of generality E(X) = O. 
Then E(Y) = 0 and 

(5.4) 

We thus have the important result that 

(5.5) -Var (Y) = AT Var (Y)A. 

Of particular interest is the special case m = 1 when 

(5.6) Y = GIXI + ... + a;Xr 
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is an ordinary random variable. Here Var (Y) is the (scalar) quadratic form 
r 

(5.7) Var (Y) = 2 E(XiXk)aiak' 
i,k=l 

The linear form (5.6) vanishes with probability one if Var (Y) = ° and 
in this case every region outside the hyperplane I a,cck = ° carries zero 
probability. The probability distribution is then concentrated on an 
(r-l)-dimensio~al manifold and is degenerate when considered in r 
dimensions. We have now proved that the covariance matrix of any non
degenerate probability distribution is positive definite. Conversely, every 
such matrix may serve as covariance matrix of a normal density (see theorem 
4 of the next section). 

6. NORMAL DENSITIES AND DISTRIBUTIONS 

Throughout this section. Q stands for a symmetric r by r matrix, and 
q(x) for the associated quadratic form 

r 

(6.1) . q(x) = ~ qjkXiXk = xQxT 

i,k'=1 

where x = (Xl' ... ,xr ) is a row vector. Densities in j~r defined by an 
exponential with a quadratic form in the exponent are a natural counterpart 
of the normal density on the line, and we start therefore from the following 

Definition. A density q; in r dimensions is called norma[lo and centered at 
the origin of it is of the form 

(6.2) 

where Y. is a constant. A normal density centered at a = (Ul' a2 , ••• , ar) 
is given by q;(x-a). 

The special case of two dimensions was discussed in examples I (d) 
and 2(a). 

We take :JV with the probability distribution of (6.2) as sample space 
and denote by X = (Xl> ... ,Xr ) the row vector formed by the coordinate 
variables. Its covariance matrix will be denoted by /H: 

(6.3) .M = Var (X) = E(XTX). 

Our problem consists in investigating the nature of the matrices Q and At, 
and the relationship between them. 

First we observe that no diagonal element of Q can vanish. Indeed, if we 
had qrr = 0, then for fixed values of Xl' ... ,Xr- 1 the density (6.2) would 

10 "Degenerate" normal distributions wi1l be introduced at the end of thIs section. 
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take on the form y-le-aXr+b and the integral with respect to Xr would 
diverge. We now introduce the substitution y = xA defined by 

(6.4) 

It is seen by inspection that q(x) - y;!qrr is a quadratic form in Xl' ••• , X r- I 

not involving X r• Thus 

(6.5) q(X) = _1 y; + q(y). 
qrr 

where ij(y) is a quadratic form in YI,' .. ,Yr-I' This shows that the vector 
Y = XA has a normal density that factors into two normal densities for Y r 

and (YI , ... , Yr - I ), respectively. The first conclusion to be drawn is the 
simple but important 

Theorem 1. All marginal densities of a normal density are again normal. 

Less expected is 

Theorem 2. There exists a matrix C with posit ire determinant such that 
Z = XC is a row vector ~'hose components Zi are mutually independent 
normal variables. . 

The matrix C is not unique; in 'fact, the theorem can be strength~ned 
to the effect that C can be chosen as a rotation matrix (see problem 19). 

Proof. We proceed by induction. When r = 2 the assertion is contained 
in the factorization (6.5). If the theorem is true in r - 1 dimensions, the 
variables YI , ... , Yr - I are linear combinations of independent normal 
variables ZI"'" Zr':'1 while Yr itself is normal and independent of the 
remaining variables. Since X =YA-I it follows also that the Xi are 
linear combinations of Zl>"" Zr-I a.nd Yr' The determinant of A 
equals qrr' and (6.5). implies that it is positive. The determinant of the 
transformat~on X -+ Z is the product of the determinants of A and the 
transformation Y -+ Z and hence it is positive. ~ 

Theorem 3. The matrices Q -and. M are inverses of each other and 

(6.6) 

where IMI = IQI-I is the determinant of M. 

Proof. With the notations of the preceding theorem put 

(6.7) D = E(ZTZ) = CTMC. 

This is a matrix with· diagonal elements E(Z~) = a~ and zero elements 
outside the diagonal. The density of Z is the product of normal densities 
n(xa;l)a;l and hence induced by the matrix D-l with diagonal elements 
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a--;2. Now the density of Z is obtained from the density (6.2) of X by 
the substitution x = ZC-I and multiplication by the determinant IC-II. 
Accordingly 

(6.8) 

and 

(6.9) 

From (6.8) it is seen that 

(6.10) 

and in view of (6.7) this implies Q = M-I. From (6.7) it follows also that 
I DI = IMI . ICI 2

; and hence (6.9) is equivalent to (6.6). ~ 

The theorem implies in particular that a factorization of _M corresponds 
to an analogous factorization of Q and hence we have the 

Corollary. If (Xl' X2) is normally distributed then Xl and X2 arc indepen
dent iff Cov (Xl' X2) = 0, that is, iff Xl and X2 are uncorrldated. 

More generally, if (Xl' .' .. ,Xr) has a normal density then (Xl"'" Xn) 
and (X n+l , ... , Xr ) a~e independent iff Cov (Xi' Xk ) = 0 for j < n, k > n. 

Warning. The corollary depends on the joint density of (Xl' X2) being 
normal and does not apply if it is only,known that !he marginal densities of 
Xl and X2 are normal. In the latter case the density of (Xl' X2) need not 
be normal and, in fact, need not exist. This fact is frequently misunderstood 
(see problems 2-3). 

Theorem 4. A matrix M is the covariance matrix of a normal density iff 
it is positive definite. 

Since the density is induced by the matrix Q ,M-1 an equivalent 
formulation is: A matrix Q induces a normal density (6.2) iff it is positive 
definite. 

Proof. We saw at the end of section 5 that every covariance matrix of 
a density is positive definite. The converse is trivial when r = 1 and we 
proceed by induction. Assume Q positive definite. For Xl = ... = 
= Xr- l = 0 we get q(x) = qrrx; and hence qrr > O. Under this hypothesis 
we saw that q may be reduced to the form (6.5). Choosing Xr such that 
Yr = 0 we see that the positive defihiteness of Q implies q(x) > 0 for all 
choices of Xl, ... ,xr- l . By the induction hypothesis therefore q corre
sponds to a normal density in r - 1 ditnensions. From (6.5) it is now obvious 
that q corresponds to a normal density in r dimensions, and this completes 
the proof. ~ 
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We conclude this general theory by an interpretatiQn of (6.5) in tenl\s of 
conditional densities which leads to a general formulation of the regression 
theory explained for the two-dimensional case in example 2(a). 

Put for abbreviation ak = -qkr/qrn so that 

(6.11) 

FQr a probabilis(ic interpretation of the coefficients ak we recall that Yr 

was found to be independent of Xl' ... ,Xr-l' In other words, the ak are 
numbers such that 

(6.12) T=X-aX-'''-a x,. r 1 1 r-l ,-1 

is independent of (Xl"" ,Xr- l), and this property uniquely characterizes 
the coefficients ak' 

c To obtain the conditional density of Xr for given Xl = Xl:' .. , Xr-l = 
= X r- l we must divide the density of (Xh ... , Xr ) by the marginal density for 
(Xl' ... ,Xr- l). In view of (6.5) we get an exponential with exponent 
- !y:/qrr' It follows that the conditional density of x" for given Xl = 
'= Xl' ... , Xr- l = Xr- l is normal with expectation alxl '+ ... + ar-lxr-l 
and variance l/qrr' Accordingly, 

(6.13) E(x,,1 Xh ••• , x,,-l) :::;: alXl + ... + ar-lXr-l' , 

We have thus proved the following generalization of the two-dimensional 
regression theory embodied In (2.6). 

Theorem 5. If (XJ" ... ,Xr) has a normal density, the conditional density 
of Xr for given Xl"" ,Xr- l is again normal. Furthermore, the conditional 
expectation (6.13) is the unique linear function of Xl' ... ,x,,-l making T 
independent of (Xl'" . ,Xr-l)' The conditional variance equals Var (T) = 
=q;/. 

Example. Sample mean and variance. In statistics the random variables 

(6.14) i = ! (Xl+' .. +x,,), "2 1 ~(X ")2 CJ =-k k- X 
r rk-l 

are called the sample mean and sample variance of X = (Xl' ... , x,,). 
It is a curious fact that if Xl' ... ,x" are independent normal variables with 
E(Xk ) = 0, E(X:) = 0'2, the random variables i and &2 are independent. ll 

The proof illustrates the applicability of the preceding results. We put 
Yk = Xk - X for k < r-l but Yr = i. The transformation from X 
to Y = (Y b ... ,Yr ) being linear and, non-singular, Y has a normal 
density. Now E(Yk Yr) = 0 for k ~ r-l and so Yr is independent of 

11 That this fact characterizes the normal distribution in jtl was shown by R. C. Geary 
and by E. Lukacs. 
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(YI , ... , Yr - l ). But 

(6.15) r&2 = Y~ + ... + Y~-l + (YI +·· ·+yr _ I )2 

depends only on YI , •.. , Yr - l , and thus &2 is indeed independent of 
~=t. ~ 

General Norma~ Distributions 

It follows from the lemma that if X . (Xl' ... ,Xr ) has a normal 
density, every non-zero linear combination YI = alXI + ... + arXr also 
has a normal density. The same is true of every pair (Yb Y2) provided 
that no linear relationship CI YI + C2 Y2 = 0 holds. In this exceptional 
case the probability distribution of (Yb Y2) is concentrated on the line· 
with the equation CIYl + C2Y2 = 0 and hence it is singular if viewed as a 
two-dimensional distribution. For many purposes it is desirable to preserve 
the term normal distribution also for degenerate distributions concentrated 
on a lower-dimensional manifold, say on a particular axis. The simplest 
general definition is as follows: The distribution of Y = (YI , ... , Yp) is 
normal if there exists a vector X = (Xl' .... ,Xr ) with normal r-dimensional· 
density such that Y = a + XA where A is a (constant) r by p matrix and 
a = (aI' ... ,ap ). If p > r the distribution of Y is degenerate in p 
dimens·ions. For p < r it is non-degenerate iff the p forms defining Y k 

are linearly independe"'! 

*7. STATIONARY NORMAL PROCESSES 

The 'purpose of this section is partly to supply examples of normal distri
butions, partly to derive some relations of considerable use in the theory of 
discrete stochastic processes and time series. They are of an analytic character 
and easily separa~ed from the deeper. stochastic analysis·. In fact, we shall 
be concerned only with finite-dimensional normal densities or, what amounts 
to the same, their covariance matrices. The reference to random variables is 
essential for probabilistic intuition and as a preparation for applications, but 
at the present stage we are concerned only with their joint distriblttions; 
the random variables themselves are used merely as a convenient way of 
describing all marginal densities by indicating the corresponding collections 
(X , ... , X). By the same token a reference to an infinite sequence 

1Z1 IZIr; 

{Xk } implies merely that the number of terms in (Xl> ... ' Xn) may be 
taken arbitrarily large. 

We shall, in fact, consider a doubly infinite sequence { ... , X_2 , X_I' ... }. 
By this we mean simply that corresponding to each finite collection 

* Not used in the sequel. In particular, section S can be read independently. (See 
also XIX,S.) 
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(X
n1

, ••• ,X,) we are given a normal density with the obvious consistency 
rules. The sequence is stationary if these distributions are invariant under 
time shifts, that is, if all r-tuples of the form (Xn +V' ••. , Xn +11) with 

- 1 r 

fixed n1 , ... , nr have a common distribution independent of _ P. For 
r = I this implies that the expectations and variances are constant, and 
hence there is no loss in generality in assuming that E(~n) = O. The joint 
distributions are completely determine~ by the covariances Pik = E(X;Xk ), 

and the stationarity requires that P;k depends only on the difference Ik - jl. 
Accordingly we put P;.i+n = r n' Thus 

(7.1) 

whence r n = r _n0 In effect we are dealing only with sequences of numbers 
r n that can serve as covariances for a stationary process. 

Throughout this section {Zn} stands for a doubly infinite sequence of 
mutually independent normal variables normed by 

(7.2) E(Z1J = 0, E(Z~) = 1. 

Three methods of constructing stationary sequences in terms of a given 
sequence {Zn} will be described. They are in constant use in time series 
analysis and may serve as an exercise in routine manipulations. 

Examples. (a) Generalized moving average processes. With arbitrary 
constants bo, bl , ..• , b tv put 

(7.3) Xn = boZn + blZn- 1 + ... + bNZn- N. 

In the special case of equal coefficients bk = I/(N + 1) the variable Xn 
·is an arithmetic average of the type used in time series analysis to "smooth 
data" (that is, to eliminate local irregularities). In the general case (7.3) 
represents a linear operator taking the stationary sequence {Zn} into a 
new stationary sequence {Xn }. The fashionable term for such operations is 
"filter·s." The sequence {Xn} has covariances 

('7.4) (k > 0) 
y 

the serie~ having finitely many terms only. 
Since 2 IbybV+kl < be + b~+k the expression (7.4) makes sense also for 

infinite sequences such that 1 be <: 00.' It is easily seen that the limit of 
a sequence of covariance matrices is again a covariance matrix and, letting 
N -+ 00,_ we conclude that for any seqiience bo, bl , q2' . .. such that 
1 b~ < 00 the numbers rk of (7.4) may serve as covarian~s of a stationary 
process {X n }. Formally we get for the new process. 

(7.5) 
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It can be shown without diffi,culty that every stationary process with co
variances (7.4) is of this form; but the relation (7.5) involves infinitely'many 
coordinates and we cannot justify it at present. (See XIX,8.) 

,(b) The auto-regression process. Since the inception of time series analysis 
various theoretical models have been proposed to explain empirical phe
nomena sU,ch as. economic time series, sunspots, and observed (or imagined) 
periodicities. The most popular model assumes that the variables Xn of 
the process are related to our sequence Zn of independent normal variables 
of (7.2) by an auto-regression equation of the form 

(7.6) 

This model is based on the empirical· assumption that the vaiue of the 
variable Xn at epoch n (price, supply, or intensity) depends on its' p~ 
development superimposed on a "random disturbance',' Zn which isJiOt 
related to the past. As is frequently the case, the assumption of linear 
dependence serves to simplify (or make possible) a theoretical analysis. 
More general models may be obtained by letting N -~ 00 or by letting the 
Zn be the variables of another stationary process. 

If ao ~ 0 one may chosse (Xo, ... ,XN- 1) in an arbitrary way ano then 
calculate XN , XN+l' ... and X-I' X_2 , ••• recursively. In this sense (7.6) 
determines a process, but we ask whether there exists a stationary solution. 

To answer this question we rewrite (7.6) in a form not involving the 
immediate predecessors of Xn • Consider (7.6) with n replaced successively 
by n -1, n-2, ... , n-v. lvlultiply these equations by bh b2 , ••• , by, 
respectively, and add to (7.6). The variables Xn- l , .•. , Xn- v will not 
appear in the new equation iff the bi are such that 

(7.7) 

with bo = 1. The resulting identity is then of the form 

(7.8) aoXn :dboZn + blZn- 1 + ... + bvZn-~ + Y n •v 

where Yn . v is a linear combination of Xn-_h •.. , Xn- N- v (with co
efficients that are of no interest). In (7.8) we have expressed the variable 
Xn as a resultant of the chance contributions at epochs n, n-l, ... , n-v 
and a variable Y n. v representing the influence of the time before epoch 
n - v. As v -+ 00 this time becomes the "infinitely remotepasf' and 
in most situations it will have no influence. In passing to the limit we shall 
(at least temp<>rarily) assume this to be the case, that is, we are looking 
for a process satisfying a limiting relation of the form 

(7.9) 
CX) 

aoXn = 2 bkZn- k· . 
k-O 
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[Roughly speaking we assume that the residual variables Y n.v tend to zero. 
Other possible limits will be indicated in example (d).] 

Processes of the form (7.9) are the object of example (a) and we saw 
that a stationary solution exists whenever ~ b~ < 00. (If the series diverges, 
not even the expressions for the covariances make sense.) To solve the 
equations (7.7) for bk we use the formal generating functions 

(7.10) 

The equations (7.7) hold iff A(s) B(s) = aobo and, A being a polynomial, 
B is rational. We cali therefore use the theory of partial fractions developed 
in 1; XI,4. If the polynomial A (s) has distinct roots Sh' •• , S N we get 

(7.11). 
Al AN 

B(s) = + ... +--
Sl - S sN - S 

and hence 

(7.12) 

Obviously 2 b~ < 00 iff all roots satisfy ISil > I, and it is easily verified 
that this remains true also in the presence of multiple roots. We have 
thus shown that a stationary solution of the auto regression model (7.6) 
exists whenever all roots of the polynomial A (s) lie outside the unit disk. 
The covariances of our process are given by (7.4) and in the process the 
"infinitely remote past" plays no role. 

Our solution {Xn} of the auto-regression equation (7.6) is unique. Indeed, 
the difference of two solutions would satisfy the homogeneous equation 
(7.13) and we shall now show that the condition Is;1 > 1 precludes the 
existence of a probabilistically meaningful solution of this equation. 

(~) Degenerate processes. We turn t6 stationary sequences {Y n} satisfying 
the stochastic difference equation: 

(7.13) aOYn + a1Yn- 1 + ... + aNYn- N = O. 

They represent an interesting counterpart to the auto-regression processes 
governed by (7.6). Typical examples are 

(7.14) Y n = ),(Zl cos nw + Z_l sin nw) 

and 

(7.15) 

where the coefficients and ware constants, and Zl and Z_l independe:nt 
norma] variables normed by (7.2). These processes satisfy (7.13), the first 
with ao = a2 = 1 and al = -2 cos (,0, the second with ao = -a2 = 1 
and a1 = O. They are degenerate in the sense that the whole process is 
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completely determined by two observations, say Yk- l and Yk • These two 
observations can be taken as far back in the past as we please, and in this 
sense the process is completely determined by its "infinitely remote past." 
The same remark applies to any process satisfying a difference equation 
of the form (7.13), and hence these processes form the counterpart to 
example (b) where the infinitely remote past had no influence at all. ~ 

These examples explain the general interest attaching to the stochastic 
difference equation (7.13). Before passing to its theqry we observe that any 
process {Y n} satisfying (7.13) satisfies also various difference equations of 
higher order, for example 

ao Y n + (al-aO)Y n-l + ... + (aN-aN-I)Y n-N - aNY n-N-:I" 

To render the problem meaningful- we must suppose that (7.13) represents 
the difference equation of lowest order satisfied by {Y n}. This an~ounts to 
saying that the N-tuple (Y1 , ••. , Y N ) is non-degenerate with a normal 
density in N dimensions. It implies that ao ~ 0 and aN ~ o. 

It will now be shown that the theory of stationary solutions of the difference 
equation (7.13) is intimately related to the "characteristic equation" 

(7.16) 

To each quadratic factor of the polynomial on the left there corresponds 
a second-order stochastic difference equation, and through it a process of 
the form (7.14) or (7.15). Corresponding to the factorization of the character
istic polynomial we shall thus r~present the general solution of (7.13) as a 
sum of components of the form (7.14) and (7.15). 

As before we assume the centering E(Y n) = O. The whole theory depends 
on the following 

Lemma 1. A stationary sequence with E(Y n Y n+k) = rk satisfies the 
stochastic difference equation (7.13) iff 
(7.17) 

Proof. Multiplying (7.13) by Yo and taking expectations leads to (7.17). 
Squaring the left side in (7.13) and taking expectations yields :2 aj (:2 akrk_;) , 
and so (7.17) implies that the left side in (7.13) has zero variance. This 
proves the lemma. .. 

We proceed to derive a canonical forIT' for r n. It is, of course, real, but it 
involves the roots of the characteristic equation (7.16), and we must therefore 
resort to a temporary usc of complex number::. 

Lemma 2. If" {Y n} sa'lisfies (7.13), but no difference' equation of lower 
order, then the characteristic equation (7.16) possesses N distinct roots 
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~l' •.• , ~N of unit modulus. In this case 

(7.18) 

with c; > 0 for j = I, ... , N. 

Proof. Suppose first that the characteristic equation (7.16) has N distinct 
roots ~l"'" ~N' We solve (7.17) by the method of particular solutions 
which was used for similar purposes in volume I. Inspection shows that 
(7.18) represents a formal solution depending on N free parameters 
CI' ... ,eN' Now the r n are completely determined by the N values 
rb ... ,rN, and to show that every solution of (7.17) is of the form (7.18) 
it suffices therefore to show that the c; can be chosen so that the relations 
(7.18) yield prescribed values for r1>'" , r N' This means that the c; must 
satisfy N linear equations whose matrix A has elements a;k = ~k (j, 
k = I, ... ,N). The determinant of A does not vanish,12 and hence the 
desired solution exists. 

We have thus established that (in the case of distinct roots) r n is indeed 
of the form (7.18). Next we show that only roots of unit modulus can 
effectively appear in it. We know that aN y!: 0, and hence 0 is not a root of 
the characteristic equation. Next we note that the covariances r n are 
bounded by the common variance ro of the Y n' But if ~i is not of unit 
modulus then I ~;In -+ 00 either as n -+ 00 or as n --+. - 00. It follows 
that for each j either I ~;I = 1 or else c; = O. 

Suppose now that ~l and ~2 are a pair of conjugate roots and CI y!: O. 
Then ~l is of unit modulus and hence ~2 = ~~1. ·Thesymmetry relation 
r n = r -n therefore requires that C2 = CI' Again, ~~ + ~; is real, and there
fore CI must be real. Thus the complex roots appear in (7.18) in conjugate 
pairs with real coefficients, and if some coefficient ci . vanished, r n would 
satisfy a difference equation of order less than N. Accordingly all roots 
are of unit modulus, all ci are real and ci y!: O. 

To show that the c; are actually positive we introduce the covariance 
matrix R of (Yb ... , Y N)' Its elements are given by r;-k, and it is 
easily verified from (7.18) that 

(7.19) R = ACA'T 

where C is the diagonal matrix with elements c;, A is the matrix introduced 

12 The determinant is usually called after Vandermonde. To show that it does not vanish 
replace ~, by a free variable x. Inspection then shows that the determinant is of the form 
xP(x) where P is a polynomial of degree N - 1. Now P(x) = 0 for x = ';2" .. , ~n 
because for these values of x two columns of the determinant become identical. The 
determinant can therefore not vanish for any other value of x, and in particular not for 
x = ~l' 
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above, and A is its conjugate (that is, it is obtained from A by replacing 
~i by ~il). Now R is real and positive definite, and therefore for any 
complex N-dimensional non-zero row vector x = u + iv 

(7.20) XRXT = vRu T + vRv T > o. 
Letting y = xA this reduces to 

(7.21) 
N 

yCyT = Ic; ly;1 2 > o. 
i=1 

Since the determinant of A does not vanish this inequality holds for 
arbitrary y, and thus c; > 0 as asserted. 

To complete the proof we have to show that the characteristic equation 
can not have multiple roots. Assume that e1 = ~2 but the other roots are 
distinct. We get again a representation of the form (1.18) except that the 
tenn Cl ~~, is replaced by cln~~. The boundedness of r n again necessitates 
that C1 = O. In the case of one double root we would therefore get a 
representation of the fOQll (7.18) with fewer than N non-zero terms, and we 
have seen that this is impossible. The same argument shows more generally 
that no multiple roots are possible. ~ 

We now state the final result for the case that N is an odd integer. The 
modifications required for even N should be obvious. 

Theorem. Suppose that the stationary sequence -{V n} satisfies the dijJer~ 
ence equation (1.13) with N = 2v + 1, but no difference equation of lower 
order. The characteristic equation (7.16) possesses v pairs of complex roots 
~i = cos w; ± i sin wi (with w; real), and one real root Wo = ± l. The 
sequence {Y n} is of the form 

(7.22) 
y 

Y n = A()ZO . w~ + ~ A;[Z; cos nw; + Z_; sin nw;], 
;=1 

where the Z; are mutually independent normal variables with zero expectations 
and unit variances, and the A; are constants. For this sequence 

(7.23) 

Conversely, choose real Ay #- 0 arbitrary and Wo = ± 1 , and let 
Wb ... ,W; be distinct real numbers with 0 < W; < TT. Then (7.22) defines a 
stationary process with co variances (7.23) and satisfying a difference equation of 
order 2v + 1. but no difference equation of a lower order. 

Proof. Let the A; and w; be numbers, and the Z; normal variables 
satisfying the conditions of the theorem. Define the variables Y n by (7.22). 
A trite calculation shows that the covariances r n of {Y n} are given by 
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(7.23). There exists a real algebraic equation of the form (7. 16) with the 
roots e; described in the theorem. The r; then satisfy the difference equation 
(7.17), and by lemma I this implies that the Y n satisfy the stochastic 
difference equation (7.13). By construction this is the equation of lowest 
degree satisfied by the Y n' 

Conversely, let {Y n} stand for the solution of a given difference equation 
(7.13). The covariances r n of {Yn } determine the numbers A; and w; 

appearing in (7.22). Consider these equations for n = 0, I, ... ,2v as a 
linear transformation of an arbitrary N-tuple of normal variables 
(Z_y~ ... ,Zy) into (Yo, ... ,YN ). This transformation is non-singular, 
and hence the covariance matrices of the two N-tuples determine each other 
uniquely. We have just shown that if the covariance matrix of the Z; 
reduces to the identity matrix the Yk will have the prescribed covariances 
r n' The converse is therefore also true, and so there exist normal variables 
Z; satisfying the conditions of the theorem and such that (7.22) holds for 
n = 0, ... ,N. But both sides of these equations represent solutions of the 
stochastic difference equation (7.13),. and since they agree for 0< n < N 
they are necessarily identical. ~ 

8. MARKOVIAN NORMAL DENSITIES 

We turn to a discussion of the particu!ar class of normal densities occurring 
in Markov processes. Without loss of generality we consider only densities 
centered at the origin. Then E(Xk ) = 0 and we use the usual abbreviations 

(8.1) 

The P;k are the correlation coefficients and Pkk = 1. 

Definition. The r-dimensional normal density of (Xb .•. ,Xr) is Marko
vian if for k S r the conditional density of Xk for given Xl"'" Xk- l is 
identical with the conditional density of Xk for given Xk-l' 

Roughly speaking, if we know Xk- l (the "present") then the additional 
knowledge of the "past" Xl"", ~k-2 does not contribute any relevant 
information about the "future," that is, about any X; with I > k. 

As usual in similar situations, we apply thet~rm Markovian interchangeably 
to (Xb ... ,Xr) and its density. 

Theorem 1. For (XI""'~) to be Markovian each of the following 
two conditions is necessary and sufficient: 

(i) For k < r 

(8.2) 
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(ii) For j S " ~ k S r 

(8.3) 

For (8.3) to hold it suffices that 

(8.4) 

95 

j ~ k . 

. Proof. Identity of densities implies equality of expectations and so (8.2) 
is trivially necessary. On the other·hand, if (8.2) is true, theorem 5 of section 
6 shows that the cond~tional density of Xk for given Xl'" . , Xk- l depends 
only on Xk-l' but not on the preceding variables. Now the conditional 
density of Xk for given Xk- l is obtained by integrating out the variables 
XI~ ... ,Xk - 2 , and hence the two conditional densities are identical. Thus 
(8.2) is necessary and sufficient. 

Referring again to theorem 5 ·of section 6 it is clear that the variable 

(8.5) 

is identical with 

(8.6) 
Gk 

T = Xk - - Pk-l,~k-l' 
Gk-l 

because this is the only variable of the form Xi: - CXk_ 1 uncorrelated to 
Xk-l' By the same theorem therefore (8.2) holds iff T is.uncorrelated also to 
Xl' ... ,Xk-.2 , that is, iff (8.4) holds. Thus (8.4) is necessary and sufficient. 
As it is a special case -of (8.3) the latter condition is sufficient. It is also 
necessary, for repeated application of (8.4) shows that for j < v < k < r 

(8.7) P;k = P;,k,-l = P;.k-2 P;v = - = P;y 
Pvk Pv,k-l Pv,k-2 Pvv 

and so (8.4) implies (8.3). ~ 

Corollary. If (Xl' ... , x,.) is Markovian, so is every subset (X
II1

, ••• ~ Xa) 

with ~l < ~2 < . . . < ~v < r. 
This is obvious since. (8.3) automatically extends to all subsets. ~ 

Examples. (a) Independent increments. A (finite or infinite) sequence 
{Xk } of normal ranuom variables with E(Xk ) = 0 is said to be a process 
with independent increments if for j < k the increment Xk -:- X;· is 
independent of (Xb ... , Xj)' This implies, in particular, E(Xi(Xk~Xj» = 
= 0 or 

(8:8) j < k. 

Comparing this with (8.3) one sees that a normal process with independent 
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increments is automatically Markovian. Its structure is rather trite: Xk is 
the sum of the k mutually independent normal variabJes 

(b) Autoregre5~ive models. Consider a normal Markovian sequence 
Xl' X2 , • •• with E(Xk ) = O. There exists a' unique constant ak making 
Xk - akXk- 1 independent. of Xk- l ' and hence of Xl' ... , Xk- l . Put 

A! = Var (Xk-akXk_l ) 

and, recursively, 

(8.9) 
Xl = AIZI 

Xk = ak'4-1 + AkZk k = 2, 3, ... 

The variables Zk thus defined are easily seen to be independent and 

(8.10) E(Z!) = 1. 

Now the converse is also true. If the Zk are normal and satisfy (8.10), 
then (8.9) defines a sequence {X n } and the very structure of (8.9) shows 
that {Xn} is Markovicln. As an exercise we verify it computationally. 
Multiply (8.9) by X; and take expectations. As Zk is independent of 
Xl' ... , Xk - l we get for j < k 

(8.11) ak P;k 
Qk=- -. 

ak-l P;.k-l 

Now (8.4) is a simple consequence of this, and we kriow that it implies 
the ~larkovian character of the Xk. Thus (Xl"'" Xr ) is 111arkovian iff 
relations of the form (8.9) hold with normal variables Z; satisfying (8.10). 
[This is a special case of example 7(b).] ~ 

So far we have considered only finite sequences (Xl"'" Xr), but the 
number r plays no role and we may as well speak of infinite sequences 
{X n }. This does not involve infinite sequence spaces or any new theory, 
but is merely an indication that a distribution for' (Xl' ... , Xr ) is defined 
for all r. Similarly, we speak of a Markovian family {X(t)} when any 
finite coll~ction Xl = X(tl)' ... , X,. = X(tr) is Markovian. The description 
depends on the functions 

(8.12) E(X2(t» = O'2(t), E(X(s) X(t» ~ a(s) a(t) p(s, t). 

In view of the criterion (8.3) it is obvious that ~he family is Markovian iff 
for s < t < T 

(8.13) pes, t) p(t, T) = pes, T). 
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Despite the fancy language we are really dealing only with families of 
finite-dimensional normal distributions with covariances satisfying (8.13). 

As explained in greater detail at the beginning of section 7, the sequence 
{Xn} is stationary if for each fixed n-tuple «(Xl"'" <Xn) the distribution of 
(Xa:l+ V ' ••• , Xcxn+v) is independent of v. A finite section of such a sequence 
may be extended to both sides, and hence it i.s natural to consider only 
doubly infinite sequences { ... , X_2 , X_b Xo, Xl' ... }. These notions 
carryover trivially to families {X(t)}. . 

For a stationary sequence {Xn} the variance a~ is independent of n 
and in the Markovian case (8.3) implies that P;k = p~~-;I. Thus for a 
stationary Markovian sequence 

(8.14) 

where a2 and P are constants, Ipi < I. Conversely, a sequence with 
normal distributions satisfying (8.14) is Markovian and stationary. 

In the case of a stationary family {X(t)} the correlation p(s, t) depends 
only on the difference It-~I and (8.13) takes on the form 

p(t) peT) = p(t+T) for t, T > O. 

Obviously peT) = 0 would imply pet) = 0 for all t > "r and also 
p( !T) = 0, a:nd so p can have no zeros except if pet) = 0 for all t > O. 
Hence p(t) = e-).t by the repeatedly used result of 1; XVII, 6. Accordingly, 
for a stationary Markovian family 

(&.15) t> 0 

except if Xes) and X(t) are uncorrelated for all s:rf:. t. 

Example. (c) . Stationary sequences may be constructed by the scheme 
of the last example." Bec~use of (8.1 1) we must have 

(8.16) . 

For each k it is possible to express Xk asa linear combination of Zk' 

Zk_l' ... , Zk-V' and Xk- v• A formal passage to the limit would lead to the 
representation 

(8.17) 
. <Xl 

Xk = aJl-p2 Ip;Zk_; 
;=0 

of {X k } in terms of a doubly infinite sequence of independellt normal 
variables Zj normed by (8.10). Since Ipi < 1 the convergence of the series 
is plausible, but the formula as such involves an infinite sequence space. 
[See the remarks concerning (7.5) of which (8.1?) is a special case.] 
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It may be useful to discuss the relation of theorem 1 to the direct description 
of Markovian sequences in terms of densities. Denote by gi the density 
of Xi and by gik(X, y) the value at y of the conditional density of X k 
given that Xi = x. (In stochastic processes gik is called a transition density 
from Xi to Xk .) For normal Markovian sequences gi is the normal density 
with zero expectation and variance a7. As for the transition probabilities~ 
it was shown in example 2(a) that 

(8.1S) ( ) 
y - ai Pika kX 1 

( 
-1 ) 

gik X, Y = --, -- n , 
a k ",'1- P;k a k J 1-P7k 

where n stands for the standard normal density. However, we shall not 
use this result and proceed to analyze the properties of gik by an independent~ 
method. As usual we interpret the subscripts as time parameters. 

The joint density of (Xi' X;) is given by gi(X) gi;(X, y). The joint density 
for (Xi' Xi' Xk ) is the product of this with the conditional density for Xk 

for given X; and Xi' but in view of the Markovian character the index i 
drops out if i < j < k and the density of (Xi. X;, Xk ) is given by 

(S.19) 

In the Markovian case the density of every n-tuple (X~l"'" X.xJ is given 
by a product of the form (S.19), but the densities g;k cannot be chosen 
arbitrarily. Indeed, integration of (S.19) with respect to y yields the 
marginal density for (Xi' Xk ) and so we have the consistency condition ' 

(S.20) gik(X, z) ~ {+oooo gd(x, y) gik(y, z) dy 

for ali i < j < k. This is a special case of the Chapman-Kolmogorov identity 
for Markov processes.I3 Very roughly, it expresses' tha: -a transition from x 
at epoch i to z at epoch k takes plaCe via an arbitrary intermediate position 
y, the transition from y to z being independent of the past. It is 
obvious that with any system of transition probabilities gik satisfying the 
Chapman-Kolmogorov identity the multiplication scheme (8.19) leads to a 
consistent system of densities for (Xb X 2 , ••• , Xr) and the sequence is 
Markovian. We have thus the following analytic counterpart to theorem 1. 

Theorem 2. A family {gik} can serve for transition densities in a normal 
A1arkol1ian proce5s iff it 5atisfies. the Chapman-Kolmogorov identity and 
g ik(X, y) represents for each fixed x a normal density in y. 

13,Other special cases were encountered in 1; XV,(13.3) and XVII,(9.1). Note that the 
system (8.19) is the analogue to the definition 1; XV,O.l) of probabilities for Ivlarkov 
chains, except that· there su.mmation replaces the integration and that only stationary 
transition 'probabilities were considered. 
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Both theorems contain necessary and sufficient conditions and, they are 
therefore, in a sense, equivalent. They are, nevertheless, of different natures. 
The second is really not restricted to normal processes; apJllied to families 
{X(t)} it leads to differential and integral equations for the transition 
probabilities and in this way it serves to introduce new classes of Markovian 
processes. On the other'hand, from theorem 2 one would not guess that the 
gik are necessarily of the form (8.18), a result i'mplicit in the more special 
theorem 1. 

For reference and later comparisons we list here the two most important 
Markovian families {X(t)}. 

Example. (d) Brownian motion or Wiener-Bachelier process. It is defined 
by the condition that X(O) = 0, and that for i > s the variable 
X(t) - Xes) be independent of Xes) with a variance depending only on 
t - s. In other words, the process has independent increments [example 
(a)] and stationary transition probabilities [but it is not stationary since 
X(O) = 0]. Obviously E(X2(t)) = a2t and E(X(s)X(t)) = a2s for s < t. 
For T > t the transition densities from (t, x) to (T, y) are normal with 
expectation x and variance a2(T-t). They depend only on (Y-X)/(T-t), 
and the Chapman-Kolmogorov identity reduces to a convolution. 

(e) Ornstein-Uhlenbeck process. By this is meant the most general normal 
stationary Markovian process with zero expectations. Its covariances are 
given by (8.15). In other words, for T > t the transition density from 
(t,x) to (T,y) is norma) with expectation e-A(r-t)x and variance 
(j2(1_e-2A(r--tl). As T -- 00 the, expectation tends to 0 and the variance to 
0-2• This process was considered by Ornstein and Uhlenbeck from an entirely 
different point of view. Its connection with diffusion will be discussed 
in X,4. ~ 

9. PROBLEMS FOR SOLUTION 

1. Let n be the region of the plane (of area -1) bounded b)1 the quadrilateral 
with vertices (0,0), (1,1). (0, t), G', 1) and the tria'ngle with vertices (t, 0),(1, 0), 
(1, i). (The unit square is the union of n and the region symmetric to n with 
respect to the bisector.) Let (X, Y) be distributed uniformly in n. Prove that the 
marginal distributions are uniform and the X + Y has the same density as if 
X and Y were independent.14 

Hint: A diagram rende;s calculations unnecessary. 
2, Densities with normal marginal densities. Let u be an odd continuous function 

on the line, vanishing outside -1, 1. If lui < (21Te )-~ then 
n(x)n(y) + u(x)u(y) 

14 In other words, the distribution of a sum may be given by the convolution even if the 
variables are dependent. This intuitive example is due to H, E. Robbins. For another 
freak of the same type see U,4(c). 



100 DENSITIES IN HIGHER DIMENSIONS III.9 

represents a bivariate density which is not normal, bllt whose marginal densities are 
both normal. (E. Nelson.) 

3. A second example. Let fPI and fP2 be two bivariate normal densities with 
unit variances but different correlation coefficients. The mixture H fPI + fP2) is 
not normal, but its two marginal densities coincide with n. 

Note. In the sequel all random variables are in jtl. Vector variables are indicated 
by pairs (Xl' X.), etc. 

4. Let Xl' ... ,Xn be independent random variables with the common density 
[ and distribution function F. If X is the smallest and Y the largest among them, 
the joint density of the pair (X, Y) is given by 

n(n--I)[(x)[(y)[F(y)-F(x)]n-2, y > x. 

5. Show that the symmetric Cauchy distribution in ,.1ta [defined in (1.21)] 
corresponds to a random vector whose length has the density vCr) = 41T- I r2(1 +r2)-2 
for r > O. [Hint: Use polar coordinates and either (1.15) or else the general 
relation 1,(10.4) for projections.] 

6. For the Cauchy distribution (1.21) the conditional density of Xa for given 
Xl' X2 is 

2 v' (1 + ~2 +~2)a 
v (z) - 1 2 
~1'~2 -;.. (I +~;+~i+z2)2' 

and the bivariate conditional density of X2, Xa for given Xl = ~ 

1 1 +~2 
v~(y, z) = ;;. (I +~2+y2+z2)2· 

7. Let 0 < a < 1 and [(x, y) = [(1 +ax)(I +ay) - a]e-X-y-aXll for x > 0, 
y > 0 and [(x, y) = 0 elsewhere. 

(a) Prove that [ is a density of a pair (X, V). Find the marginal densities and 
the distribution function . 
. (b) Firid the conditional density uxCy) and E(Y I X), Var (Y I X). 

8. Let f be a density concentrated On 0, 00. Put u(x, y) = [(x +y)/(x +y) for 
x > 0, y > 0 and u(x, y) = 0 otherwise. Prove that u is a density in jt2 and 
find its covariance matrix. 

9. Let Xl' X2, Xa be mutually independent and distributed uniformly over 
0, 1. Let X(l)' X(2)' X(a) be the corresponding order statistics. Find the density of 
the pair 

(
X(1) X(2») 
X(2) , X(a) 

and show that the two ratios are independent. Generalize to n dimensions. 
10. Let Xl' X2, Xa be independent with a common exponential distribution. 

Find the density of (X2 -Xl' Xa -Xl)' 
11. A particle of unit mass is split into two fragments with masses X and 

1 - X. The density [ of X is concentrated on 0, 1 and for reasons of symmetry 
[(x) = f(1 - x). Denote the smaller fragment by Xl the larger by X2. The two 
fragments. are split independently in like manner resulting in four fragments with 
masses Xn, X12, X21 , X22· Find (a) the density of Xu' (b) The joint density of Xn 
and X22. Use (b) to verify the result in (a). 
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121~~~;"4 I' X2, .•• be independent with the common normal density n, and 
Sk =l :~,l: :1T\ r . . "!- Xk • If m. < n find the joint density of (Sm, Sn) and the 
cond\mQ~(lenslty for Sm given that Sn = t. 

13 :$. ~ preceding problem find the conditional density of X~ + ... + X; 
give f«tHJ··· + X~. 

14. ~II~ X, Y) have a bivariate normal density centered at the origin with 
E(X2) = E(y2) = I, and E(XY) = p. In polar coordinates (X, Y) becomes 
(R,~) where R2 = X2 + y2. Prove that ~ has a density given by 

VI _ p2 
o < rp < 21T 

2n(1 -2p sin rp cos rp) 

and is uniformly distributed iff p = O. Conclude 

P{XY > O} = i + 1T-
I arc sin p and P{XY < O} , 1T-I arc cos p. 

15. Let I be the uniform density for the triangle with vertices (0,0), (0, 1), 
(1, 0) and g the uniform density for the symmetric triangle in the thir~ quadrant. 
Find 1* f, and I*g· . 

Warning. A tedious separate consideration of individual in.tervals is required. 
16. Let I be the uniform density in the unit disk. Find I * I in polar coordinates. 
17. Let u and v be densities in ,1t2 of the form 

u(x, y) = I( .; x2 + y2), 

Find u * v in polar coordinates. 

18~ Let X = (XI' ... ,Xr) have a normal density in r dimensions. There 
exists a unit vector a = (ai' ... ,ar) such that 

Var (aIXI + ... +arXr) > Var (CIX I + ... +CrXr) 

for all unit vectors C = (c l , .' •• ,c;). If a = (I, 0, ... ,0) is such a vector then 
XI is independent of the remaining X;. 

19. Prove the 

Theorem. Give,:, a normal density in ,1tr the coordinate axes can be rotated in 
such a way that the n~w coordinate variables are mutually independent normal 
variables. 

In other words: in .theorem 2 of section 6 the matrix C may be taken as a 
rotation matrix. 

Hint: Let Y = XC and choose a rotation matrix C such that 

Y r = alX I + ... + arXr 

where a = (ai, ... ,ar ) is the maximizing vector of the preceding example. The 
rest is easy. 

20. Find the general normal stationary process satisfying 
(a) Xn+2 + Xn = 0 
(b) Xn+2 - Xn = 0 
(c) X,,+3 - Xn+2 + Xn+l - Xn = O. 
21. A servo-stochastic process. (H. D. Mills.) A servomechanism is exposed 

to random shocks, but corrections may be introduced at any time. Thus the 
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error Yll at time n is (i~ proper units) of the form Yta+1 = YlI - ClI + Xll+1, 
where ClI is the correction and the XlI are independent normal variables, 
~(XlI) = 0, E(X!) = 1. The C n are, in principle, arbitrary functions of the past 
observations, that is, of Y k and Xk for k s: n. One wishes to choose them so as 
to minimize Var (Y 11) (which is a measure of how well the mechanism works), 
and Var (Cn ) (which is a measure of how hard it works). . 

(a) Discuss the covariance function of {YlI } and show that Var (Yll) ~ 1. 
(b) Assuming that Var (ClI ) -+- (X2, Var (Y

lI
) -+- 0-2 (tendency to stationarity) 

show that 0- >i((X+(X-I). 
(c) Consider, in particular, the linear device ClI = a + p(YlI -b), 0 < p s: 1. 

Find the covariance function and a representation of the form (7.8) for Y 11. 

22. Continuation. If there is a time lag in information or adjustment tho model 
is essentiall)C.....the same except that ClI is to be replaced by ClI+N. Discuss this 
situation. 



CHAPTER IV 

Probability Measures and Spaces 

As stated in the introduction, very little of the technical apparatus of 
meaSllre theory is required in this volume, and most of the book should 
be readable without the present chapter. I It is nevertheless desirable to 
give a brief account of the basic concepts which form the theoretical back
ground for this book and, for, reference, to record the main theorems. 
The underlying ideas and facts are not difficult, but proofs in measure 
theory depend' on messy technical details. For the beginner and outsider 
access is made difficult also by the many facets and uses of measure theory; 
excellent introductions exist, but of necessity they dwell on great generality 
and on aspects which are not important in the present context. The following 
survey concentrates on the needs of this volume and omits many proofs 
and technical details. 2 (It is fair to say that the simplicity of the theory is 
deceptive in that much more difficult measure theoretic problems arise in 
connection with stochastic processes depending on a continuous time 
parameter. The treatment of conditional expectations is deferred to V, 
10-11; that of the Radon-Nikodym theorem to V,3.) 

Formulas relating to Cartesian (or Euclidean) spaces :R,r are independent 
of the number of dimensions provided x is read as abbreviation for 
(Xl' ... , xr). ' 

I This applies to readers acquainted with the rudiments of measure theory as well as 
to readers interested primarily in results and facts. For the benefit of the latter the definition 
of integrals is repeated in V,l. Beyond this they may rely on their intuition, because in 
effect measure theory justifies simple formal manipulations. 

2 An excellent source for Baire functions and Lebesgue-Stieltjes integration is found 
in E. J. McShane and T. A. Botts, Real analysis, D. Van Nostrand, Princeton, 1959. 
'Widely used are presentations of general measure theory in P. R. Halmos, Measure theory, 
D. Van Nostrand, Princeton, 1950 and in N. Bourbaki, Elements de mathematiques [livre 
VI, chapters 3-5] .Hermann, Paris, 1952 and 1956: For presentations for the specific 
purposes of probability' see 1he books of Doob, Krickeberg, Loeve, Neveu, and 
Hennequin-Tortrat. 
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1. BAIRE FUNCTIONS 

\Ve shall have to decide on a class of sets for which probabilities are 
defined and on a class of functions acceptable as random variables. The 
two problems are not only related but their treatment is unified by a stream'" 
lined modern notation .. We begin by introducing it and by recalling the 
definition of convergence in terms of monotone limits. 
-- The indicator3 of a set A is the function which assumes the value 1 at 
all points of A and the value 0 at all points of the complement A'. It will 
be denoted by 1 A: thus 1 A (x) = I if x E A and 1 A(X) = 0 otherwise. 
Every set has an indicator, and every function assuming only the values 
1 and 0 is the indicator of some set. If f is an arbitrary function, the 
product 1 Af is the function that equals f on A and yanishes elsewhere. 

Consider now the intersection C = A n B of two sets. Its indicator 
1c equals 0 wherever either 1-4 or 'B vanishes, that is, 1c = inf (1.d' ' B ) 

equals the smaller of the two functions. To exploit· this parallelism one 
writes f n g instead of inf (f, g). for the function which .. t each point x· 
equals the smaller of the values of f(x) and g(x). Similarly f U g = 
= sup (f, g) denotes the larger of the two values. 4 The operators nand 
u are called cap a.nd cup respectively. They apply to arbitrary numbers of 
functions, and one writes 

n 

(1.1) 'u···u'=Ur 11 1n ik' 

To repeat, at each point x these functions equal, respectively, the minimum 
and the maximum among then values fleX), ... ,fn(x). If fk is the indi...; 
cator of a set Ak then' (1.1) exhibits the indicators of the intersection 
Al n··· n An and of the union Al U··· U AT •. 

Consider now an infinite sequence {In}. The functions'defined in (1.1) 
depend monotonically on n, and hence the limits U~lh and U~lh 
are well defined though possibly infinite .. For fixed j 

(1.2) 
00 

W; .:....nfk 
k=; 

is the limit of the monotone sequence of functions /; n . . . n fHn, and 
the sequence {Wi} itself is again monotone, that is, Wn = WI U ... U W n· 
With our notations Wn -+ U~l Wk' By definition wn(x) is the greatest 
lower bound (the infimum) of the numerical sequence fn(x),fn+l(x), .... 

3 This term was intI'bduced by Loeve. The older term "characteristic function" is 
confusing in probability theory. 

4 Many writers prefer the symbols v and " for functions and reserve nand u for 
sets. Within our context there is no advantage in the dual notation. 
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Hence the limit of W n is the same as lim inf In and thus 

au co 

(1.3) lim infln = un h. 
i-lk-i 

-
In this way the lim inf is obtained by a succession qf two passages to the 
limit in monotone sequences. For lim sup In on~ gets (1.3) with nand 
U interchanged. . 

An these considerations carry over to sets. . In particular, we write 
A = lim An iff 1A = lim 1An. 'In words, the sequence {A,) of sets con
verges to the set A iff each point of A belongs to all An with finitely many 
exceptions, . and each point of the complement A' belongs at most to· 
finitely many An. 

Example. (a) The set {An i. o.}. As a probabilistically significant example 
of limiting operations among sets consider the event A defined as "the 
realization of infinitely many among a given sequence of events Ab A2~ .... " 
[Special cases were considered in 1; VIII,3 (Borel-CanteIli lemmas) and in 
1; XIII (recurrent events).] More formally, given a sequence {An} of sets, 
a point x belongs to A iff it belongs to infinitely many At. Since 0 and 1 
are the only possible values of indicators this definition is equivalent to 
saying that 1 A = lim sup 1 A". IIi standard notation therefore A = 
lim sup An' but the notation {An i. o.} (read "An infinitely often") is 
more suggestive. It is due to K. L. Chung. 

Our next problem is to delimit the class of functionsS in :R,r with which 
we propose to deal. The notion of an arbitrary function is far too broad 
to be useful for our purposes, and a modernized version of Euler's notion 
of a function is more appropriate. Taking continuous functions as given, 
the only effective way of constructing neW functions depends on taking limits. 
As it turns ·out, all our needs will be satisfied if we know how to deal with 
functions that are limits of sequences {In} of continuous functions, or 
limits of sequences where each In is such a limit, and so on. In other words, 
we are interested in a class ~ of functions with the following properties: 
(1) every continuous function belongs to ~, and (2) if /I,j;, ... belong to 
m and a limit I(x) ="limln(X) exists for all x, then I belongs to ~. 

5 We are, in principle, interested only in finite-valued functions, but it is sometimes 
convenient to "permit ± 00 as values. For example, the ~imple theorem that every mono
tone sequence has a limit is fals~ for finite-valued functions and without it many for
mulations become clumsy. For this reason we adhere to the usual convention that all 
functions are to the extended real line, that is, their values are numbers of ± 00. In 
practice the values ± 00 will play no role. To make sure that the sum and product of two 
. functions are again functions one introduces for their values the conventions 00 + 00 = 00, 

00 - 00 = 0, 00 . 00 = 00, 0 . 00 = 0, etc. 
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Such a class is said to be closed under pointwise limits. There is no doubt 
that such classes exist, the class of all functions being one. The intersection 
of all such classes is itself a closed family, and' obviously is the smallest such 
class. Prudence requires us to limit our considerations to this smallest class. 

The smallest closed class of functions containing all continuous functions 
is called the Baire class and l1-'ifl be denoted by 5B. The functions in· 5B are 
called Baire functions. I} 

We shall use this notion not only for functions defined in the whole 

space but also for functions defined' only on a subset (for example, .j; 
or log x in j{l) .. 

_ ' It is obvious from the definition that the sum and the product of two 
Baire functions are again Baire functions, but much more is true. If w is 
a continuous function in r variables and fl' .. . ,fr are Baire functions, 
then W(!l' ... ,fr) is again a Baire function. Replacing W by wnand 
passing to a limit it can be shown that more generally every Bake function 
of-Baire functions is again a Baire function. Fixing the value of one or 
more variaples leads again to a Haire function, and so on.' In short, none 
of the usual" operations on Baire functions will lead outside the class, and 
therefore the class 5B is a natural )bject for our analysis. It will turn 
uut that qo simplifications are possible by considering smaller classes. 

2. INTERVAL FUNCTIONS AND INTEGRALS IN -j{r 

We shall use the word interval, and the indicated notation, for sets of 
points satisfying a doubJe inequality of one of the following four types: _ 

. , 

_I 
a, b: _ a<x<b a,b: a<x<b-
I-I ,-
a,b: a<x<b Q, b: a <x < b. 

In one dimension this covers all possible intervals, including 'the degenerate 
interval of length' zero. in two dimensions the inequalities: are interpreted 
'coord inate'-wise, and intervals are (possibly degenerate) rectangles parallel 
to the axes. Other types of partial closure are possible but are herewith 

- excluded. The limiting case where one or more coprdinates of either a or b 
are replaced by ± 00 is admitted; in particular, the whole space is interval the 

-00,00. 

A point function f .assigns, a value f(x) to individual points. A set 
function F assigns values to sets or regions of the sp-ace. The volume in 

6 This definition depends on the notion of continuity but not on other properties of 
Cartesian spaces. It s therefore applicable to arbitrary topological spaces. 
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:Jl3, area in :R,2, or length in :R,I are typical examples but there are many 
more, probabilities representing 'a special case of primary concern to us. 
We shall be interested only in set functions with the property that if a set 
A is partitioned into two sets Al and A 2 , then F{A} = F{A I } + F{A 2l 
Such functions are called additive. 7' 

As we have seen, it occurs frequently that probabilities F{l} are assigned 
to all intervals of the r-dimensional space :/tr and it is desired to extend 
this assignment to more general sets. The same problem occurs in elementary 
calculus, where the area (content) is originally defined only for rectangles 
and it is desired to defi~e the area of a more general domain A. The simplest 
procedure is first to define integrals for functions of two variables and then 
to equate "the area of A" with the integral of the indicator 1 A (that is the 
function that equals I in A and vanish~s outside A). In like manner we 
shall define the integr~l 

(2.1) E(u) =f . u(x) F{dx} 
:itT 

of a point function· u with respect to the interval furiction F. The prob
ability of A will then be defined by E(1 A)' In the construction of the 
integral (2.1) the interpretation of F plays no role, and we shall actually 
describe the general notion of a Lebesgue-Stieltjes integral. With this pro
gram in mind we now start anew. 

Let F be a function assigning to each interval I a finite value F{l}. Such a 
function is called (finitely) additive if for every partition of an interval I 
into finitely many non-overlapping intervals II"" , In' 

(2.2) 

Examples. (a) Distributions in :R 1. In volume 1 we considered discrete 
probability distributions attributing probabilities PI' P2, . .. to the points 
ab a2 , •.. , Here F{I} is the sum of the weights Pn of all points an con
tained'in I, and E(u) = ! u(an)pn-

(b) If G is any continuous monotone function increasing from 0 at - 00 

to I at 00 one may define F{a, b} = G(b) - G(a). 
(c) Random vectors in :JP. A vector of unit length issues from the origin in 

a random direction. The probability that its endpoint lies in a two
dimensional interval I is proportional to the length of the intersection of 
I with the unit circle. This defines a continuous probability distribution 
without density. The distribution is singular in the sense that the whole 

7 Empirical examples for additive functions are the mass and amount of heat in a region, 
the land value, the wheat acreage and the number of inhabitants of a geographical region, 
the yearly coal production, the passenger miles flown or the kilowatt hours consumed 
during a period, the number of telephone calls, etc. 
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probability is carried by a circle. One may think that such distributions are 
artificial and that the circle rather than the plane should serve as natural 
sample space. The objection is untenable because the sum of two independent 
random vectors is capable of all lengths between 0 and 2 and has a positive 
density within the disk of radius 2 [see example V,4(e)]. For some problems 
involving random unit vectors the plane is therefore the natural sample 
space. Anyhow, the intention was only to show by a simple example what 
happens in more complicated situations. 

(d) 'Ne conclude with an example illustrating the contingency that will 

be excluded in the sequel. In jll put F{l} = 0 for any interval 1= a, b 

with b < 00 and F{l} = 1 when I = a, 00. This interval function is 
additive but weird because it violates the natural continuity requirement 

that F{a, b} should tend to F{a, oo} as b.-+ 00. ~ 

The last example shows the desirability of strengthening the requirement 
(2.2) of finite additivity. We shall say that an interval function F is countably 
additive, or a-additive, iffor every partitioning of an interval I into countably 
many intervals II' 12 , ••• , 

(2.3) 

["Countably many" means finitely or denumerably many. The term 
completely additive is synonymous with countably additive. The condition 
(2.3) is manifestly violated in the last example.] 

We shall restrict our attention entirely to countably additive set functions. 
This is justified by the success of the theory, but the restriction can be 
defended a priori on heuristic or pragmatic grounds. In fact, if An = 
II U ... U In is the union of the first n intervals, then An -+ 1. One 
could argue that "for n sufficiently large An is practically indistinguishable 
from I." If F{l} can be found by experiments, F{A n } must be "practically 
indistinguishable" from F{I}, that is, F{A n } must tend to F{J}. The 
countable additivity (2.3) ,expresses precisely this requirement 

Being interested principally in probabilities we shall consider only non-

negative interval functions F .,ormed by the condition that F{ - 0, oo} = 1. 

This norming imposes no serious restriction when F{ - 00, ro J < 00, but 
it excludes interval functions such as length in j{,l or area in j\,2. To make 
use of the following theory in such cases it suffices to partition the line 
or the plane into unit inte~vals and treat them separately. This procedure 
is so obvious and so well known that it requires no further explanation. 

A function on jlf" is called a step function if it assumes only finitely 
many values, each on an interval. For a step function u assuming the 
values a1 , ••. , a,n on intervals II"'" In (that is, with probabilities. 
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F{llL ... ,F{ln}), respectively we put 

(2.4) E(u) = a l F{I1} + ... + an F{In} 

in analogy with the definition of expectation of discrete random variables. 
[It is true that the partioning of the space into intervals on which u IS 

constant is not unique, but just as in the discrete case the definition (2.4) 
is easily seen to be independent of the partition.] This expectation E(u) 
satisfies the following conditions: 

(a) Additivity for linear combinations: 

(2.5) E(\llUl +\l2U2) = \llE(ul ) + \l2E (u2). 

(b) Positivity: 

(2.6) u > 0 implies E(u) > O. 

(c) Norming: For the constant function 

(2.7) E(l) = 1. 

The last two conditions are equivalent to the· mean value thoerem: 
\l < u < ,8 implies \l < E(u) < f3 and so the function E(u) represents 'a 
sort of average. 8 

The problem is to extend the definition of E(u) to larger classes of 
functions preserving the properties (a)-(c). The classical Riemann integration 

I--
utilizes the fact that to each continuous function u on 0, 1 there exists a 

l---l 
sequence of step functions Un such that Un ~ u uniformly on 0, 1. By 
definition then E(u) = lim E(u n). It turns out that the uniformity of the 
convergence is unnecessary.and the same definition for E(u) can be used 
whenever Un -- u pointwise. In this way it is possible to extend E(u) to 
all bounded Baire junctions, and the extension is unique. When it comes to 
unbounded functions divergent integrals are unavoidable, but at least for 
positive Baire functions it is possible to define E(u) either as a number or as 

8 When F represents probabilities E(u) may be interpreted as the ~xpected gain of a 
gambler who can gain the amounts aI' a2 , •••• To grasp the intuitive meaning in otht!r 
situations consider three examples in which !I(x) represents, respectively, the temperature 
at time x, the number of telephone conversations at time x, the dist~mce of a mass poin~ 
from the origin, while F represents, respectively, the duration of a time interval, the 
value (cost of conversation) of a time interval, and mechanical mass. In each case integra
tion will be extended over a finite interval only, and E(u) will represent the accumulated 
"temperature hours." the accumulated gain, and a static moment. These examples will 
show our int'~gration with respect to arbitrary set functions to be simpler and more 
intuitiv,: than Ri~ITlQnn integration where the independent variable plays more than one 
role and the "area under the curve" is of no help to the beginner. One should beware of 
the idea that the concept of expectation occurs only in probability theory. 
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the symbol UJ (indicating divergence). No trouble arises in this respect 
because the Lebesgue theory considers only absolute integrability. Roughly 
speaking, starting from the definition (2.4) :or expectations of simple functions 
it is possible to define E(u) for general Baire functions by obvious approxi
mations and passages to the limit. The number E(u) so defined is the 
Lebesgue-Stieltjes integral of u with respect to F. (The term expectation 
is preferable when the underlying function F remains fixed so that no 
ambiguity arises.) We state here without proof9 the basic fact of the 
Lebesgue theory; its nature and scope will be analyzed in the following 
sections. [A constructive definition of E(u) is given in section 4.] 

l\fain theorem. Let F be a countably additive interval functions in :R,r with 

F{ - 00, oo} = 1., There exists a unique Lebesgue-Stieltjes integral E(u) on 
the class of Baire functions such that: 

If u > 0 then E(u) is a non-negative number or 00. Otherwise E(u) 
exists iff either E(u+) or E(lj-) is finite; in this case E(u) = E(u+) - E(u-). 
A function u is called integrable if E(u) is finite. (hen 

(i) If u is a stepfunction, E(u) is given by (2.4). 
(ii) Conditions (2.5)-(2.7) hold for all integrable Junctions. 

(iii) (Monotone convergence principle.) Let Ul < U2 < ... -- u where 
. Un is integrable. Then E(un) --- E(u). 

The change of variables Vn = un+! - Un leads to a restatement of the last 
principle in terms of series: 

If vnis integrable and Vn > 0, then 

in the sense that both sides are meaningful (finite) or neither is. It follows 
in particular that if v > u > 0 and E(u) = 00 then also E(l') = 00. 

What happens if in (iii) the c0nditi'on of monotonicity is dropped? 
The answer depends on a~ important lemma of wide applicability. 

Fatou,'s Lemma. If Un > 0 and Un is integrable, then 

(2.9) 

In particular, if Un -- u then lim inf E(un) > E(u). 

Proof. Put Vn = Un (l Un-+! (l .. '. Then l'n < Un and hence 

E(z'n) < E(un ). 

9 The method of proof is indicated in section 5. As usual, u+ and u- denote the positive 
and negative parts of u, that is, u+ = U V 0 and -u- = u (\ O. Thus u = u+ - u-. 
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But (as we saw in section 1) Vn tends monotonically to lim inf Un' and so 
E(v n) tends to the left side in (2.9) and the lemma is proved. [Note that 
each side in (2.9) can represent 00.] ~ 

As example (e) will show, the' condition of positivity cannot be dropped, 
but it can be replaced by the formally milder condition that there exists 
an integrable function U such that Un > U. (It suffices to replace Un by 
Un - U.) Changing Un into -Un we see that if Un < U and E( U) < 00, 

then 

(2.10) 

For convergent sequences the extreme members in (2.9) and (2.10) coincide 
and the two relations together yield the important 

Dominate4 convergence prinCiple. Let un be integrable and Un -+ U 
pointwise. If there exists an integrable U such that Iunl < U for all n, 
then U is integrable and E(un) -- E(u). 

This theorem relates to the only place in the Lebesgue theory where a 
naIve formal manipulation may lead to a wrong result. The necessity of the 
condition lu~1 ~ U is illustrated by 

. '-1 
Example. (e) We take 0, 1 as basic interval and define expectations by 

the ordinary integral (with respect to length). Let 

un(x) = (n + 1)(n + 2)xn(I - x). 

These functions tend pointwise to zero, but nevertheless 1 = E(un ) -- 1. 
Replacing _un by -Un it is seen that Fatou's inequality (2.9) does not 
necessarily hold for non-positive functions. ~ 

We mention without proof a rule. of ordinary calculus applicable more 
generally. 

Fubini's theorem for repeated integrals. If U > 0 is a Baire function and 
F and G are probability distributions then 

J
+OO J+oo J+oo J+oo 

(2.11) -00 F{dx} -00 u(x, y) G{dy} = -00 G{dy} -00 u(x, y) F{dx} 

with the obvious interpretation in case of divergence. Here x and y may be 
interpreted as points in :R m and j{ n, and the theorem includes the assertion 
that the two inner integrals are Baire functions. (This theorem applies to 
arbitrary product spaces and a better version is given in section 6.) 

Mean approximation theorem. 1'.0 each integrable u and E > 0 it is 
possible to find a step function .v such that E(lu-vl) < E. 
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Instead of step functions one may use approximation by continuous 
functions, or by functions with arbitrarily many derivatives and vanishing 
outside some fiIlIte interval. [Compare the approximation theorem of 
example VIII,3(a).] 

Note on Notations. The notation E(u) emphasIzes the dependence on u 
and is practical in contexts where the interval function F is fixed. When 
F varies or the dependence on F is to be emphasized, the integral notation 
(2.1) is preferable. It applies also to integrals extended over a subset A, for 
the integral of u extended over A is (by definition) the same as the integral 
of the product 1 AU extended over the whole space. We write 

L u(x) F{dx} = E(1A u) 

(assuming, of course, that the indicator 1 A is a Baire function). The two 
sides mean exactly the same thing, the left side emphasizing the dependence 

on F. When A = Q, b is an interval the notation f~ is sometimes pre
ferred, but to render it unambiguous it is necessary to indicate whether 
the endpoints belong to the interval. This may be done by writing Q + 
or Q-. ~ 

In accordance with the .program outlined at the beginning of this section 
we now define the probability of a set A to equal E(1 A) whenever 1 A is a 
Baire function; for other sets no probabilities are defined. The consequences 
of this definition will now be discussed in the more general context of 
arbitrary sample spaces. 

3. a-ALGEBRAS. MEASURABILITY 

In discrete sample spaces it was possible to assign probabilities to all 
subsets of the sample space, but in general this is neither possible nor desir
able. In the preceding chapters we have considered the special case of 
Cartesian spaces :R,r and started by assigning probabilit.ies to· all intervals. 
It was shown in the preceding section that such 2.n assignment of probabilities 
can be extended in a natural way to' a larger class m of sets. The principal 
properties of this class are: 

(i) If a set A is in m so is its complement A' = 6 - A. 
(ii) If {An} is any countable collection of sets in m, then also their 

union U An and intersection n An belong to m. 
In short, m is a system closed under complementation and the formation 

of countable unions and intersections. As was shown in section 1 this implies 
th~t also the upper and lower limit of any sequence {An} of sets in m- again 
belongs to ~. In other words, none of the familiar operations on sets in ~ 
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will lead us to sets outside ~(, and therefore no nt:ed will arise to consider 
other sets. This situation is typical inasmuch as in general probabilities will 
be assigned only to a class of sets with the properties (i) and (ii). We there
fore introduce the following definition which applies to arbitrary spaces. 

Definition 1. A a-alg#bra10 is a family ~ of subsets of a given set 6 
enjoying the properties (i) and (ii). 

Given any family tj of sets in 6, the smallest a-algebra containing qll 
sets in (J is called the a-algebra generated by tj. 

In particular, the sets generated by the intervals of j{T are cal.'ed the Borp./ 
sets of :ItT. 

That a smallest a-algebra containing tj exists is seen by the argument used 
in the definition of Baire functions in section 1 .. Note that, 6 being the 
union of any set A and its complement, every a-algebra contains the space 
6. 

Examples. The largest a-algebra consists of all subsets of 6. This algebra 
served us well in discrete spaces, but is too large to be useful in general. The 
other extreme is represented by the trivial algebra containing only the whole 
space and the empty set. For a non-trivial example consider the sets on the 
line j{ 1 with the property that if x E A then all points x ± 1, x ± 2, ... 
belong to A (periodic sets). Obviously the family' of such sets forms a 
~~~brn. ~ 

Our experience so far shows that a principal object of probability theory 
is random variables, that is, certain functions in sample space. With a 
random variable X we wish to associate a distribution function, and for 
that purpose it is necessary that the event {X < t} has a probability assigned 
to it. This consideration leads us to 

Definition 2. Let ~ be an arbitrary a-algebra of sets in 6. A real-valued 
function u on 6 is called ~-measurablell if for each t the set of all points 
x H,'here u(x) < t belongs to ~r. 

The set where u(x) < t is the union of the countable sequence of sets 
where u(x) < t - n-1 , and therefore it belongs to ~. Since ~1 is closed 
under complementation it follows that in the above definition the sign ~ 
may be replaced by <, >, or >. 

10 An algebra of sets is defined similarly un replacing the work "countable" in (ii) by 
finite. A IT-algebra is often called" Borel algebra," but this leads to a confusion with the 
last part of the definition. (In it intervals may be replaced by open sets, and then this 
definition applies to arbitrary t.opological spaces.) 

11 This term is a bad misnomer since no ml'asure is yet defined. 
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It follows from the definition that the \lI-measurable functions form a 
closed family in the sense introduced in section 1. 

The following simple lemma is frequently useful. 

Lemma 1. A function u is \lI-measurable if! it is the uniform limit of a 
sequence of simple functions, that is of functions assuming only countably many 
values, each on a set in \lI. 

Proof. By the very definition each simple function is \lI-measurable, and 
because of the closure property of \lI-measurable functions every limit of 
simple functions is again \lI-measurable. 

Conversely, let u be \lI-measurable. For fixed € > 0 define the set An 
as the set of all points x at which (n - l)€ < u(x) < n€. Here the integer 
n runs from -00 to 00. The sets An are mutually exclusive and their 
union is the whole space 6. On the set An we define ~(x) = (n-l)€ and 
c1(X) = n€. In this way we obtain two functions a and jj defined on 

-( ( 

(.; and such that 

(3.1) 

at all points. Obviously u is the uniform limit of ~( and ~( as € ~ O. 

Lemma 2. In m" the class of Baire functions is identical with the class of 
functions measurable with respecf to the a-algebra m of Borel sets. 

Proof. (a) It is obvious that every continuous function is Borel measurable. 
Now these functions form a closed class, while the Baire functions form the 
smallest class containing all continuous functions. Accordingly, every Baire 
function is Borel measurable. 

(b) The preceding lemma shows that for the converse it suffices to show 
that everysimple Borel-measurable function is a Baire function. This amounts 
to the assertion that for every Borel set A the indicator' 1,.4. is a Baire function. 
N ow Borel sets may be' defined by saying that A is a Borel set if and only if 
its indicator 1,.4. belongs to the smallest closed class containing all indicators 
ofintervals. Since Baire functions form a closed class containing all indicators 
of intervals12 it follows that 1,.4. is a Baire function for every Borel set A. ~ 

We apply this result to the special case of the Cartesian space 3{r. In 
section 2 we started from a completely additive interval function and defined 
P{A} = E(1,.4.) for every set A whose indicator 1,.4. is a Baire function. The 
present setup shows that under this procedure, the probability P{A} is 
defined iff A is a Borel set. 

12 To see this for all open interval I, Jet l' be a continuous function vanishing outside 

I and such that 0 < v(x) ~ 1 for xE I. Then \1; -1r. 
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Approximation of Borel sets by intervals. In view of the last remark, probabilities in 
j{,1' are as a rule defined on the a-algebra of Borel sets, and it is therefore interesting that 
any Borel set A can be approximated by a set B consisting of finitely many intervals in the 
following sense: To each E: > 0 there exists a set C such that p{ C} < E: and such that 
outside C the sets A and B are identical (that is, a point in the complement C' belongs 
either to both A and B, or to neither. One may take for C the union of A - AB and 
B - AB). . 

Proof .. By the mean approximation theorem of section. 2 there exists a step 
function v >0 such that E(]1 A -vI) < tE:. Let B be the set of those points x at 
which vex) > !. Since v is a step function, B consists of finitely many intervals. It is 
easily verified that 

E]1 A(x)-1 B (x)] ~ 2 EI1.ix)-v(x)] < E: 

for all x. But ]1 A -1 B] is the indicator of the set C consisting of aU points that befong 
to either A or B but not to both. The last inequality states that P{ C} < E t and this 
completes the proof. ~ 

4. PROBABILITY SPACES. RANDOM VARIABLES 

We are now in a position to describe the general setup used in probability. 
Whatever the sample space 6 probabilities will' be assigned only to the ·sets 
of an appropriate a-algebra m. We therefore ~tart with 

Definition 1. A probability measure P on a a-algebra ~ of sets in (; 
is a function assigning a value P{A} > 0 to each set A in ~ such that 
P{ 6} -.:. 1 and that for every countable collection of non-overlapping sets 
An in ~r 

(4.1) . 

This property is called complete additivity and a probability measure m~y . 
be described as a completely additive non-negative set function on ~ subject 
to the norming13 P{6} = 1. 

In individual cases it is necessary to choose an appropriate a-algebra and 
construct a probability measure on it. The procedure varies from case to 
case, and it is impossible to describe a general method. Often it is possible 
to adapt the approach used in section 2 to construct a probability me~sure 
on the Borel sets of :Jtr. A typical example is provided by sequences of 
independent random variables (section 6). The starting point for any 

13 The condition P{6} = 1 serves norming purposes only and nothing essential changes 
if it is repiaced by P{6} < 00. One speaks in this case of a finite measure space. In prob
ability theory the case P{6} < 1 occurs in various connections and in this case we speak 
of a defective probability measure. Even t.he condition P{6} < 00 may be weakened by 
requiring only that 6 be the union of countably many parts 6 n such that P{6n } < co .. 
(Length and area are typical examples.) One speaks then of a-ftnite measures. 
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probabilistic· problem is a sample space in which a a-algebra with an 
appropriate probability measure has be~n selected. This leads us to 

Definition 2. A probability space is a triple (6, '21, P) of a sample space S, 
a a-algebra 'lI of sets in it, and a probabi/hy measure P on '21. . 

To be sure, not every imaginable probability space is an interesting object, 
but the definition embodies all that is required for the formal setting of a 
theory following the pattern of the first volume, and it would be sterile to 
discuss in advance the types of probability spaces that may turn up in practice. 

Random variables are functions on the sample space, but for purposes of 
probability theory we can use only functions for which a distribution function 
can be defined. Definition 2 of section 3 was introduced to cope with this 
situation, and leads to 

Definition 3. A random variable X is a real function which is measurable 
with 'respect to the underlying a-algebra ~. The function F defined b) 
£(T) = P{X < T} us called the distribution function of X. . 

The elimination of functions that are not random variables is possible 
because, as we shall presently see, all usual operations, such as taking sums 
or other furictions, passages to the limit, etc., can be performed within the 
class of random variables without evei-Ieaving it. Before rendering this point 
more precise let us· remark that a random variable X maps the sample 
space 6 into the real line :R 1 in such a way that the set in 6 in which 

-I 
a < X <b is mapped into the interval a, b, with corresponding prob-
ability F(b) - F(a). In this way every interval I in :It 1 receives a prob
'ability F{l}. Instead of an interval I we may take an arbitrary Borel set 
r on j{,l and consider the set A of those points in 6 at which X assumes 
a value in r. In symbols: A = {X E f}. It is clear that the collection of all 
such sets for'ms a a-algebra 'lI1 which may be identical with 'lI, but is 
usually smaller. We say that 'lI1 is the a-algebra generated by the random 
variable X. It may be characterized as the smallest a-algebra in 6 with 
respect to which. X is measurable. The random variable X maps each set 
of 'lI1 into a Borel set f of .'R.\ and hence the relation F{f} = P{A} 
defines uniquely a probability measure on the a-algebra of Borel sets on jP. 

-l 
For an interval I = a, b we have F{l} = F(b) - F(a) and so F is identical 
'.vith the unique probability measure in j{,l associated with the distribution 
function F by the procedure c..iesl:ribed in section 2. 

This discussion ~hows that as long as we are concerned with only one par
ticular random variable X we may forget about the original sample space and 
pretend that the probability space is the line ::IF with the a-algebra of Borel 
sets on it and the measure induced by the distribution function F. We saw 
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that in :iP the class of Baire functions coincides with the Borel measureable 
functions. Taking :R 1 as sample space this means that the class of random 
variables coincides with the class of Borel measurable functions. Interpreted 
in the original sample space this means that the family of Baire functions of 
the random variable X coincides with the family of all functions that are 
measurable with respect to the a-algebra 'lII generated by X. Since 'lII C 'lI 
this implies that any Baire function of X is again a random variable. 

This argument carries over without change to finite collections of random 
variables. Thus an r-tuple (Xl, ... , Xr ) maps 6 into :Jl r so that to an 
open interval in j{r there corresponds the set in :3 at which r relations of 
the form ak < Xk < bk are satisfied. This set is 'll-measurable because it is 
the intersection of r such sets. As in the case of one single variable we may 
now define the a-algebra '2£1 generated by Xl, ... , Xr as the smallest 
a-algebra of sets in 6 with respect to which the r variables are measurable. 
We have then the basic 

Theorem. Any Baire function of finitely many random variables is again a 
random variable. 

A random variable U is a Baire function of Xl' ... ,Xr if it is measurable 
with respect to the a-algebra generated by Xl" .. , Xr . 

Examples. (a) On the line 9\1 with X as coordinate variable, the function 
X2 generates the a-algebra of Borel sets that are symmetric with respect to 
ihe origin (in the sense that if x E A then also -x E A). 

(b) ~onsider .'R3 with Xl' X2 , X3 as coordinate variables, and the a
algebra of Borel sets. The pair (Xl' X2) generates the family of all cylindrical 
sets with generators parallel to the third axis and whose basis are Borel sets 
of the (Xl' X2) plane. ~ 

Expectation3 

In section 2 we started from an interval function in :Rr and used it to 
construct a probability space. There we found it convenient first to define 
expectations (integrals) of functions and then to define the probability of a 
Borel set A equal to the expectation £(1 A) of its indicator. If one siarts 
from a probability space the procedure must be reversed: the (JI"obabiliries 
are given and it is necessary to define the expectations of random variables in 
~erms of the viven probabilities. Fortunatelv the OfOCeGUre :s extr~celv b .I, ., 

sanDIe . 
.1 

.. • "l 1 ...- T . r' " 

J-\S 1n th.e preceding section we ~ay that 3. ral • .c.;om '!2.[;aOJ(' 'j :? ",'Y1,)/? H 

:} 'l.s':mlles onlv countablv rnanv values 0.., l;.), ... each DE ;i. ~;;;L /;. '-,,~i.l)ii\::-
_. I, •. "...J .I,..' ...I.. ... /"-, 

; ng ,.:) : Il~ basir. 'J"-al:;~br:l "ll. To such vanables the discn;te i.H~()[y 0:- VOllcIll;; 
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1 appli~s and we define the expectation of U by , 

(4.2) 

provided the series converges absolutely; otherwise we say' that U has no 
expectation. . 

Given an arbitrary random variable and an arbitrary E > 0 we defined jn 
(3.1) two simple Tandom variable ~£ and 'ii£. such that ii£ = !!£ + E' and 
Q'£ < U < ii£. With any reasonable definition of E(U) we mu~t have 

(4.3) 

whenever the variables !!£ and ii£ have expectations. "Since these functions 
differ only by E the same is' true 0"[- their expectations,or else neither 
expectation exists. In the latter case we say that U has, no expectation, 
whereas in the former case E(U) is uniquely defined by (4.3) letting E ~·O. 
In brief, since every random variable U is the uniform limit of a sequence' 
of simple random variables an the expectation o~ U can be defined as the 
limit of ~(dn)' For example~ in terms of ii£ we have 

00 

(4.4) E(U) = lim:l n E P{(n-l)E < U < nE} 
£-to -00 • 

provided the series converges absolutdy (for some, and therefore,all E > 0). 
Now the probabilities occurring in (4.4) coincide with the probabilities 
attributed by the distribution function F of' U to the intervals 

I 
(n - l')E, nE. It follows that with this change of notations our definition of 
E(U) reduces to that given in section 2 for 

(4.5) f
+OO 

E(U) = -00 t F{dt}. 

Accordingly, E(U) mCfY be defined consistently either in the original prob
ability space or in terms of its distribution function. (The same remark was 
made in 1; IX for discrete variables). F or this reason it is s uperff uous to 
emphasize that in arbitrary probability spaces expectations share the basic 
properties of exPectations in :R,r discussed in section 2 . 

. 
5. THE EXTENSION THEOREM 

The usual starting point in the construction of probability spaces is that 
probabilities are assigned a priori to a restricted class of sets, and the domain 
of definition must be suitably extended. For example, in dealing with 
unending sequences of trials and recurrent events in volume 1 we were given 
the probabilities of all events depending on finitely many trials, but this 
domain of definition has to be enlarged to include events such as ruin, 
recurrence, and ultimate extinction. Again, the construction of measures in 
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:R,r in section 2 proceeded from an assignment of probabilities F{l} to' 
intervals, and this domain of definition was extended to the class of all Borel 
sets. The possibility of such an extension is due to a theorem of much wider 
applicability, and many constructions of probability spaces depend on it 
The procedure is as, follows. , 

The additivity of F permits us to define without ambiguity 

(5.1 ) 

for every set A which is the union of finitely many non-overlapping intervals 
Ik • Now these sets form an algebra mo (that is, unions, intersections, and 
complements of finitely many sets in mo belong again to mo)' From here 
on the nature of the underlying space :R,r plays no role, and we may consider 
an arbitrary algebra mo of sets in an arbitrary space 6. There exists 
always a smallest algebra m of sets containing mo which is closed also 
under countable unions and intersections. In other words, there exists a 
smallest a-algebra m containing mo (see definition 1 of section 3\ In the 
construction of measures in :R,r the a-algebra m coincided with the a-algebra 
of all Borel sets. The extension of the domain of definition· of probabilities 
from mo to m is based on the general 

Extension theorem. Let mo be an algebra of sets in some space 6. Let F 
be a set function defined on mo such that F{A} > 0 for every set A E mo, that 
F{6} = 1, and that the addition rule (5.1) holds for any partition of A into 
countably many non-overlapping sets Ik E mo. 

There exists then a unique extension of F to a countably additive set 
function (that is, to a probability measure) on the smallest iT-algebra m 
containing mo. 
, A typical application will be given in the next section. Here we give 
a more general and more flexible version of the extension theorem which 
is more in line with the development in sections 2 and 3. We started from 
the expectation (2.4) for step functions (that is, functions assuming only 
finitely many values, each on an interval). The domain of definition of this 
expectation was then extended from ~he restricted class of step functions 
to a wider class including all bounded Baire functions. This extension leads 
directly to the Lebesgue-Stieltjes integral, and the measure of a set A is 
obtained as the expectation of its ,indicator 1 A' The corresponding abstract 
setup is as follows. 

Instead of the algebra mo of sets we consider a class ~o of functions 
closed under' linear co~binations and the operations nand U. In other 
words, we suppose that if U1 and U2 are In ~o so are the fl,Inctions14 

(5.2) 

14 Our postulates amount to requiring that ~(l be a linear lattice. 
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This implies in particular that every function u of 5130 can be written in the 
form u = u+ - u- as the difference of two non-negative functions, namely 
u+ = u U 0 and u- = unO. By a linear functional on 5130 is meant an 
assignment of values E(u) to all functions of 5130 satisfying the addition rule 

(5.3) E(et:1U 1 +et:2U 2) = et:1 E(u1) + et:2 E(u2). 

The functional is positive if u > 0 implies E(u) ~ O. The norm of E is 
the least upper bound of E(lu/) for all functions u E ~o such that lui < 1. 
If the constant function 1 belongs to ~o the norm of E equals EO). 
Finally, we say that E is countably additive on ~o if 

(5.4) E(~ Uk) = ~i(Uk) 
whenever 2: Uk happens to .be in ~o; An equivalent condition is: if {vn } 

'is a . sequence of functions in ~o· converging monotonically to zero, then15 

(5.5) E(vn ) --+- O. 

Given the class ~o' of functions there exists a smallest class ~ contammg 
~o and closed under pointwis~ passages to the limit. [It is automatically 
closed under the operations (5.2).] An alternative formulation of the 
extension theorem is as follows.16 Every positive countably additive linear 
functional of norm 1 on 5130 can be uniquely extended to a positive counlably 
additive linear functional of norm 1 on all bounded (and many unbounded) 
functions of ~. 

As an example for the/applicability of this theorem we prove the following 
important result. 

F. Riesz representation theorem.17 Let E be a positive linear functional 
of norm 1 on the class of continuous functions on :R,r vanishing at infinity-IS 

15 To prove the equivalence of (5.4) and (5.5) it suffices to consider the case Uk > 0, 
Vk > O. Then (5.4) foHows from (5.5) with Vn = un+1 + un+2 + . .. and (5.5) follows 
from (5.4) on putting Uk = vk ~ vk+l (that is, 2Uk = vI)" 

16 The basic idea of the proof (going back to Lebesgue) is simple and ingenious. It is 
not difficult to see ,that if two sequences {un} and {u~} of functions in ~o converge 
monotonically to the same limit U then E(un ) and E(u~) tend to the same limit. For such 
monotone limits U we can therefore define E(u) = lim E(un). Consider now the class 
~1 of functions u such that to each £ > 0 there exist two functions !! and it which are 
either in ~o or are monotone limits of sequences ~o and such that !! < u < it and 
E(it) - E(!!) < £. The class ~1 is closed under limits and for functions in ~1 the defini
tion of E(u) is obvious since we must have E(!!) < E(u) < E(it). 

The tour de force in this argument is that the class ~1 is usually greater than 5B and the 
simple proof is made possible by proving more than is required. (For a comparison 
between ~ and ~1 see section 7.) 

17 Valid for arbitrary locally compact spaces. For an alternative proof see V,1. 
18 U vanishes at infinity if Jor given £ > 0 there exists a sphere (compact set) outside 

which lu(x)1 < E. 
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There exists a measure P on the a-algebra of Borel sets with p{!Rn = 1 
such that E(u) coincides with the integral of u with respect to P. 

In other words., our integrals represent the most general positive linear 
fum.:tionals. 

Proof. The crucial point is that if a sequence {vn } of continuous func
tions vanishing at infinity converges monotonically to zero, the convergence 
is .automatically uniform. Assume Vn ~ 0 and put IIvnll = max vn(x). 
Then E(vn) < II vnll, and so the countable additivity condition (5.5) is 
satisfied. By the extension theorem E can be extended to all bounded 
Baire functions and putting P{A} = E(lA} . we get a measure on the a
algebra of Borel sets. Given the measures P{A} we saw that the Lebesgue
Sti'eItjes integral is uniquely characterized by the double inequality (4.3) 
and this shows that for u continuous and vanishing at infinity this integral 
coincides with the given functional E(u). ~ 

6. PRODUCT SPACES. SEQUENCES OF INDEPENDENT 
VARIABLES 

The notion of combinatorial product spaces (1; V,4) is basic for prob
ability theory and is used every time one speaks of repeated trials. Describing 
a point in the plane :Jl2 by two coordinates means that :Jl2 is taken as the 
combinatorial product of its two axes. Denote the two coordinate variables 
by X and Y. Considered as functions in the plane they are Baire 
functions, and if a probability measure P is defined on the a-algebra of 
Borel sets in :R,2 the two distribution functions P{X < x} and P{Y < y} 
exist. They induce probability measures on the two axes called the marginal 
distributions (or projections). In this description the plane appears as the 
primary notion, but frequently the inverse procedure is more natural. For 
example, when we speak of two independent random variables with given 
distributions, the two marginal distributions are the primary notion and 
probabilities 'in the plane are derived from it by "the product rule." The 
procedure is not more complicated in the general setup than for the plane. 

Consider then two arbitrary probability spaces, that is, we are given 
two sample spaces 6(1) and 6(2), two a':algebras U(1) and U(2) of sets in 
6(1) and 6(2), respectively, and probability measures P(U and P(2) defined 
on them. The combinatorial product (6(1), 6(2» is the set of all ordered 
pairs (X(I), X(2») where xli) is a point in 6(i). Among the sets in this product 
space we consider the "rectangles," that is, the combin~torial products 
(A(l), A(2») of sets A(i) E U(i). With sets of this form we wish to associate 
probabilities by the product rule 

(6.1) P{(A(l), A(2)} = P(l){A(l)} P(~){A(2)}. 
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Now sets which are unions of finitely many non overlapping rectangles 
form an algebra Uo, and (6.1) defines in a unique way a countably additive 
function on it. Accordingly, by the extension theorem there exists a unique 
probability "measure P defined on the smallest a-algebra containing all 
rectangles and such that the probabilities of rectangles are given by the producl 
rule (6.l). This smallest a-algebra containing all rectangles will be denoted by 
U(I) X U(2), and the measure will be called product measure. 

Of course, other probability measures can be defined on the product 
space, for example in terms of conditional probabilities. Under any 
circumstances the underlying a-algebra U of sets wiIi be at least as large 
as U(l) x U(2), and it is rarely necessary to go beyond this algebra. The 
following discussion of random variables is valid whenever the underlying 
algebra U IS given gy U = U(l) X U(2). 

The notion of random vaw:-iable (measu~abJe function) is relative to the 
underlying a-algebra and with our setup for product spaces we must dis
tinguish between random variables in the product space and those on 
6(1) and 6(2). The relationship between these three classes is fortunately 
extremely simple. If u and v are random variables on 6 n) and 6(2) we 
consider in the product space the function w which at the point (x(I) , X(2» 

takes on the value 

(6.2) 

We show that the class of random variables in the product space (6n >", 6(2» 
is the smallest class of finite-valued functions closed under pointwise passages 
to the limit and containing aI/linear combinations offunctions oftheform (6.2). 

To ~egin with, it is clear that each factor on the right in (6.2) is a random 
variable even when considered as a func,tion on the product space. It follows 
that w is a random variable, and hence the class of random variables in 
(6(I), 6(2» is at least as extensive as claimed. On the other hand, the 
random variables form the smallest class of functions that is closed under 
passages to the limit and contains all linear combinations of indicators of 
rectangles. Such indicators are of the form (6.2) and therefore the class of 

. random variables cannot be larger than claimed. 
The special case of the product of two spaces :R,m and :R,n with probability 

'measures F and G occurred indirectly in connection with Fubini's theorem 
(2.11) conce.rning repeated integrals. We can now state the more general 
theorem, which is not restricted to jtr. 

Fubini's theorem for product measures. For arbitrary non-negalil'e Baire 
functions 1.1: the integral of u with respect to the product measure equals the 
repeated integrals in (2.11). 
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(It is understood that the integrals may diverge. The t~eorem is obvious 
for simple functions and follows in general by the approximation procedure 
employed repeatedly.) The generalization to product spaces with three or 
more factors is too obvious to require comment. 

We turn to the problem of infinite sequences o/random variable-s, which we 
encountered in volume 1 in connection with unlimited sequences of Bernoulli 
trials, random walks, recurrent events, etc., and again in· chapter III in 
connection with normal stochastic processes. Nothing need be said when 
infinitely many random variables are defined on a given probability space. 
For example, the ,real line with the normal distribution is a probability space 
and {sin nx} is an infinite sequence of random variables on it. We are here 
concerned with the situation when the probabilities are to be defined in terms 
of the given random variables. More precisely, our problem is as follows. 

Let :R C() denote the space whose points are- infinite sequences of real 
numbers (Xl' X 2 , ••• ), (that is, :R C() is a denumerable combinatorial product 
or real lines). We denote the nth coordinate variable by Xn (that is, Xn is 
the function in :R ~ which at the point X = (x, X 2 , ••• ) assumes the value 
xn). We suppose that we are given the probability distributions for Xl" 
(Xl' X2), (Xi, X22 X3), • •• and wish to define appropriate probabilities 
in :R, C(). ' Needless to say, the given distributions must be mutually consistent 
in the sense that the distributions of (Xl"'" Xn) appear as marginal 
distributions for (Xl"'" Xn+l), and so on. 

Let us now formalize the intuitive notion of an "event determined by the 
outcome of finitely many trials." We agree to say that a set A in :R C() 

depends only on:'the first r coordinates ~f,l' there exists a Borel set Ar in 
:Rr such that X = (Xl' X 2, ••• ) belongs to "A iff (Xl' ... ,xr ) belongs to Ar• 

The standard situation in pro~ability is that the probabilities for such sets 
are prescribed, and we face the problem of extending this domain of definition. 
We state without proof the basic theorem derived (in slightly greater 
generality) by A. Kolmogorov in his now classical axiomatic foundation of 
probability theory (1933). It anticipated and stimulated the development of 
modern measure theory. 

Theorem 1. A consistent system of probability distributions for Xl' 
(Xl' X2), (Xl' X 2 , X3), • •• admits of a unique extension to a probability 
measure on U, the smallest a-algebra of sets in :R C() containing all sets 
depending only on finitely many coordinates.19 

The important point is that all probabilities are· defined by successive 
passages to the limit starting with finite-dimensional sets. Every set A 

19 The theorem applies more generally to products of locally compact spaces; for 
example, the variables XII may be interpreted as vector variables (points in ..1t'). 
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in U can be approximated by finite-dimensional sets in the following sense. 
Given £ > 0 there exists an n and a set An depending only on the first 
n coordinates and such that 

(6.3) P{A - A nAn} < £, 

In other words, the set of those points that belong to either A or An but 
not to both has probability < 2£. It follows that the sets A n can be ~ "0sen 
such that 

(6.4) 

Theorem 1 enables us to speak of an infinite sequence ofmutually independent 
random variables with arbitrarily prescribed distributions. Such sequences 
did in fact occur in volume 1, but we had to be careful to define the prob
abilities in question by specific passages to the limit, whereas theorem 1 
provides the desjrable freedom of mOl:on. This point is well illustrated by 
the following two important theorems due, respectively, to A. Kolmogorov 
(1933) and to E. Hewitt and L. 1. Savage (1955). They are typical for 
probabilistic arguments and playa central role in many contexts. 

Theorem 2. (Zero-or-one law for tail events.) Suppose that the variables 
X k are mutually independent and that for each n the event A is independent 
of20 Xi, ... ,Xn • Then either P{A} = 0 or P{A} = 1. 

Proof. In principle the variables Xk can be defined in an arbitrary 
probability space, but they map this space into the product space 3l C() in 
which they serve as coordindte variables. There is therefore no loss 
of generality in departing from the setup described in this section. 
With the notations used in (6.3) the sets A and An are independent 
and so the first inequality implies P{A} - P{A}P{A n } < E. Therefore 
P{A} = P2{A}. ~ 

Example. (a) The series 2:X n converges with probability zero or. one. 
Similarly, the set of those points where lim sup Xn = 00 has either prob
ability zero or one. ~ 

Theorem 3. (Zero-or-one law for symmetric events.) Suppose that the 
variables Xk are mutually independent and have a common distribution. 
If the set A is {nvariant under finite permutations of the coordinates21 then 
either P{A} = 0 or P{A} = I. 

20 1-.1ore precisely, A is independent of every eve!.. defined in terms of Xl"" , Xn • 

In other words, the indicator of A is a random var~able independent of Xl" .. , X". 
21 MOff precisely, if (aI' a2 • ... ) is a point of A and n1 <;.nd n~ ~,re two arbitrary 

integers it is supposed that A contains also the point obtained by exchanging anI and anz 

while leaving all other coordinates fixed. This condition extends automatically to permuta
tions involving k coordir.ates. 
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Proof. As in the last proof we use the X k as coordinate variables and 
refer to the sets An occurring in (6.3). Let Bn be the set obtained from 
An by reversing the first 2n coordinates and leaving the others fixed. By 
hypothesis then (6.3) remains valid also when An is replaced by Bn. It 
follows that the set of points belonging to either A or An n Bn but not to 
both has probability < 4E, and therefore 

(6.5) 

Furthermore An depends only on the first n coordinates and hence Bn 
depends only on the coordinates number n + 1, ... ,2n. Thus An and 
Bn are independent and from (6.5) we conclude again that P{A} = P2{A}. ~ 

Example. (b) Put Sn = Xl + ... + Xn and let A be the event 
{Sn Eli. o.} where I is an arbitrary interval on the line. Then A is in
variant under finite permutations. [For the notation see example 1 (a).] ~ 

7. NULL SETS. COMPLETION 

Usually a set of probability zero is negligible and two random variables 
differing only on such a null set are "practically the same." More formally 
they are called equivalent. This means that all probability relations remain 
unchanged if the definition of a random variable is changed on .. a null set, 
and hence we can permit a random variable not to be defined on a null set. 
A typical example is the epoch of the first occurrence of a recurrent event: 
with unit probability it is a number, but with probability zero it remains 
undefined (or is called 00). Thus we are frequently dealing with classes of 
equivalent random variables rather than with individual variables, but it is 
usually simplest to choose a convenient representative rather than to speak 
of equivalence classes. 

Null sets give rise to the only point where our probabilistic setup goes 
against intuition. The situation is the same in all probability spaces, but it 
suffices to describe it on the line. With our setup, probabilities are defined 
only for Borel sets, and in general a Borel set contains many subsets that are 
not Borel sets. Consequently, a null set may contain sets for which no 
probability is defined, contrary to the natural expectation that every subset 
of a null set should be a null set. The discrepancy has no serious effects and 
it is easily remedied. In fact, suppose we introduce the postulate: if A c B 
and P{B} = 0, then PtA} = O. It compels us to enlarge the a..;algebra U 
of Borel sets (at least) to the smallest a-algebra UI containing all sets of 
U and all subsets of null sets. A direct description is as foHows. A set 
/{ belongs to U1 iff it differs only by a null set22 from some Borel set AO, 

22 More precisely, it is required that both A - A n AU and AO - A n AO be contained 
in a null set. 
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The domain of definition can be extended from U to Ul simply by putting 
P{A} = P{AO}. It is almost trivial that this definition is unique and leads,to a 
completely additive measure on Ul' By this device we have obtained a 
probability space satisfying our postulate and in which the probabilities of 
Borel sets remain unchanged. 

The construction so described is called the Lebesgue completion (of the 
given probability space). This completion is natural in problems concerned 
with a unique basic probability distribution. For this reason the length of 
intervals on :R,l is usually completed to a Lebesgue measure which is not 
restricted to Borel sets. But the completion would invite trouble when one 
deals with families of distributions (for example with infinite sequences of 
Bernoulli trials with unspecified probability p). In fact, Ul depends on the 
underlying distribution, and so a random variable with respect to Ul may 
stop being a random variable when the probabilities are changed. 

Example. Let aI' a2, ... be a sequence of points on :R,l carrying prob
abilities PI, P2, . •. where 1; Pk = I. The complement of {a j } has prob
ability zero and so Ul contains all sets of :R,l. Every bounded function u 
is now a random variable with expectation 2. Pku(ak) but it would be 
dangerous to deal with "arbitrary functions" when the underlying distribution 
is not discrete. ~ 



CHAPTER V 

Probability Distributions in jlr 

This chapter develops the notion of probability distribution in the r
dimensional space :R,r. Conceptually the notion is based on the integration 
theory outlined in the last chapter, but in fact no sophistication is required 
to follow the development because the notions and formulas are intuitively 
close to those familiar from volume 1 and from the first three chapters. 

"The novel feature of the theoty is that (in contrast to discrete sample 
spaces) not every set carries a probability and not every function serves as 
random variable. Fortunately this theoretical complication is not noticeable 
iri practice be<:ailse we can' start from intervals and continuous functions, 
respectively, and restrict our attention to sets and functions that can be 
derived from them by elementary operations and (possibly infinitely many) 
passages to the limit. This delimits the classes of Borel sets and Baire 
functions': Readers interested in facts rather than logical connections need 
not worry about the precise definitions (given in chapter IV). Rather they 
should rely on their intuition and assume that all sets and functions are 
"nice." The theorems are so simple l that elementary calcuills should suffice 
for an understanding. The exposition is rigorous under the convention that 
the »:ords set and function serve as abbreviations for Borel set and Baire 
function. 

An initial reading should be restricted to sections 1-4 and 9. Sections 
5-8 contain tools and inequalities to which one may refer when occasion 
arises. The last sections develop the theory of conditional distributions 
and expectations more fully than required for the present volume where 
the results are used only incidentally for martingales in VI,ll and VII,9. 

1 It should be understood that this simplicity cannot be achieved by any theory restricted 
to the use of continuous functions or any other class of "nice" functions. For example, 
in U,(8.3) we defined a density l' by an infinite series. To establish conditions for l' to 
be nice would be ~edious and pointless, but the formula is obvious in simple cases and the 
use of Baire functions amounts to a substitute for a vague "goes through generally."
Incidentally, the few occasions where the restriction to Baire functions is not trivial will 
be pointed out. (The theory of convex functions in 8.b is' an example.) 
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1. DISTRIBUTIONS AND EXPECTATIONS 

Even the most innocuous use of the term random variable may contain 
an indirect - reference to a complicated probability space or a complex 
conceptual experiment. For example, the theoretical model may involve 
the positions and velocities of 1028 particles, but we concentrate our attention 
on the temperature and energy. These two random variables map the original 
sample space into the plane :R 2

, carrying with them their probability distri
butions. In effect we are dealing with a problem in two dimensions and the 
original sample space looms dimly in the background. The finite-dimensional 
Cartesian spaces jtr therefore represent the most important sample spaces, 
and we turn to a systematic study of the appropriate probability distributions. 

Let us begin with the line .RI. The intervals defined by a < x < band 
- /--l 

a < x <b will be denoted by a, b and a, b. (We do not exclude the 
limiting case of a closed interval reducing to a single point. Half-open 

-I -
intervals are denoted by a, b and a, b. [n one dimension all random 
variables are functions of the coordinate variable X (thai is, the function 
which at the point x assumes the value x). All probabilities are therefore 
expressible in terms of the distribution function 

(1.1 ) F(x) = P{X < x}, -oo<x<oo. 
----i 

In particular, I = a, b carries the probability P{/} = F(b) - F(a). 
The flexible standard notation P{ } is impractical when· we are dealing 
with varying distributions. A new letter would be uneconomical, and the 
notation PF { } to indicate the dependence on F is too clumsy. It is by 
far the simplest to use the same letter F both for the point function (1.1) 
and the corresponding interval function, and we shall write F{I} instead 
of Pt/}. In other words, the use of braces { } will indicate that the 
argument in F{A} is an interval or set, and that F appears as a function 
of intervals (or measure). When parentheses are used the argument in 
F(a) is a point. The relationship between the point function F( ) and 
the interval function F{ } is indicated by 

-I 
(1.2) F(:») = F{ - 00, x }, F{a, b} == F(b) - F(a). 

Actually the notion of the point function F(x) is redundant and serves 
merely for the convenience of analytical and graphical representation. 
The primary notion is the assignment of probabilities to intervals. The 
point function F( ) is called the distribution function of the interval 
function F{ }. The symbols F( ) and F{ } refer to the same thing 
and no confusion can arise by references to "'the probability distribution 
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F." One should get used to thinking in terms of interval functions or measures 
and using the distribution function only for graphical descriptions. 2 

Definition. A point function F on the line i$ a distribution function if 
(i) F is non-decreasing, that is, a < b implies F(a) < F(b) 

(ii) F is right continuous,3 that is, F(a) = F(a+) 
(iii) F( - (0) = 0 and F( (0) < 00. 

F is a probability distribution function if it is a distribution function and 
F( (0) = I. ,Furthermore, F is defective if F( (0) < 1. 

We proceed to show that every distribution function induces an assignment 
of probabilities to all sets on the line. The ~rst step consists in assigning 
probabilities to intervals. Since F is monotone, a left limit F(a-) exists 
for each point a. We define an interval function F{I} by 

1--1 
F{ a, b } = F(b) - F(a-), F{a, b} =,F(b-) - F(a) 

(1.3) --l I--
F{a, b } = F(b) - F(a), F{a, b} = F(b-) - F(a-). 

1--1 I---l 
For the interval a, a reducing to the single point F{ a, a } = F(a).:..- F(a-,-), 
which is the jump of F at the point a. (It will be seen presently that F is 
continuous" almost everywhere.") 

To show that the assignment of values (1.3) to intervals satisfies the 
requirements of probability theory we prove a simple lemma (which readers 
may accept as being intuitively obvious). 

Lemma 1. (Countable additivity.) If an interval I is the union of countably 
many non-overlapping intervals II' 12 , ••• , then 

(1.4) 
--l ----i 

Proof. The assertion is trivial in the special case I = a~ b and II = a, aI, 
--I I 

12 = aI' a2 , ••• , In = an_I, b. The most generaljinite partition of I = a, b 
is obtained from this by redistributing the endpoints ak from one sub
intervai to another, and so .the addition rule (1.4) holds for finite partitions. 

In considering the case of infinitely many intervals Ik it suffices to assume 

2 Pedantic care in the use of notations seems advisable for an introductory book, but it is 
~l()ped that, readers will not indulge in this sort of consistency and will find. the courage to 
write F(1) and F(x) indiscriminately. No confusion will result and it is (fortunately) 
quite customary in the best mathematics to use the same symbol (in particular 1 and =) 
0:1 the same page in several meanings. 

3 As usual we denote by [(a+) the limit, if it exists, of [(x) as x -- a in such a way 
that :c > a, and by 1(00) the limit of [(x) as x -- 00. Similarly for [(a-) and [( -00). 
This notation carries over to higher dimensions. 
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I closed. In consequence of the right continuity of the given distribution 
function F it is possible to find an open interval It containing Ik and such 
that 0 < F{It} - F{Ik} < € • 2-k for preassigned € > O. Now there exists 
a finite collection I:, ... ,Ik# covering I and hence 

1 n 

# # 
(1.5) F{I} < F{lkJ + ... + F{lkJ < F{Id + ... + F{In} + €. 

Thus 

(1.6) 

But the reversed inequality is also true since to each n there exists a finite 
partition of I containing II' . .. ,In. This concludes the proof. ~ 

As explained in IV,2 it is now possible to define 

(1.7) 

for every set A consisting of finitely or denumerably many disjoint intervals 
A k • Intuition leads one to expect that every set can be approximated by such 
unions of intervals, and measure theory justifies this feeling.4 Using the 
natural approximations and passages to the limit it is possible to extend 
the definition of F to all sets in such a way that the countable additivity 
property (1.7) is preserved. This extension is unique, and the resulting 
assignment is called a probability distribution or measure. 

Note on terminology. In the literature the term distribution is used loosely 
in various meanings, and so it is appropriate here to establish the usage to 
which we shall adhere. 

A probability distribution, or probability measure, is an assignment of 
numbers F{A} > 0 to sets subject to condition (1.7) of countable additivity 

and the norming F{ - 00, oo} = 1. More general measures (or mass distri
butions) are defined by dropping the norming condition; the Lebesgue 
measure (or ordinary length) is the most notable example. 

As will he recalled from the- theory of recurrent events in volume 1, we 
have sometimes to deal with measures attributing to the line a total mass 

p = F{ - 00, oo} < 1. Such a measure will be called defective probability 
measure with defect 1 - p. For stylistic claiityand emphasis we shall 
occasionally speak of proper probability distributions, but the adjective 
proper.is redundant. . 

The argument df a measurp m{A} is a set and is indicated by braces. 
With every bounded measure m there is associated its distributionfunction, 

I 
that is, a point function defined by m(x) = m{ - 00, x}. It will be denoted 
by the same letter with the argument in· parentheses. The dual use of the 

4 The convention that the words set and function serve as abbreviations for Borel set 
and Baire function should be borne in mind. 
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same letter can cause no confusion, and by the same token the term distri
bution may stand as abbreviation both for a probability distribution and its 
distribution function. ' 

In 1 ~ IX a random'variable was defined as a real function on the sample 
space, and we continue thi,s usage. When the line serves as sample space 
every real function becomes a random variable. The coordinate variable 
X is basic, and an other random variables can be expressed as functions of it. . 
The distribution function of the random variable u is defined by 
P{u(X) < x} and can be expressed in terms of the distribution F of the 
coordinate variable X. For example, X3 has the distribution function 

given by F(~;). 
A function u is called simple if it assumes only countably many values 

aI, a2 , • • •• If An denotes the set on which it equals an we define the 
expectation E(u) by 

(1.8) 

provided the series converges absolutely. In the contrary case u is said not 
to be integrable with respect to F. Thus u ha's an expectation. iff E(lul) 
exists, Starting from the definition (1.8) we define the expectation for any 
arbitrary bounded function u as follows. Cho~se € > 0, and denote by 
An the set of those points x at which (n-I)€ < u(x) < n€. With any 
reasonable definition of E(u) we must have 

(1.9) 

(The extreme members represent the expectations of two approximating 
simple functions q and ii such that Q < u < ii and ii - Q = €.) Because 
of the assumed ~oundedness of u the two series in (1.9) contain only finitely 
many non-zero terms, and their difference equals € ~ F{An} = €. Re
placing € by i€ will increase the first term in (1.9) and decrease the last. 
It is therefore not difficult to see that as € -+ 0 the two extreme members 
in (1.9) tend to the same limit, and this limit defines E(u). For unbounded 
u the' same procedure applies provided the two series in (I.9) converge 
absolutely; otherwise E(u) remains undefined. 

The expectation defined in this simple way is called the Lebesgue-Stieltjes 
integral of u with respect to F. When it is'desirable to emphasize the 
dependence of the expectatia.n on F the integral notation is preferable and 
we write alternatively 

(1.]0) f
+OO 

E(l~) = -00 u(x) F{dx} 

with x appearing as dummy variable. Except on rare occasions we shall 
be . concerned only with piecewise continuous or monotone integrands 
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such that the sets An will reduce to unions of finitely many intervals. The 
sums in (l.9) are then simple rearrangements of the upper and lower sums 
used in the elementary definition of ordinary integrals. The general 
Lebesgue-Stieltjes integral shares the basic properties of the' ordinary 
integral and has the additional advantage that formal operations and 
passages to the limit require less care. Our use of expectations will be limited 
to situations so simple that no general theory will be required to follow the 
individual steps. The reader interested in the theoretical background and 
the basic facts is referred to chapter IV. 

Examples. (a) Let F be a discrete distribution attributing weights 
PI' P2' . .. to the points ·a1 , a2, .. " Then clearly E(u) = ~ u(ak)Pk 
whenever the series converges absolutely. This is in agreement with the 
definition in 1; IX. 

(b) For a distribution defined by a continuous density 

(1.11) f
+OO 

E(u) = -00 u(x)f(x) dx 

provided the integral converges absolutely. For the general notion of 
density see section 3. ~ 

The generalization to higher dimensions can be described in a few words. 
In :R,2 a point x is a pair of real numbers, x = (Xl' x2 ). Inequalities 
are to be interpreted coordinate-wise;5 thus a < b means a1 < b1 and 
a2 < b2 (or "a lies southwest of b"). This induces only a partial ordering, 
that is, two points a and b need not stand in either of the two relations 
a < b or a >b. We reserve the word interval for the sets .defined by the 
four possible types of double inequalities a < x < b, etc. They are 
rectangles parallel to the axes which may degenerate into segments or points. 

The only novel feature is that the two-dimensional interval a, c with 
---t -/ 

a < b < c is not the union of a, band b, c. Corresponding to an interval 
function assigning the value F{l} to the interval I we may introduce its 

\ 

distribution function defined as before by F{x} = F{ - (f), x}, but an 
-l 

expression of F{a, b} in terms of this distribution function involves all four 
vertices of the interval. In fact, considering the two infinite strips parallel 

--l 
to the x2-axis and with the sides of the rectangle a, b as bases one sees 

-l 
immediately that F{a, b} is given by the so-calied mixed difference 

--l 

(l.12) F{a, b } = F(bb b2) - F(a1 , b2) - F(b1 , a2) + F(a1 , a2)· 

5 This notation was introduced in IlL5. 
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For a distribution function the right side is non-negative. This implies that 
F(XI' x2 ) depends monotonically on Xl and X2, but such monotonicity 
does not guarantee the positivity of (1.12). (See problem 4.) 

The limited value of the use of distribution functions in higher dimensions 
is apparent: were it not for the analogy with :R,I all considerations would 
probably be restricted to interval functions. Formally the definition of 
distribution functions in :R,I carries over to :R,2' if the condition of mono
tonicity (i) is replaced by the condition that for a S b the mixed diff..;rence 
in (1.12) be non-negative. Such a distribution function induces an interval 
function as in (1.3) except that again the mixed differences take over the role 
of the simple differences in :R,I. Lemma I and its proof remain valid,6 

A simple, but conceptually important, property of expectations is sometimes taken 
for granted. Any function u(X) = u(XI , X2) of the two coordinate variables is a random 
variable and as such it has a distribution function G. The expectation E(u(X» is now 
defined in two ways; namely, as the integral of u(x1"x2) with respect to the given 
probability in the plane, but also by 

(1.13) E(u) = f-:Y G{dy} 
in terms of the distribution function G of u. The two definitions are equivalent by the 
very definition of the former integral by the approximating sums IV,(4.3).7 The point 
is that the expectation of a random variable Z (if it exists) has an intrinsic meaning 
although Z may be considered as a function either on the original probability space IS 
or on a space obtained by an appropriate mapping of 6; in particular, Z itself maps IS 
on the line where it becomes the coordinate variable. 

From this point on there is no difference between the setups in jtl and 
:R,2. In particular, the definition of expectations is independent of the number 
of dimensions. 

To summarize formally, any distribution function induces a prob'ability 
measure on the a-algebra of Borel sets in, :R,T, and thus defines a probability 
space. Restated more informally, we have shown that the probabilistic 
setup of discrete sample spaces carries over without formal changes just as in 
the case of densities, and we have justified the probabilistic terminology 
employed in the first three chapters. If we speak of r random variables 

6 The proof utilized the fact that in a finite partition of a one-dimf!nsional interval 
the subintervals appear in a natural order from left to'right. An equally neat arrangement 

--l 
characterizes the checkerboard partitions of a two-dimensional interval a, b, that is, 

--I 
partitions into mn subintervals obtained by subdividing separately the two sides of a, b 
and drawing parallels to the axes through all points of the subdivisions. The proof of the 
finite additivity requires no change for such checkerboard partitions, and to an arbitrary 
partition there corresponds' a checkerboard refinement. The passage from finite to 
denumerable partitions is independent of the number of dimensions. 

7 A special case is covered by theorem 1 in 1; IX,2. 
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Xl' ... ,Xr it is understood that they are defined in the same probability 
space so that a joint probability distribution of (Xl' ... ,Xr ) exists. We are 
then free to interpret the Xk as coordinate variables io the sample space :Jlr . 

It is hardly necessary to explain the continued use of terms such as 
marginal distribution (see III,l and 1; IX,I), or independent variables. 
The basic facts concerning such variables are the same as in the discrete 
case, namely: 

(i) Saying that X and Yare independent random variables with (one
dimensional) distributions F and G means that the joint distribution function 
of (X, Y) is given by the products F(XI) G(X2). This statement may refer to 
two v'ariable's in a given probability space or may be an abbreviation for the 
statement that we introduce a plane with X and Y as coordinate variables 
and define probabilities by the product rule. This remark applies equally 
to pairs or triples of random variables, etc. 

(ii) If the m-tuple (Xl' ... , Xm) is independent of the n-tuple 
(Y I' ... , Y n) then u(X I ,·.·, Xm) and v(Y I' ... , Y n) are independent 
(for any pair of functions u and v). 

(iii) If X and Yare independent, then E(XY) = E(X) E(Y) whenever 
the expectations of X and Y exist (that is, if the integrals converge 
absolutely). . . 

The following simple result is frequently useful. 

Lemma 2. A probability distribution F is uniquely determined by the 
knowledge of E(u) for every continuous function u vanishing outside some 
finite interval. 

Proof. Let I be a finite open interval and v a continuous function that is 

positive in I and zero outside I. Then \7' vex) -~ 1 at each point x E I, 

and hence E( \7'0 -- F{l}. Thus the knowledge ,.of the expectations of our 
continuous functions uniquely determines the values F{I} for all open 
intervals, and these uniquely determine F. ~ 

Note 1.8 The~. Riesz representation theorem. In the preceding lemma the expectations 
were defined in terms of a given probability distribution. Often (for example, in the moment 
problem of VII,3) we start from a given functional, that is, from an assignment of values 
E(u) to certain functions. We inquire whether there exists a probability distribution F 
such that 

(1.14) 
(+00 

E(u) = J-oo u(x) F{dx }. 

It turns out that three evidently necessary conditions are also sufficient. 

8 This note treats a topic of conceptual interest but will not be used in the sequel. For an 
alternative approach see IV ~5. 
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Theorem. Suppose that to each continuous function u vani')hing outside a finite interval 
there corresponds a number E(u) with the following properties; (i) The functional is linear, 
that is, for all linear combination" 

E(clul + C2u2) = cIE(u1) + c2E(u2); 

(ii) it is positive, that is, u > 0 implies E(u) > 0; (iii) it has norm 1, that is, 0 ~ u ~ 1 
implies E(u) ~ 1, but for each £ > 0 there exists u such that 0 ~ u ~ 1 and 

E(u) > 1 - £. 

Then there exists a unique probability distribution F for which (1.14) is true. 

Proof. For arbifrary t and h > 0 denote by ze.h the continuous function of x that 
equals 1 when x ~ t, vanishes for x > t + h, and is linear in the intermediate interval 
t ~ x ~ t + h. This function does not vanish at infinity, but we can define E(Zt.h) by 
simple approximations. Choose a function lunl ~ 1 such that E(un ) is defined and 
un(x) = Zt.h(x) for Ixl < n. If m > n the difference um - un vanishes identically within 

the interval -n, n and from the fact that E has norm lone concludes easily that 
E(un-um ) -0. It follows that E(un) converges_to a finite-limit, and this limit is obviously 
independent of the particular choice of the approximating un' It is therefore legitimate to 
define E(Zt+h) = lim E(un). It is easily seen that even within this extended domain of 
definition the functional E enjoys the three properties postulated in the theor'em. 

Now put Fh(t) = E(Zt.h)' For fixed h this is a monotone function going from 0 to 1. 
It is continuous, because when 0 < ~ < h the difference Zt+6.h - Zt.h has a triangular 
graph with height ~/h, and hence Fh has difference ratios bounded by .1/h. As h - 0 
the functions Fh decreases monotonically to a limit which we denote by F. We show that 
F is a probability distribution. Obviously F is monotone and F( - co) = o. Furthermore 
F(t) > Fh(t-h) which implies that F(oo) = 1. It remains to show that F is continuous 
from the right. For given t and £ > 0 choose h so small that F(t) > Fh(t) - £. 

Because of the continuity of Fh we have- then for ~ sufficiently small 

F(t) > Fh(t) - £ > Fh(t+~) - 2£ > F(t+~) - 2£ 

which proves the right-continuity. _ 
Le~ u be a cont~nuous function vanishing outside a finite interval a, b. Ch.oose a = 

= ao < al < ... < an = b such that within each subinterval ak-I' ak the oscillation 
of u is less than. £. If h is smaller that the smallest among these intervals, then 

(1.15) 
n 

uh = ~ u(a~[za.t.h - zak_l.h) 
k=l 

is a piecewise linear function with vertices at the points ak and ak + h. Since u(ak) = 
= uh(ak) it follows that IU-Uhl S 2£, and hence IE(u)-E(Uh>1 ~ 2£. -But as h - 0 

(1.16) 
n I 

E(uh) - ~ u(ak)F{ak_I' ak} 
k=l 

and this sum differs from the integral in (1.14) by less than £. Thus the two sides in (1.14) 
differ by less than 3£, and hence (1.14) is true. ~ 

Note II. On independence and correlation. Statistical correlation theory goes back to a 
time when a formalization of the theory was impossible and the notion of stochastic 

! 
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independence was necessarily tinged with mystery. It was understood that the independ
ence of two bounded random variables with zero expectation implies E(XY) = o. but 
this condition was at first thought also to be sufficient for the independence of X and Y. 
The discovery that this was not so led to a long search for conditions under which the 
vanishing of correlations would imply stochastic indl!pendence. As frequently happens. 
the history of the problem and the luster of partial results easily obscured the fact that 
the solution is extremely simple by modern methods. The following theorem contains 
various results proved in the literature by laborious methods. 

Theorem. The random variables X and Yare independent iff 

(1.17) E(u(X) . v(Y» = E(u(X» . E(v(Y» 

for all continuous functions u and v vanishing outside a finite interval. 

Proof. The necessity of the condition is obvious. To prove the sufficiency it suffices 
to show that for every bounded continuous function E(w) agrees with the expectation 
of w with respect to a pair of independent variables distributed as X and Y. Now (1.17) 
states this to be the case whenever w is of the form w(X. Y) = u(X) v(Y). Every bounded 
continuous function w can be uniformly approximated9 by linear combinations of the 
form :E Ckuk(X) Vk(Y). and by passing to the limit we see the assertion to J?e true for arbi
trary bounded continuous w. ~ 

2. PRELIMINARIES 

This section is devoted largely to the introduciion of a terminology for 
familiar or obvious things concerning distribution functions in :RI . 

Just as in the case of discrete variables we define the kth moment of a 
random variable X by E(Xk), provided the integral exists. By this we Plean 
that the integral 

(2.1) 

converges absolutely, and so E(Xk) exists iff E(IXlk) < 00. The last 
quantity is called the kth. absolute moment of X (and is defined also for 
non-integral k > 0). Since Ixla < Ixlb + 1 when 0 < a < b, the existence 
of an absolute moment of orderb implies the existence of all absolute 
moments of orders a < b . 

. If X has an expectation m, the second moment of X - m is called the 
variance of X: 

(2.2) 

Its properties and significance are the same as in the discrete case. . In 
particular, if X and Yare independent 

(2.3) Var (X+ Y) = Var (X) + Var (Y) 

whenever the variances on the right exist. 

9 See problem 10 in VIU,lO. 
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[Two variables satisfying (2.3) are said to be un correlated. It was shown 
in 1; IX,8 that two dependent variables may be uncorrelated.] 

It will ,be recalled how often we have replaced a random variable X by 
the "reduced variabl~" X* = (X-m)/a where m = E(X} and a2 ":" 

Var (X). The physicist would say that X* is "expressed in dimensIonless 
units." More generally a change from X to (X-fJ)/a. with a. > 0 amounts 
to a change of the origin and the unit of measurement.' The distribution 
function of the new variable is given by F(rxx+fJ), and in many situations' 
we are actually dealing with Jhe whole class of distributions of this form 
rather than with an individual representative. For convenience of expression 
we introduce therefore 

Definition 1. Two distributions PI and F2 in :R,l are said to be of the same 
typeloif' F2(x) = Fl(a.x+fJ) with a. > O. We refer to a. as scale factor, fJ 
as centering (or location) constant. ' 

This definition permits the use of clauses such as "F is centered to zero 
expectation" or "centering does not affect the variance." 

A median ~ of a. distribution F is defined as a number such that F(~) > i 
but F(~-) < i. It is not necessarily defined uniquely; if F(x) = i for 

all x of an interval a, b then every such x is a median. It is possible 
to center a distribution so that 0 becomes a median. 

Except for the median these notions carryover to higher dimensions 
or vector variables of the form X = (Xl, ... , Xn ); the appropriate vector 
notation was introduced in- III,5, and requires no modification. The 
expectation of X is now a vector, the variance a matrix. 

The first things one notices looking at the graph of a distribution function 
are the discontinuities and the intervals of constancy. It is frequently 
necessary to say that a point is not in an interval of constancy. We introduce 
the following convenient terminology applicable in all dimensions. 

Definition 2. A point x is an atom if it carries a positive mass . . It is a 
point of increase of F iff F{I} > 0 for every open interval I containing x. 

The distribution F is concentrated on the set A if the complement A' 
has probability F{A'} = O. 

The distribution F is atomic if it is cOllcentrated on the set of its atoms. 

Example. Order the rationals in 0,-1 in a sequence r l , r 2 , • •• with 
increasing denominators. Let F attribute probability 2-k to r k • Then F 
is purely atomic. Note, however, that every point of the closed interval 
f--I 
0, 1 is a point of increase of F. ~ 

10 The notion was introduced by Khintchine who used the German term Klasse. but 
in English "a class of functions" has an established meaning. 
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Because of the countable additivity (1.7) the sum of the weights of the 
atoms cannot exceed unity and so at most one atom'carries a weight >t, at 
most two atoms carry weights >1, etc. It is therefore possible to arrange 
the atoms in a simple sequence aI, a2, . .. such that the corresponding 
weights decrease: PI > P2 > .. '. In other words, there exist at most 
denumerably many atoms. 

A distribution without atoms is called continuous. If there are atoms, 
denote their weights by PI, P2, ... and let p = ~ Pk > ° be their sum. Put 

(2.4) 

the summation extending over all atoms in the interval - 00, x. Obviously 
Fa is again a distribution function, and it is called the ato,mic component 
of F. If P = I the distribution F is atomic. Otherwise let q = 1 - p. 
It is easily seen that [F -pFa1/q = Fe is a continuous dlstribution, and so 

(2.5) 

is a linear combination of two distribution functions of which Fa is atbmic, 
Fe continuous. If F is atomic (2.5) is true with p = I and Fe arbitrary; 
in the absence of atoms (2.5) holds with P = 0. We have thus the 

Jordan decomposition theorem. Every probability distribution is a mixture 
of the form (2.5) of an atomic and a continuous distribution; here p > 0, 
q ~ 0, p + q = 1. 

Among the atomic distributions there is a class which sometimes encumbers 
simple formulation by trite exceptions. Its members differ only by an 
arbitrary scale factor from distributions of integral-valued random variables, 
but they occur so often that they deserve a name for reference. 

Definition 3. A distribution F in :R,I is arithmetic11 ifit is concentrated on a 
set of points of the form 0, ±A., ±2A., . . .. The largest A. with this property 
is called the span of F. 

3. DENSITIES 

The first two chapters were devoted to probability distributions in :J{,I 

such that 

(3.1) F{A} = L 97(x)"dx 

11 The term lattice distribution is, perhaps, more usual but its usage varies: according 
to some authors a lattice distribution may be concentrated on a set of points a, a±A., 
~±2A., ... with a arbitrary. (The binomial distribution with atoms at ± 1 is arithmetic 

,with span 1 in our terminology, but a lattice distribution with span 2 according to the 
alternative definition..) 
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for all intervals (and. therefore all sets). The distributions of chapter III 
are of the same form, the integration being with respect to the Lebesgue 
measure (area or volume) in jlT. If the density qy in (3.1) is concentrated on 

the interval 0, 1 then (3.1) takes on the form 

(3.2) F{A} = L qy(x) U{dx} 

where U stands for the uniform distribution in 0, 1. The last formula 
makes sense for an arbitrary probability distribution U, and whenever 

F{ - 00, oo} = 1 it defines a new probability distribution F. In this case we 
shall say that qy is the density of F with respect to U. 

In (3.1) the measure U is infinite whereas in (3.2) we have U{ ~oo, oo} = 
= 1. The difference is not essential since the integral in (3.1) can be broken 
up into integrals of the form (3.2) extended over finite intervals. We shall 
use (3.2) only when U is either a probability distribution or the Lebesgue 
measure as in (3.1) but the following definition is general. 

Definition. The distribution F is absolutely.continuous with respect to the 
measUre U if it .is of the form (3.2). In this case qy is called a density 12 of 
F l-vith respect to U. 

The special case (3.1) where U is the Lebesgue measure is of course the 
most important and we say in this case that qy is an "ordinary" density. 

We now introduce the abbreviation 

(3.3) F{dx} = qy(x) U{dx}. 

This is merely a shorthand notation to indicate the. validity of (3.2) for all 
sets and no meaning must be attached to the symbol dx. With this notation 
we would abbreviate (3.1) to F{dx} = qy(x) dx and if U has an ordinary 
density u then (3.2) is the same as F{dx} = qy(x) u(x) dx. 

Examples. (a) Let U be a probability distribution in :J{,1 with second 
moment m 2• Then 

F{dx} = 1.. x 2 U{dx} 
m2 

is a new probability distribution. In particular, if U is the uniform 

distribution in 0, 1 then F(x) = x3 for 0 < x < 1, and if U has density 
e-X (x > 0) then F is the gamma distribution with ordinary density 
ix2e-X

• 

(b) Let U beatomic,attachingweights Pl,P2, ... to the atoms aI, a2,··· 
(where L Pk = 1). A distribution F has a density qy with respect to U iff 

12 In measure theory rp is called a Radon-Nikodym derivative of F with respect to U. 
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it is purely atomic and its atoms are among aI, a2 , • • •• If F attributes 
weight qj to (Ij the density qy is given by qy(ak) = qk/Pk' The value of ffJ 
at other points plays no role and it is best to leave qy undefined except at 
the atoms. ~ 

In theory the integrand qy in (3.2) is not uniquely determined, for if N 
is a set such that U{N} = 0 then qy may be redefined on N in an arbitrary 
manner without affecting. (3.2). However, this is the only indeterminacy 
and a density is uniquely determined up to values on a null set.I3 In practice 
a unique choice is usually dictated by continuity conditions, and for this 
reason one speaks usually of "the" density although "a" density would be 
more correct. 

For any bounded function v the relation (3.3) implies obviously14 

(3.4) vex) F{dx} = v(x)qy(x) [{dx}. \ 

In particular , if -q:; is bounded away from .0 we can choose v = qy-I to 
obtain the inversion formula for (3.2): 

(3.5) 
1 

U{dx} = - F{dx}. 
qy(x) 

A useful criterion for absolute continuity is contained in a basic theorem 
of measure theory which we accept without proof. 

Randob-Nikodym theorem. 15 F is absolutely continuous with respect to U 

iff 
(3.6) F{A} = 0 whenever U{A} =·0. 

13 In fact, if both fIJ and fIJI are densities of F with respect to . U consider the set A 
of all points x such that--,.q>(x) > fIJI (X) + €. From 

F{A} = L '1'("') U{dz} = L'I"("') U{dz} 

it follows that U{ A} = 0, and since this holds for every € > 0 we see that fIJ(x) = fIJI (x) 
except on a set N such that U{N} = O. 

14 Readers who feel uneasy about the new integrals should notice that in the case of 
continuous densities (3.4) reduces ~o the familiar substitution rule for integrals. The 
following proof in the general case ~ses a standard argument applicable in more general 
situations. Formula (3.4) is trivial when v is simple, that is, assumes only finitely many 
values. For every bounded v there exist two simple functions of this nature such that 
~ < v <v and v -:... £ < €, and so the validity of (3.4) for all simple functions implies its 
truth in general. 

15 Often called Lebesgue-Nikodym theorem. The relation (3.6) may be taken as a 
definition of absolute continuity, in which case the theorem asserts the existence of a density. 
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This expression may be rephrased by the statement that U-null sets 
are also F-null sets. We give an important corollary although it wHI not be 
used explicitly in this book. 

Criterion. F is absolutely continuous with respect to U iff to each €> 0 
there corresponds a ~ > 0 s,uch that for any collection of non-overlapping 
intervals II, ... , In 

n n 

(3.7) ~U{Ik} < ~ implies 2 F{Ik} < €, 
1 1 

An important special case arises when 

(3.8) F{I} < a . U{I} 

for all intervals. Then (3.7) is trivially true with ~ = E/a, and it is easily. 
seen that in this case F has a density qJ with respect to U such that qJ < a. 

*3a. Singular Distributions 

The condition (3.6) of the Radon-Nikodym theorem leads one to the 
study of the extreme counterpart of absolutely continuous distributions. 

Definition. The probability distribution F is singular with respect to U if 
it is concentrated on a set N such that U{N} = O. 

The Lebesgue measure U{dx} = dx plays a special role and the word 
"singular" without further qualification refers to it. Every atomic distribution 
is singular with respect to dx, but the Cantor distribution of example I, II (d) 
shows that there exist continuous distributions in :J{,l that are singular with 
respect to dx. Such distributions are not tractable by the methods of calculus 
and explicit representations are in practice impossible. For analytic purposes 
one is tp.erefore forced to choose a framework which leads to absolutely 
continuous or atomic distributions. Conceptually, however, singular 
distributions play an important role and many statistical tests depend on their 
existence. This situation is obscured by the cliche that "in practice" singular 
distributions do not occur. 

Examples. (c) Bernoulli trials. It was shown in example I,II(c) that 
the sample space of sequences SS'" F· " can be mapped onto the unit 
interval by the simple device of replacing the symbols Sand F by 1 and 0, 
respectively. The unit interval then becomes the sample space, and the 
outcome of an infinite sequence of trials is represented by the random 
variable Y = I2-k Xk where the Xk are independent variables assuming 
the values I and 0 v.'ith probabilities p and q, Denote the distribution of 
Y by Fv' For symmetric triab F} is the uniform distribution and the 
model becomes attractive because ,)(its simplicity. In fact, the equivalence 

'" Although conceptually of great importance, singular distributions appear in this 
book only incidertaJly. 
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of symmetric Bernoulli trials with "a random choice of a point in 0, I" 
has been utilized since the beginnings of probability theory. Now by the law 
oflarge numbers the distribution F'J, is concentrated on the set Np consisting 
of points in whose dyadic expansion the frequency of the digit 1 tends to p. 
When p ¥= ex the set Nrz has probability zero and hence the distributions FfJ 
are singular with respect to each other; for p ¥=! the distribution F1) is 
singular with respect to the uniform distribution dx. An explicit representa
tion of F1) is impractical and, accordingly, the model is not in common use 
when p ¥=!. Two points deserve attention. 

First, consider what would happen if the special value p =! presented 
a particular interest or occurred frequently in applications. We would 
replace the dyadic representation of numbers by triadic expan~ions and 
introduce a new scale such that now F! would coincide with the uniform 
distribution. "In practice" we would again deal only with absolutely 
continuous distributions, but the reason for this lies in our choice of tools 
rather than in the nature of things. 

Second, whether a coin is,. or is not, biased can be tested statistically 
and practical certainty can oe reached after finitely many trials. This is 
possible or;tly because what is likely under the hypothesis p = ! is extremely 
unlikely under' the hypothesis p = 1. A little reflection along these lines 
reveals that the possibility of a decision after finitely many trials is due to 
the fact that F1) is singular with respect to Fi (provided p ¥= t). The 
existence of singular distributions is therefore essential to statistical practice. 

(d) Random directions. The notion of a unit vector in :It 2 with random 
direction was introduced in I,10. The distribution of such a vector is 
concentrated on the unit circ1e and is therefore singular with respect to the 
Lebesgue measure (area) in the plane. One might object that in this case the 
circle should serve as sample space, but practical problems sometimes 
render this choice impossible. [See example 4(e).] ~ 

Lebesgue decomposition theorem. Every probabilfy distribution F is a 
mixture of the form 

(3.9) F = P . Fs + q . Fac 

(where p > 0, q > 0, p+q = 1) of two probability distributions such ~hat 
}~ is singular and Fac absolutely continuous with respect to a given 
measure U. 

The Jordan' decomposition (2.5) applies to Fs and hence F can be 
written as a mixture of three probability distributions of which the first 
is atomic, the second absolutely continuous with respect to U{dx} , the 
third continuous but singular. 
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Proof. To simplify the language a set N with U{N} = 0 will be called 
nullset. Let p be the least upper bound (the sup) of F{N} (or all nullsets 

. . 1 . 
there exists a nullset N n such that F{N n} > p - -. Then 

. n 
N. To each n 

1 
F{A} <~. for any null set A in the complement. N:. For the union 

N = U Nn this implies U{N} = 0 and F{N} = p, and hence no nullset 
in the complement N' can carry positive probability. 

If p = 1 it follows that F. is singular, whereas p = 0 means that F 
is absolutely continuous. When 0 < p < 1 the assertion holds with the 
two probability distributions defined by 

(3.10) p. Fs{A} = F{AN}, q . Fac{A} = F{AN'}. 

4. CONVOLUTIONS 

It is difficult to exaggerate the importance of convolutions in many 
branches of mathematics. We shall have to deal with convolution in two 
ways: as an operation between distributions and as an operation between 
a distribution and a continuous function. 

For definiteness we refer explicitly to distributions in jp, but with the. 
vector notation of section 1 the formulas are independent of the number of 
dimensions. The definition of convolutions on a circle follows the pattern 
described in II,8 and requires no comment. (More general convolutions 
can be defined on arbitrary groups.) 

Let F be a probability distribution and qy a bounded point function. 
(In our applications qy will be either continuous or a distribution function.) 
A new function u is then defined by 

(4.1) u(x) = f:: qy(x-y) F{dy}. 

If F has a density f (with respect to dx) this reduces to 

(4.2) u(x) = f:: qy(x-Y)f(y)·dy.~· 
Definition t. The convolution of a function qy with a probability distri

bution F is the function defined by (4.1). It will be denoted by u = F * qy. 
When F has a density f we write alternatively z1 = f * qy. 

Note that the order of the terms is important: the symbol fP * F is 
in general meaningless. On the other hand, (4.2) makes sense for arbitrary 
integrable f and qy (also if f is not non-negative), and the symbol * is 
used in this generalized sense. Needless to say, the boundedness of qy was 
assumed only for simplicity and is not necessary. 
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Examples. (a) When F is the uniform distribution in . 0, a then 

(4.3) u(x) = a-I ex qy(s) ds. 
Jx-a 

It follows that u is continuous; if qy is continuous u has a continuous 
derivative, etc. Generally speaking u will behave better than q;~ and so 
the convolution serves as smoothing operator. 

·(b) The convolution formulas for the exponential and the uniform 
distributions [I,(3.6) and 1,(9.1)] are special cases. For examples in !Jl2 see 
1II,(1.22) and problems 15-17 of chapter III. ~ 

. Theorem 1. If qy -is bounded and continuous, so is u = F * qy; if qy is a 
probability distribution junction, so is u. 

Proof. If qy is bounded and co'ntinuous then u(:t+h) -+ u(x) by the 
dominated convergence principle. For the same reason right-continuity 
of q; implies right-continuity of u. Finally, if qy goes monotonically from ° to 1 tl~e same is obviously true of u. ~ 

The next theorem gives an interpretation of F * 'qy when qy is a distribu
tion function. 

Theorem 2. Let X and y' be independent random variables 'fVith distri-
butions F and G. Then . 

(4.4) P{X + Y < t} = J:: G,(t-x) F{ dx}. -

Proof. I6 Choose E > ° and denote by In the interval nE < x «n+ I)E; 
here n = O,± 1, .. " The event {X + Y < t} occurs if X:E In-I, 
Y < t - nE} for some n. The latter events are mutually exclusive, and as 
X and Yare independent we have therefore 

(4.5) 

On the right we have the i'ntegral of the step function G£ assuming in In the 
value G(t~nE). Since G£(y) < G (t+E-y) we have 

(4.6) P{X + Y < t} < f:: G(t+E-X) F{dx}. 

The same argument leads to the reversed inequality with E replaced by 
-E. Letting E -+ 0 we get (4.4). ~ 

16 (4.4) is a special case of FlJbini's theorem IV,(2.11). The converse of theorem 2 is false: 
we saw in II,4(e), and in problem 1 ofIU,9, t.hat in e..xceptional cases formula (4.4) may hold 
for a pair of dependent variables X, Y. 
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Example. (c) Let F and G be concentrated on the integers 0, 1,2, ... 
and denote the weights of k by Pk and qk' The integral in (404) then reduces 
to the sum I G(t-k)Pk' This is a function vanishing for t < 0 and 
constant in each interval n -1 < t < n. The jump at t = n equals 

(4.7) 
n 

'2,qn-kPk = qnPo + qn-IPI + ... + qoPn 
k=O 

in agreement with the convolution formula 1; XI,(2.l) for integral-valued 
random variables. ~ 

Each of the preceding theorems shows that for two distribution functions 
the convolution operation F * G yields a new distribution function U. 
The commutativity of the addition X + Y implies that F * G = G * F. 
A perfect system m·ight introduce a new symbol for such convolutions 
among distribution functions, but this would hardly be helpful. l7 Of course, 
one should think of U as an interval function or measure: for each interval 

I = a, b obviously 

(4.8) 

where, as usual, 1- y denotes the interval a-y, b-y. (This formula 
automatically carries over to arbitrary sets.) Because of the commutativity 
the roles of F and G in (4.8) may be interchanged. 

Consider now three distributions FI , F2 , Fa. The a~sociat.ive law of 
addition for random variables implies that (FI * F2) * F3 = Fl * (F2 * F3) 

so that we can dispense with the parentheses and write Fl * F2 * Fs" We 
summarize this in theorems 3 and 4. 

Theorem 3. Among distribu.tions the conlJoilf!ion operation * IS com
mutative and associative. 

17 In other words, the symbol A * B is used when the integration is with respect to the 
measure A. This convolution is a point function or measure accDrding as B is a point 
function [as in (4.1)J or a measure [as in (4.6)J. The asterisk • is used for an operation 
between two functions, the integration being with respect to Lebesgue measure. Tll our 
context this type of convolution is restricted almo~t exclusively to probability densitics. 

A more general definition of a convolution between two function$ may be defined by 

('+oo 

[ ... g(x) = J-oo [(x -Y),;'"(Y) m{dy} 

where m stands for an arbitrary measure. Sums of the form (4.7) represent the special 
case when m is concentrated on the positive integers and attributes unit weight to each. 
In this sense the use of the asterisk for the convolutions between. sequences in 1; XI,2 
is consistent with our present usage. 



146 PROBABILITY DISTRIBUTIONS IN :R,r VA 

Theorem 4. If G is continuous (= free of atoms), so is U = F * G. If G 
has the ordinary density f/J, then U has the ordinary density u given by (4. I) 

Proof The first assertion is contained in theorem 1. If cp is the density 
of G then an integration of (4.1) over the interval I leads to (4.8), and so 
u is indeed the density of the distribution . U defined by (4.8). ~ 

It follows in particular that ~f F and G have densities 1 and g, then 
the convolution F * G has a density h = 1 * g given by 

(4.9) h(x) = f~:I(X-Y) g(y? dye 

In general h will have much better smoothness properties than either 1 or g. 
(See problem 14.) 

Sums Sn = Xl + ... + Xn of n mutually independent random vari
ables with a common distribution F occur s6 frequently that a special 
notation is in order. The distri~)Ution' of Sn is the n-fold convolution 01 F 
with itself It will be denoted by F"*. Thus 

(4.10) FI* = F, F(n+1) * = Fn * * F 

A sum with no terms is conventionally interpreted as 0, and for consistency 
we define po * as the atomic distribiltion concentrated at the origin. Then 
(4.9) holds also for n . O. 

J~ F has a density 1 then. Fn * has the density 1 * 1 * ... * 1 (n times). 
We denote it by In*. These notations are consistent :with the notation 
~ntroduced in 1,2. 

Note. The following examples show that the convolution of two singular distributions can 
have a continuous density. They show also that an effective calculation of convolutions 
need not be based on the defining formula. 

Examples. (d) The uniform distribution in Q,1 is the cOllvolution of two Cantor-type 
singular distributions. In fact, let Xl' X2, ••• be mutl!ally independent random. variables 
assuming the values 0 and 1 with probability!. We saw in example 1,11 (c) that the variable 
X = I2-k Xk has a uniform distribution. Denote the contributions of the even and odd 
terms by U and ,V, respectively. Obviously U and V are independent and X = 
= U + V. The uniform distribution is therefore the convolution of the distributions of 
U and V. But obviously U has the same distribution as 2V, and the variable V differs 
only notationally from the variable i Y of example I,ll (d). In other words, the dis
tributions of U and V differ only by scale factors from the Cantor distribution of that 

example. 
(e) Random r~· 'tors ill ~.2. The distribution of a linit vector with random dire-:tion (see 

1,10) is concentrated on the unit circle and therefore singular with respect to the Lebesgue 
~easure in the plane. Nevertheless, the resultant of two independent vectors has a length 

2 1 -
L which IS a random variable with the densiTy - concentrated on 0, 2. In fact, 

7T V 4-r2 

by the law of the cosines L = v2 - 2 cos w = j2 sin twl where w is the angle between 
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the two vectors. As fro is distributed .uniformly in 0, 11 we have 

(4.11) 
, 2 

P{L S r} = P{12 sin leo 1 S r} = - arc sin fr, 

which proves the assertion. (See problem 12.) 

4a. Concerning the Points' of Increase 

11 

147 

0<r<2 

It is necessary here to interrupt the exposition in order to record some elementary facts 
concerning the points of increase of F * G. The first lemma is intuitively obvious, whereas 
the second is of a technical nature. It will be used only in renewal theory, and hence 
indirectly in the theory of random. walks. 

Lemma 1. If a and b are points of increase for the distributions F and G, then a + b 
is a poilll of ilJcrease for F * G. If a and b are atoms, the same is true of a + b. Further-
more, all atoms of F * G are of this form. . 

Proof. If X and Yare independent then 

P{lX+Y-a-bl < e} ~ P{IX-al < Ie}' P{IY-bl < le}. 

The right side is r" 'Sitive for every e > 0 if a and b are po!nts of increase, arid so 
a + b is again a point of increase. 

Denote by Fa and Ga the atomic components of F and G in the Jordan decom
position (2.5). The atomic component of F * G is obviously identical with the convolution 
Fa * Ga, and hence all atoms of F * G are of the form a + b, where a and b are 
atoms of F and G, respectively. ~ 

The intrinsic simplicity of the next lemma suffers by the special role played on one hand 
by arithmetic distributions, on the other hand by distributions of positit1e variables. 

Lemma 2. Let F be a distribution in jtl and I: the set formed by the points of increase 
of F, F2*, F3*, .... 

(a) If F is not concentrated on a haif-axis then I: is dense in - ex: , 00 for, F not 
arithmetic, and I: = {o, ±)., ±2)., ... } for F arithmetic with span ) .. 

t-- . 
(b) Let F be concentrated on 0, ~ but not at the origin. If F is not arithmetic Ihen 

:E is "asymptotically dense at 00" i.'I the sense that for given e > 0 and % '''ufficiently 

large the interval %, %+e contains points of I:. If F is arithmetic with span ). then I: 
contains all points n). for n sufficiently large. 

Proof. Let 0 < a < b be two points in the set I: and put h = b - a. We distinguish 
two cases: 

(i) For each e > 0 it is possible to choose a, b such· ]at " < e. 
(ii) There exists a IS > 0 such that II >0 for all possible choices. 
Let In denote the interval na < x ~ nb. If neb - a) > a this interval contains 

na, (n + l)a as proper subinterval, and hence every point x > Xo = a2/(b - a) belongs 
to at least one among the intervals 11 .12"." By lemma I the n + 1 points na + kh, 
k = 0, ... ,n, belong to:E, and they partition In into n subintervals of length h. 
Thus every poi~t x > Xo is at a distmce ~h/2 from a point of :E. 

In the situation of case (i) this implies that :E is asymptotically dense at + 00. If then 
1--

F is concentrated on 0, 00 there is nothing to be proved. Otherwise let -c < 0 be a 
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point of increase of F. For arbitrary y and n sufficiently large the interval 

nc + y < x < nc + y + € 

V.5 

contains a point s of ~. Since s - nc again belongs to ~ it follows that every interval 
of length E contains some points of ~, and thus ~ is everywhere dense. 

In the situation of case (ii) we may suppose that a and b were chosen such that h < 26. 
It follows then that the points na + kh exhaust all points of. ~ within In' Since (n+ 1)a 
is among these points this means that all points of ~ within In are multiples of h. Now 
let c be an arbitrary (positive or negative) point of increase of F. For n sufficiently large 
the interval In contains a point of the form kh + c, and as this belongs to ~ it follows 
that c is a multiple of h. Thus in case (ii) the distribution F is arithmetic. ~ 

A special case of this theorem commands interest. Every number x > 0 can be 
represented uniquely in the form x = m + ~ as the sum of an integer m and a number 
o ~ ~ < 1. This ~ is called the fra~tional part of x. Consider now a distribution F 
concentrated on the two points -1 and ex > O. The set ~ contains all points of the form 
nex - m and hence the fractional parts of ex, 2ex, . . .. This F is arithmetic if ex = p/q 
where p and q are positive integers without common diyisors, and in this case the span 
of F equals l/q. We have thus the following corollary (to be sharpened in the equi
distribution. theorem 3 of VIII, 7). 

Corollary. If ex > 0 is an irrational number the set formed by the fractional parts of 

ex, 2ex, 3ex, . .. is dense in 0, 1. 

5. SYMMETRIZATION 

If the random variable X has the distribution F we shall denote the 
distribution of -X by -F. At' points 'of continuity we have 

(5.1) -F(x) = 1 - F( -x) 

'and this defines -F uniquely. The distribution F is called symmetric if 
-F = F. [When a density I exists this means that I( -x) = f(x).] 

Let Xl and X2 be independent with the common distribution F. Then 
Xl - X2 has the symmetric distribution of given by 

(5.2) 

Using the symmetry property °F(x) = 1 - °F( -x) it is readily seen that 

(5.3) i+OO 

°F(x) = -00 F(x+y)F{dy}. 

We shall say that OF is obtained by symmetrization of F. 

Examples. (a) Symmetrization of the exponential leads to the bilateral 

exponential [II,4(a)]; the uniform distribution on 0, 1 leaqs to the triangular 
distribution T2 of 11,(4.1). ' 

(b) The distribution with atoms of weight I at ± 1 is symmetric, but not 
the result of a symmetrization procedure. 
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(c) Let F be atomic, attributing weights Po, Ph '. .. to 0, 1, . . .. The 
symmetrized distribution of is atomic and the points ±n carry the weight 

(5.4) 
00 

qn =:2PkPk+n, 
k=O 

When F is the Poisson distribution we get for n > 0 

00 (Xn+2k 
qn = e-21X :2 = e-21X In(2(X) 

k=O k!(n+k)! 
(5.5) 

where In is the Besselfunction defined in !I,(7.l). (See problem 9.) 

Many messy arguments can be avoided by symmetrization. In this 
connection it is important that the tails of F and of are of comparable 
magnitude, a statement made more precise by the following inequalities. 
Their meaning appears clearer when expressed in terms of random variables 
rather than the distribution itself. 

Lemma 1. Symmetrization inequalities. If Xl and X2 are independent 
and identically distributed, then for t > 0 

(5.6) 

If a >0 is chosen so that P{Xi < a} > p and also P{Xi > -a} > p, 
then 

(5.7) 

In particular, if 0 is a median for Xi 

(5.8) 

Proof. The event on the left in (5.6) cannot occur unless either IXII > it 
or IX2 1 > it and hence (5.6) is true. The ev~nt on the left in (5.7) occurs· 
if Xl > t + a, X2 < a, and also if Xl < - t - a and X2 > -a. This 
implies (5. 7). ~ 

Symmetrization is frequently used for the estimation of sums of independ
ent random variables. In this connection the following inequality is 
particularly useful. 

Lemma 2. If X2,.·., Xn are independent and have symmetric distri
butions then Sn = Xl + .. , + Xn has a symmetric distribution and 

(5.9) 

If the X j have a common distribution F then 

(5.10) 
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Proof. Let the random variable M equal the first term among Xl' ... , Xn 
that is greatest in absolute value and put T = Sn - M. The pair (M, T) is 
symmetrically distributed in the sense that the four combinations (±l\-I, ± T) 
have the same distribution. Clearly . 

(5.11) P{M > t} < P {M > t, T ~ O} + P{M > t, T < O}. 

The two terms on the right have equal probabilities, and so 

(5.12) P{S > t} = P{M + T > t} > P{M > t, T > O} > !P{M > t} 

which is the same as (5.9). 
(b) To prove (5.10) note that at points of continuity 

(5.13) P{Max IXil < t} = (F(t) - F( - t))n < e-n[l-FW+F(-t)] 

This implies (5.10) because 1 - x < e-Z when 0 < x < 1. 

6. INTEGRATION BY PARTS. EXISTENCE OF MOMENTS 

The familiar formula for integration by parts can be used also for arbitrary 
expectations in 9V. If u is boulJded and has a continuous derivative u', then 

(6.1) 1>+u(>:) F{dx} = u(b) F(b) ~ u(a) F(a) - fu'(X) F(x) dx. 

Proof. A simple rearrangeme~t reduces (6.1) to the form 

(6.2) f.>+[u(b)-~(X)l F{dx} - fU'(X)[F'(X)-F(a)] dx = O. 

~ 

Suppose lu'l < M . and partition a, b into congruent intervals It of 
length h. It is easily seen that the contribution of It to the left side in (6.2) 
is in absolute value less than 2MhF{lt}. Summing over k we find that the 
left side is in magnitude <2Mh, which can be made as small as we please. 
Thus the left side in (6~2) is indeed zero. ~ 

As an application we derive a frequently used formula [generalizing 
1; XI,(1.8)]. 

Lemma 1. For any oc > 0 

(6.3) J.ex) rr ·F{dx} = ocJ.ex) rr- I [1-F(x)] dx 
o . 0 

in the sense that if one side converges so does the o/her. 

Proof. Because of the infinite interval of integration (6.1) does not apply 
directly, but for every b < 00 we have after a trivial rearrangement 

(6.4) ib
+ J.b o :If F{dx} =-bcx[l-F(b)] + oc 0 x«-l[l-F(x)] dx. 
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Suppose first that the integral on the left converges as b -+ 00. The contri. 

bution of b, 00 to the infinite integral is >ba[l-F(b)], and this quantity 
therefore tends to zero. In this case the passage to the limit b -+ 00 leads 
from (6.4) to (6.3). On the other hand, the integral on the left is smaller 
than the integral on the right and hence the convergence of the second entails 
the convergence of the former, and hence (6.3). ~ 

An analogue to (6.3) holds for the left tail. Combining the two formulas 
we get 

Lemma 2. The distribution F possesses an absolute moment of order 

(X > 0 iff IxICX-1[1 - F(x) + F( -x)] is integrable over 0, 00. 

As an application we prove 

Lemma 3. Let X and Y be independent random variables, and S = X+ Y. 
Then E(ISI CX) exists iff both E(IXICX) and E(IYICX) exist. 

Proof. Since the variables X and X-c possess exactly the same moments 
. there is no loss of generality in assuming that 0 is a median for both X and 
Y. But then P{ISI > t} > !P{IXI > t}, and by the last lemma 
E(ISI CX) < 00 implies E(IXICX) < 00. This proves the· "only if" part of the 
assertion. The "if" r >~4 follows from the inequality ISl cx ~ 2CX (IXI CG + IYI CX) 
which is valid,. becal ~ (;:.f no point can lSI exceed· the larger of 21XI 
and 21)'1. 

7. CHEBYSHEV'S INEQUALITY 

Chebyshev's inequality is among the most frequently used tools in prob
ability. Both the inequality and its proof are the same as in the discrete 
case (1; IX,6) and we repeat it mainly for reference. Interesting applications 
will be given in VII, 1. 

Chebyshev's inequality. If E(X2) exists 

(7.1) 

In particular, if E(X) = m and Var eX) = 0-
2

, 

(7.2) 

Proof. If F stands for the distribution of X, 

E(X') > L,,,,x' F{dx} > t'L,,,,F{dX} 

which is the same as (7.1). 

t > O. 
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The usefulness of Chebyshev's inequality depends (not on sharp numeriCal estimates 
but) on its simplicity and the fact that it i~ specially adapted to sums of random variables. 
Many generalizations are posSible, but they do not share these desirable'properties. (¥ost 
of them are so simple that it is better to derive them as occasion arises. For example, a 
useful combination of Chebyshev;s inequality with truncation procedures is described in 
YII,7.) 

A fairly general methodfor derivingnon-trivi~l inequalities may be described as follows. 
If u ~ 0 everywhere and u(x) > a > 0 for all x in an interval I then 

(7.3) F{I} S a-1E{u(X». 

On the other hand, if u ~ 0 ou~side I and u S 1 ,in I we get the reversed inequality 
F{I} ~ E(u(X». Choosing for u polynomials we obtain inequalities depending only on 
the moments of F. ' 

. Examples. (a) -Let u{x) = (x+c)2 with c > 0: . Then u{x) >.0 for all x and 
u{x) ~ (1+c)2 for x ~ 1 > O. Therefore 

(7.4) 

If E{X) '= 0 and E(X2) = 0'2 the right side assumes its minimum for c = 0.2/1 and hence 
, ,. 

(7.5) 
0'2 

P{X > I} S 2 2" 
0' + 1 

. t, > O. 

This interesting inequality was discovered independently by many authors. 
(b) Let X be positive (that is, F{O) = 0) and E(X) = 1, E{X2) = b. The polynomial 

u(x) = h-2{x-a){a+2h-,x) is positive only for a <x <a + 2h, and u{x) S 1 every
where. When 0 < a < 1 it is readily seen that E{u{X» ~ [2h{l-a) - b]h-2. Choosing 
h = b(1-a)-l we get by the remark preceding these examples 

(7.6) P{X > a} > (1-a)2b-1• 

(c) If E{X2) = 1 and E{X4) = M, the last inequality applied to X2 shows that 

(7.7) if 0<1<1. ~ 

For Kolmogorov's gen~ralization of Chebyshev's inequality s(;e section 8(e). 

8. FURTHER INEQUALITIES. CONVEX FUNCTIONS 

The inequalities collected in this section are of widesprea.d use and are by 
no means typical for probability. Most common is Schwarz' inequality. 
The others are given mainly because of their use in stochastic processes and 
statistics. (This section is meant for reference rather than for reading.) 

(a) Schwarz' Inequality 

In its probabilistic version this inequality states that for two arbitrary 
random variables q; and "p defined on the same space 

(8.1) 
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whenever these expectations exist. Furthermore, the equality sign holds 
only if a linear combination acp + b1p is zero with probability one. More 
generally, if F is an arbitrary measure on the set A then 

(8.2) (19'(X) 'I'(x) F{dX}), < 19'2(X) F{dx} ·1 'l'2(X) F{dx} 

for arbitrary functions for which the integrals on the right exist. Taking 
for F the purely atomic measure attaching unit weight to integers we get 
Schwarz' inequality for Sums in the form 

(8.3) 

In view of the importance of (8.1) we give two proofs pointing to different 
generalizations. The same proofs apply to (8.2) and (8.3). . 

First proof. We may assume E(1p2) > O. Then 

(8.4) 

is a quadr.~tic polynomial in t which, being non-negative, has either two 
complex roots or a double root A. The standard solution for quadratic 
equations shows in the first case that (8.1) holds with strict inequality. In 
the second case E( cp + t1p)2 = 0 and so cp + t1p = 0 except on a set of 
probability zero. 

Second proof. As we are free to replace cp and 1p by constant multiples 
acp and b1p it suffices t.o consider the case E(cp2) = ~(1p2) = 1. Then (8.1) 
follows trivially taking expectations in the inequality 2lcp1pl < cp2 + "1'2. ~ 

(b) Convex Functions. Jensen's ineqUality 

Let u be a function defined on an open interval I, and P = (~, u(¢» 
a point on its graph. A line L passing through P is said to support u at 
~ if the graph of u lies entirely above or on L. (This excludes vertical lines.) 
In analytical terms it is required that 

(8.5) u(x) > u(¢) + A' (x-¢) 

for all x in I, where A is the slope of L. The function u is called convex 
in I if a supporting line exists at each point x of I. (The function u is 
concave, if -u is convex.) 

We proceed to show that this definition implies the various properties 
intuitively associated with convexity as exemplified by convex polygonal lines. 

Let F be an arbitrary probability distribution concentrated on I and 
suppose that the expectation E(X) exists. Choosing. ~ = E(X) and taking 
expectations in (8.5) we get 

(8.6) E(u) > u(E(X» 
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whenever the expectation on the left exists. This statement is known a~ 
Jensen's inequality. 

By far the most important is the case where F is concentrated at two 
points Xl and ;tz and attributes weights 1 - t and t to them. Then 
(8.6) takes on the form 

(8.7) (l-t)u(xl ) + t U(X2) > u({l-t)XI + tx2)· 

This inequality admits of a simple geometric interpretation which we state 
in the following. 

Theorem 1. The function u is convex iff all its chords lie above or on the 
graph of u. 

Proof. (i) Necessity. Let u be convex and consider the chord over an 
arbitrary interval Xl, x2. As t runs from 0 to 1 the point (l-t)xI + tX2 
runs through the interval Xl> X 2 and the left side in (8.7) is the ordinate of the 
corresponding point on the chord. Thus (8.7) states that the points of the 
chord lie above or on the graph. . 

(ii) SujJiciency~ Assume that u has the stated property and consider 
the triangle formed by three points Pl , P2 , P3 on the graph of u with 
abscissas Xl < X 2 < X 3 • Then P2 lies below the chord PI P3 , and among 
the three sides of the triangle PIP"}, has the smallest slope, P2P3 the largest. 

Outside the interval X2, X3 the graph of 1I therefore lies above the line 
P2P3. Now consider X3 as a variable and let X3 -+- x2+. The slope of 
P2P 3 decreases monotonically but is bounded from below by the slope 
of PIP2' Thus the lines P2Pa tend to a line L through P2. Outside X2, X3 
the graph of u is above the line P2P 3, and hence the whole graph lies 
above or on L. Thus L supports u at x2 , and as X 2 is arbitrary, this 
proves the convexity of u. ~ 

Being the limit of chords, the line L is a right tangent. In the limiting 
process the abscissa X3 of P3 tends to X 2 , and P3 to a point on L. Thus 
P 3 -+- P'I.' The same argument applies for an approach from the left, and 
we, conclude that the graph of u is continuous and possesst;s right and left 
tangents at each point. Furthermore, these tangents are supporting lines 
and their slopes vary monotonically. Since a monotone function has at 
most denumerably many discontinuities we have proved 

Theorem 2. A convex function possesses right and left derivatives at all 
points~ and these are non-decreasing functions. They are the Same except 
possibly at countab~v many points. 

Obviously this theorem again expresses necessary and sufficient conditions 
for convex-it),. In particul1r, if a second derivative exists, u is convex 
iff u" ~ o. 
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Usually (8.7) is taken as definition of convexity. For t =! we get the 
inequality 

(8.8) U(Xl+X2) < u(x1)+U(X2) 
2 - 2 

stating that the midpoint of the chord lies above or on the graph of u. If 
u is continuous this property guarantees that the graph can never cross a 
chord and hence that u is conveX. It can be shown more generally that any 
Baire fWlction 18 satisfying (8.8) is convex. 

(c) Moment Inequalities 

We prove that for any random variable X 

(8.9) u(t) = log E(IXl t), t > 0, 

is a conz;ex function of t in every interval in which the integral exists. In 
fact, by Schwarz' inequality (8.1) 

(8.10) E2{/X/t) < E{/X/t+h) E{/X/t-h), 0 S h < t, 
provided the integrals' converge. Putting XI = t - hand X 2 = t + h we 
see that (8.8) holds and so u is convex as asserted. 

Since u(O) < 0 the slope t-I u(t) of the line joiningthe origin to (t, u(t) 
varies monotonically and hence (E{/Xlt))l/t is a non-decreasing function 
of t > O. 

(d) Holder's Inequality 

Let p > 1, q > 1 and p-I + q-I = 1. Then/or 'q; ~ 0, tp > 0 

(8.11) E(q;tp) S (E(q;P))I/P (E(tf»)1/1I 

whenever the integrals exist. 
(Schwarz' inequality (8.1) is the special case p = q = i, and (8.2) and 

(8.3) generalize similarly.) 

Proof. For X > 0 the function u = log X is concave, that is, it satisfies 
(8.7) with the inequality reversed. Taking antilogarithms we get for 
XI, X 2 > 0 

(8.12) x~-tx~ < (1 - t)x1 + tX2 

" As in the second p~9.of of Schwarz' inequality it suffices to consider integrands 
normed by E( q;P) = E( tpq) = 1. Let t = q-I and 1 - t = p-l. The 
assertion E( lp,1p) < 1 then, follows directly taking expectations in (8.12) 
with XI = q;P and X2 = 1jP. ~ 

18 Every u satisfying (8.8) is either convex~ or else its oscillations in every interval range 
from - co to co. See G. H. Hardy, J. E. Littlewood, and G. PJ6ya, Inequalities; Cambridge, 
England, 1934, in particular p. 91. 
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(e) Kolmogorov's Inequality 

Let Xl"" ,Xn be independent random variables with finite variances and 
E(Xk ) = O .. Then for any x > 0 

(8.13) P{max [ISll, ... , ISnil > x} < x-2 E(S!) 

This important strengthening of Chebyshev's inequality was derived for 
discrete variables in 1; IX, 7. The proof carries over without change, but 
we rephrase it in a form whie;h will make it evident that Kolmogorov's 
inequality applies more generally to submartingales. We shall return to this 
point in VII, 9. 

Proof. Put x 2 = t. For fixed t and j = 1, 2, ... ,n denote by A; the 
event that S; > t, but Se < t for all subscripts y < j. In words, A; is 
the event that j is the smallest among the subscripts k for which S~ > t. 
Of course, such an index j need not exist, and the union of the events A; is 
precisely the event occurring on the left side of Kolmogorov's inequality. 
Since the events A; are mutually exclusive this inequality may be restated in 
the form 

n 

(8.14) LP{A;} < t- l E(S!) 
;=1 

Denote by 1Ai the indicator of the event A;, that is, 1Ai is a random 
variable which equals 1 on A; and equals 0 on the compliment of A;. Then 
L 1 A; < 1 and so 

n 

(8.15) E(S!1) > LE(S!1 A ). 
;=1 

We shall show that 

(8.16) 

Sinc~ S; > t whenever A; occurs, the right side is >tP{A;}, and so (8.15) 
reduces to the assertion (8.14). 

To prove (8.16) we note that Sn = S; + (Sn -:-S;) and hence 

(8.17) E(S!1 A,) > E(S; 1A ;) + 2E«Sn-S;)S;1AJ 

The second term on the right vanishes be~ause the variables Sn - S; = 
= X;+! + ... + Xn andS;1 A; are independent and so the multiplication 
rule applies to their expecta t;l)ns. Thus (8.17) reduces to the assertion 
(8.16). ~ 

9. SIMPLE CONDITIONAL DISTRmUTIONS. MIXTURES 

In III,2 we introduced a "conditional density of a random variable Y 
for a given value of another variable X" in the case where .the joint dis
tribution of X and Y has a continuous density. Without any attempt 
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at generality we proceed to define an analogous concept for a wider class 
of distributions. (A systematic theory is developed in sections 10 and lla.) 

For any pair of intervals A and B on ,the line put 

(9.1) Q(A,B)=P{XEA, YEB}. 

With this notation the marginal distribution for X is given by 

(9.2) Il{A} = Q(A, :1P). 

If Il{A} > 0 the conditional probability of the event {Y E B} gIven {X E A} 
IS 

(9.3) P{Y E B I X E A} = Q(A, B) . 
Il{A} 

(If Il{A} = 0 this conditional probability is not defined.) We use this 

formula when A is the interval A" = x, x + h and let h -+ 0+. Under. 
appropriate regularity conditions the limit 

. (9.4) 

will exist for all choices of x and B. Following the procedure and reasoning 
used in III,2 we. write in this case 

(9.5) q(x, B) = P{Y E B I X = x} 

and call q "the conditional probability of the event {Y E B} given that 
X = x." This constitutes an extensio~ of the notion of conditional prob
abilities to situations in which t~e "hypothesis" has zero probability. No 
difficulties arise when q is insufficiently regular, but we shall not analyze 
the appropriate regularity conditions' because a general procedure will be 
discussed in the next section. This naive approach usually sqffices in 
individual cases, and the form of the conditional distribution can frequently 
be derived by intuitive reasoning .. 

Examples. (a) Suppose that the pair X, Y has a joint density given by 
f(x, y). For simplicity we assume that f is continuous and strictly positive., 
Then 

q(x, B) = _1_ [ f(x, y) dy 
. h(x) JB 

where h(x) -= q(x, -ex), 00) is the marginal density of X. In other words, 
for fixed x the set function q has a density given by I(x, y)/ h'<x). 

(b) Let X and Y be independent random variables with distributions 
F and G, respectively. For simplicity we assume that X > 0 [that is, 
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F(O) = 0]. Consider the product Z = XY. Then 

(9.6) P{Z < t I X = x} = G(t/x) 

and the distribution function U of Z is obtained by integrating (9.6) with 
respect to F. [See II,{3.1). The assertion is a special case of formula (9.8) 
below.] In particular, when X is distributed uniformly over 0, 1 

(9.7) U{t) = 11 G{t/x) dx. 

This formula can be used as a convenient starting point for the theory 
of unimodal distributions. 19 

For a further example see problems 18-19. ~ 

The following theorem (due to L. Shepp) is a probabilistic version of a formal criterion 
found by A. Khintchine. 

Theorem. U is unimodal iff it is of the form (9.7), that is, iff it is the distribution of the 

product Z = XY of two independent variables such that X is distributed umformly in 0, 1. 

Proof. Choose h > 0 and denote by Uh the distribution function whose graph is the 
polygonal line agreeing with U at the points 0, ±h,.... [In other words, Uh(nh) = 
= U(nh) and U h is linear in the interval between nh and (n + 1 )h.] , It is obvious from the 
definition that U is unimodal iff all Uh are unimodal. Now U h has a density Uh which is 
a step furiction, and every step function with discontinuities at the points nh can be written 
in the form 

(*) ~>. ·In~ h f(.';.) 
where f(x) = 1 for 0 < x < 1 and .f(x) = 0 elsewhere. The function (*) is monotone 

in 0, 00 and in - 00, 0 iff Pn > 0 for all n, and it is a density if LPn = I. But in this 
case (*) is the density of the product Zh = XYh of two independent variables such that 

X is distributed uniformly in 0, 1 and P{Yh = nh} = Pn' We have thus proved that 
Uh is unimodal iff it is of the form (9.7) with G replaced by an arithmetic distribution G h 

concentrated on the points 0, ±h, .... Letting h -- 0 we get the theorem by monotone 
convergence. 

(See problems 25-26 and problem 10 in XV,9.) ~ 

Under appropriate regularity conditions q{x, B) will for fixed x represent 
a probability distribution in B and for fixed B a continuous function in x. 
Then 

(9.8) Q{A, B) = L q{x, B) Il{dx}. 

.19 A distribution function U is called unimodal with the mode at the origin iff the graph 

of U is convex in - 00, 0 and concave in 0, 00 [~8(b)]. The origin maybe a point of 
discontinuity, but apart from this unimodality requires that there exist a density u which 

is monotone in - 00,0 and in 0, 00. (Intervals of constancy are not excluded.) 
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In fact, the right side obviously represents a probability distribution in 
the plane, and the differentiation described in (9.4) leads to q(x, B) 
Formula (9.~) shows how a given distribution in :1\2 can be expressed in 
terms of a. conditional and a marginal distribution. In the terminology 
of II ,5 it represents the given distribution as a mixture of the family of 
distributi"ons q(x, B) depending on the parameter x with fl serving as the 
distribution of the randomized parameter. 

In practice the procedure is frequently reversed. One starts from a 
"stochastic kernel" q, that is a function q(x, B) of a point x and a set B 
such that ~or fixed x it is a probability distribution and for fixed B a Baire 
function. Given an arbitrary probability distribution fl the integral in 
(9.8) defines probabilities for plane sets of the form (A, B) and hence a 
probability distribution in the plane. Usually- (9.8) is expressed in terms of 
point ~unctions. Consider a family of distribution functions G(8, y) 
depending on a parameter 8, and a probability distribution fl. A new 
. distribution function is then defined by 

(9.9) f
+OO 

U(y) = -00 G(x, y) fl{dx}. 

[This formula represents the special case of (9.8) when A = -00,00 and 
---I 

q(x, - 00, yo) = G(x, y).] Such mixtures occur.in 1; V and are discussed 
in 11,5. In the next section it will be shown that q can always be interpreted 
as a conditional probability distribution. 

Examples. (c) If Fl and £2 are distributions pFl + {I-p)F2 is a 
mixture (0 < p < 1) and represents a special case of (9.9) when fl IS 

concentrated on two atoms. 
(d) Random sums. Let Xl' X 2,... be independent random variables 

with a common distribution F. Let N be a random variable independent 
of the Xi and assuming the values 0, 1, ... with positive probabilities 
Po, PI' .... We are interested in the random variable SN = Xl + ... + XN. 
The conditional distribution of SN given that N = n is Fn *., and so the 
distribution of SN is given by 

(9.1 0) 

which is a special case·of (9.9). In this case each hypothesis N = n carries 
a positive probability Pn and so we have conditional probability distributions 
in the strict sense. Other examples are found in 11,5-7. (See problems 21 
and 24.) 
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*10. CONDmONAL DISTRIBUTIONS 

It would be pointless to investigate the precise conditions under which 
conditional· probabilities q can be defined by the differentiation process 
in (9.4). The main properties of conditional probabilities are embodied in 
the reJation (9.8) expressing probabilities of sets in terms of conditional 
probabilities, and it is simplest to use (9.8) as definition of conditional 
probabilities. It does not determine q uniquely because if for each set B 
we have q(x, B) = q(x, B) except on a set of ,u-measure zero, then (9.8) 
will remain true 'with 'q replaced by q. This indeterminacy is unavoidable, 
however. For exa~ple, if ,u is concentrated on an interval I no natural 
definition of q is possible for x outside, I. By the very nature of things 
we are really dealing with the whole class of equivalent conditional prob
abilities and should refer to a rather than the conditional probability 
distribution q. In individual cases there usually exists a natural choice 
dictated by regularity requirements. 

For definiteness we consider only events specified by conditions of the 
form X E A and Y E B, where X and Yare given random variables and 
A, B are Borel sets on the line. Let us begin by examining the different 
meanings that may be attached to the phrase "conditional probab;lity 
of the eyent {Y E B} for given X." The given value of X may be either a 
fixed number or indeterminate. With the second interpretation we have 
a function of X, that is, a random variable. It will be denoted by P{B I X} 
or q(X, B), etc. For the value at a fixed point x we write for emphasis 
P{Y E B I X = x} or q(x, B). 

Definition 1. Let the set B be fixed. By P{Y E B I X} (in worcjs, "a 
conditional probability of the ellent {Y E B} for given X") is meant a function, 
q(X, B) such that for every set A in :ltl 

(lO.l) P{X E A, Y E B} ,= i4Q(X, B) ,u{dx} 

where ,u is the marginal distribution of X. 

When x happens to be an atom the hypothesis X = x has positive 
probability and P{Y E B I X = ,x} is already defined by (9.3) with A 
consisting of the ~ingle point x. But in this caSe (10.1) reduces to (9.3) and 
our definitions and notations are consistent. ' 

We show that a conditional probabilit:' P{Y E B I X} aluJays exists. In 
f'lct, clearly 

(10.2) P{X E A, Y E B} < ,u(A). 

* This section should be omitted at first reading. 
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Considered for fixed B as a function of A the left side defines a finite 
measure, and (l0.2) implies that this measure is absol~tely continuous w~th 
respect to fl (see the Radon-Nikodym theorem in section 3). This means 
that our measure is defined by a density q, and so (l0.1) is true. 

So far the set B was fixed, but the notation q(x, B) was chosen with a 
view to vary. B. In other words, we wish to cQnsider q as a function of 
two variables, a point x and a set Bon the line. It is desired that for 
fixed x the set· function q be a probability measure, which requires that 
q(x, :1P) = 1 and that for any' sequence of non-overlapping sets B1 , B2 , ••• 

with union B . 

. (10.3) q(x, B) = 2 q(x, Bk ) • 

Now if the terms. on the right represent conditional probabilities for Bk 
this sum yields a conditional probability for B, but there is an additional 
consistency requirement that (l0.3) be true for our choice of q and all x. 
[Note that definition 1 does not exclude the absurd choice q(x, B) = 17 
at an individual point x.] It is not difficult to see that it is possible to choose 
q(x, B) so as to satisfy these conditions.20 This means that there exists a 
conditional probability distribution of Y for given X in the senSe of the 
following. 

Definition 2. By a conditional probability distribution of Y for given X is 
meant a function q of two variables, a point x and a set B, such that 

(i) for a fixed set B 

(lOA) q(X, B) = P{Y E B I X} 

is a conditional probability of the event {X E B} for given X. 
(ii) q is for eqch x a probability distribution. 

In effect a conditional probability distribution is a family of ordinary 
probability distributions and so the whole theory carries over without 

20 It is easiest to choose directly only the values q(x, B) when B is an interval in a dyadic 
-- I 

subdivision of j{l. For example, let Bl = 0, 00 and B2 = - 00, O. Choose for q(x, B1) 
any conditional probability for Bl such that 0 < q(x, B 1) < 1. Then q(x, B2) = 
= 1 - q(x, B1) is automatically a legitimate choice. Partition B1 into Bn and B12 and 
choose q(x, Bn) subject to 0 S q(x, Bn) S q(x, B1). Put q(x, B12) = q(x, B1) - q(x, Bn) 
and proceed in like manner refining the subdivision indefinitely. The additivity require
ment (10.3) then defines q(x, B) for all open sets B and hence for all Borel sets. 

This construction depends only on the existence of a so-called net, namely a partition 
of the space into fini[ely many non-overlapping sets each of which is partitioned in like 
manner and each point of the space is the unique limit of a contracting sequence of sets 
a ?pearing in the successive partitions. The assertion is therefore true in jt,. and in many 
other spaces. 
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change. Thu~ when q is given21 the following definition introduces a new 
notation rather than a new concept. 

Definition 3. A conditional- expectation E(Y I X) is a function of X 
assuming at x the value 

(10.5) E(Y I x) = f:: y q(x, dy) 

pruvided the integral converges (except possibly on an x-set ofprobability zero). 

E(Y I X) is a function of X, that is a random variable. For clarity it is. 
occasionally preferable to denote its value at an individual point x by 
E(Y I X = x). From the very definition we get 

(lO.6) E(Y) = f~~oo E(Y I x) Jl{dx} or E(Y) = E(E(Y I X)). 

*11. CONDITIONAL EXPECTATIONS 

We have noW defined a conditional expectation E(Y I X) in terms of a 
conditional distribution, and this is quite satisfactory as long as one deals 
~>nly with one fixed pair of random variables X, Y. However, when one 
deals with whole families of random variables the non-uniqueness of the 
individual conditi.onal probabilities leads to serious difficulties, and it is 
therefore fortunate that it is in practice possible to dispense with this un
wieldy theory. Indeed, it turns out that a surprisingly simple and flexible 
theory of conditional expectation can be developed without any reference to 
conditional distributions. To understand this theory it is best to begin with a 
closer scrutiny of the identity (lO.S).· . 

Let A be a Borel set on the line and denote by 1 A(X) the random variable 
that equals one whenever X E A and zero otherwise. We integrate the two 
sides in (lO.S) with respect to the marginal distribution Jl of X, taking the 
set A as domain of integration. The result may be written in the form 

(11.1) E(Yl,,(X» = L E(Y I x) ,u{dx) = r: 1 .. .<x) E(Y I x) ,u(dx). 

The variable X maps the sample space 6 on a real line, and the last 
integral refers only to functions and measures on this line. The random 
variable Y1 A (X), however, is defined in the original sample space, and 
therefore a better .. notation is indicated. Obviously 1A (X) is the indicator 
of a set B in 6, namely the set of all those points in 6 at which X 

21 For a more flexible general definition see section 11. 
• The theory of this sectiqn will be used only.in connection with martingales in VI,I2 

and VII,9. 
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assumes a value in A. As we saw in IV, 3, the sets B that in this manner 
correspond to arbitrary Borel sets A on the line form a a-algebra of sets 
in 6 which is called the algebra generated by X. Thus (lI.I) states that 
U = E(Y I X) is a function of X that satisfies the identity 

(11.2) 

for every set B in the a-algebra generated by X. We shall see that this 
relation may be used as a definition of conditional expectations, and it is 
therefore important to understand it properly. A simple example will 
explain its nature. 

Examples. (a) We take the plane with coordinate variables X and Y as 
sample space and suppose for simplicity that the probabilities are defined by 
a strictly positive continuous density I(x, y). The random variable X 
assumes a constant value along any line parallel to the y-axis. If A is a 
set on the x-axis, the corresponding plane set B consists of all such lines 
passing through a point of A. The left side of (l1.2) is the ordinary integral 
of y f(x, y) over this set, and this can be written as an iterated integral. Thus 

(11.3) E(Y1 B ) = j~dX f:oooo y I(x, y) dy. 

The right side of (l1.2) is the ordinary integral of a function U(X)/1(X), 
where 11 is the marginal density of X. Thus in this case (l1.2) states that 

(11.4) 1 f+oo 
U(x) = h(x) -00 y I(x, y) dy, 

in accordance with the definition (l0.5) of conditional expectation and in 
accordance with intuition. 

(b) (Continuation.) We show now that (l1.2) defines a conditional expecta
tion U even when no densities exist and the probability distribution in the 
plane is arbitrary. Given a Borel set A on the x-axis, the left side in (11.2) 
defines a number ,u1{A}. Obviously ,u1 is a measure on the Borel sets of the 
x-axis. Another such measure is given by the marginal distribution ,u of X, 
which is defined by ,u{A} = E(1 B ). It is therefore obvious that if ,u{A} = 0 
then also ,u1{A} = O. In other words, ,ul is absolutely continuous with 
respect to PI and by the Radon-Nikodym theorem of section 3 there exists a 
function U such that 

(11.5) 

This differs only notationally from (l1.2). Of course, (l1.5) remains valid 
if U is changed on a set of ,u-measure 0, but this non-uniqueness is inherent 
in the notion of conditional expectation. ~ 
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This example shows that (11.2) may be used to define a conditional 
expectation VeX) = E(Y I X) for an arbitrary pair of random variables 
X, Y in an arbitrary probability space [provided, of course, that E(Y) 
exists]. But this appro'ach leads much further. For example, to define a 
conditional ,~pectation E(Y I Xl' X2) with respect to a pair Xl' X2 of 
random variables we can use (l1.2) unchanged except that B will now be an 
arbitrary set in the a-algebra Q3 generated by Xl and X2 (see IV,3). Of 
course, V will be a function of Xl' X2 , but we saw in IV,4 that the class of 
Baire functions of the pair (Xl' X2) coincides with the class of all 58-
measurable functions. Thus we may cover all imaginable cases by the 
following definition first proposed by Doob. 

Definition. Let (6,,~r, P) be a probability space, and 58 a a-algebra of 
sets in ~ (that is, 58 c ~). Let Y be a random variable with e>.:pectation. 

A random variable V is called conditional expectation of Y with respect to 
58 if it is 58-measureable and (l1.2) holds for all sets B of 5B. In this case we 
l1!rite V = E(Y 158). 

In the particular case that ~ is the a-algebra generated by the random 
variables Xl, ... , X T the variable V reduces to a Baire function of 
Xl' ... ,XT and will be denoted by E(Y 1 Xl' ... , Xr). 

The existence of E(Y 1 58) is established by the method indicated in example 
(b) using an abstract Radon-Nikodym theorem. 

To see the main properties of the conditional expectation U = E(Y 158) 
note that (l1.2) holds trivially when 1 B is replaced by a linear combination 
of indicators of sets Bj in 58. But we saw in IV,3 that every 58-measurable 
function can be uniformly approximated by such linear .combinations. 
Passing to the limit we see that (l1:2) implies that more generally E(YZ) = 
= E(VZ) for any 58-measurable function Z. Replacing Z by Z1 Band 
comparing. with the definition (l1.2) we see that 

(11.6) E(YZ 1 58) = Z E(Y 1 58) 

for any 58-measurable function Z. This is a relation of great importance. 
Finally, con~ider a a-algebra 580 c 58 and let Vo = E(Y l5Bo). For a 

set B in 5Bo we can interpret (l1.2) relative to 5Bo as well as relative to 58, 
and thus we find that for B in 580 

E(Y1 B) = E(V1 B) = E(Uo 1 B)' 

Thus by the very definition Vo ' E(V l5Bo), and so 

(l1. 7) E(Y 1580) = E(E(Y I 58)580) if 580 c 58. 

For example" 23 may be the algebra generated by the two variables Xl' X2 
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while 'Eo stands for the algebra generated by Xl alone. Then (l1.7) 

reduces to E(Y I Xl) = E(E(Y I Xl' X2) I Xl)' 
Finally we note that (11.2) implies that for the constant function 1 the 

conditional expectation equals 1, no matter how 5B is chosen. Thus (11.6) 
implies that E(Z 15B) = Z for all5B-measurable variables Z 

It is hardly necessary to say that the basic properties of expectation carry 
over to conditional expectation. 

12. PROBLEMS FOR SOLUTION 

1. Let X and Y be independent variables with distribution functions F and 
G. Find the distribution functions of22 (a) X u Y, (b) X n Y, (c) 2X u Y, (d) 
X3 uY. 

2. Mixtures. Let X, Y, Z be independent; X and Y have distributions F 
and G, while P{Z = I} = p, P{Z = O} = q (p + q = 1). Find the distribution 
functions' of (a) ZX + (1 - Z)Y, (b) ZX + (1 - Z)(X u V), (c) ZX + 
(1 - Z)(X n V). 

3. If F is a continuous distribution function show that 

i+
OO il F(x)F{dx} = ydy = t 

-00 0 

(a) from the very definition of the first integral (partitioning - ex), ex) into sub
intervals) and (b) from the interpretation of the left -side as E(F(X» where F(X) 
has a uniform distribution. More generally, putting G(x) = Fn(x), 

i+oo n 
Fk(x)G{dx} = -- . 

n+k 
-00 

4. Let F(x, y) stand for a probability distribution in the plane. Put U(x, y) = 0 
when x < 0 and y< 0, and U(x;y) = F(x, y) at all other points. Show that 
U is monotone -in each variable but is not a probability distribution. [Hint: 
Consider the mixed differences.] 

5. Prescribed marginal distributions.23 Let F and G be distribution functions 
in jtl and 

U(x~ y) = F(x)G(y)[1 + ex(l - F(x»(l - G(y»] 

where lexl ~ 1. Prove that U is a distribution function in jt2 with marginal 
distributions F, G and that U has a density iff F and G have densities. 

Hint: -If w(x, y) = u(x)v(y), the mixed differences of w [defined in -(1.12)] 
are of the form du du. Note also that d(F2) ~ 2 dF. 

22 If a and b are numbers, a u b = max (a, b) denotes the larger of the two, 
a n b = min (a, b) the smaller. For functions f u g denotes the function which at the 
point x assumes the value [(x) n g(x) (see IV, 1). Thus X u Y and X n Yare random 
variables. 

23 This problem contains a new example for a non-normal distribution ~ith normal 
marginal distributions (see problems 2 and 3 in 111,9). It is due to E. J. Gumbel. 
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6. Within the unit square put vex, y) = x if x ~ y and U(x, y) = y if 
x ~ y. Show that V is a distribution function concentrated at the bisector (hence 
singular). 

7. Frechet's maximal distribution with given marginal distributions. Let F and 
G be distribution functions in .1{.1 and Vex, y) = F(x) (\ G(y). Prove: (a) U is 
a distribution function with marginal distributions F and G. (b) If V is any 
other distribution function with this property, then V < u. (c) U is concentrated 
on the curve defined by F(x) = G(y), and hence singular. (Problem 5 contains a 
special case.) 

8. Denote by V the uniform distribution in -h, 0 and by T the tri~ngular 
distribution in -/7, h [see II, 4(b)]. Then F* U and F* T have the densities 

h-1[F(x + h) - F(x)] and h-2 J.h [F(x + y) - F(x - y)] dy. 

9. The independent variables X and Y have Poisson distributions with ex
pectations pt and qt. If lk is the Bessel function defined in 1.1, (7.1) show that 

P{X - Y = k} = e-t v' (P/q)k Ilkl(2t v' pq). 

10. For a distribution function F such that 

cp(ex) = I_+ooooeaZF{dX} 

exists for -a < ex < a we define a new distribution F# by cp(ex)F#{dx} = 
= eazF{dx}. Let Fl and F2 be two distributions with this property and F = 
= F] * F2• Prove that (with obvious notations) cp(ex) = CPl (ex) ({J2(ex) and F# . 
= Ff* Fl!. 

11. Let F have atoms aI' a2, . .. with weights PI' P2' . .. . Denote by p 
the maximum of PI' P2, . .. . Using lemma 1 of section 4a prove . 

(a) The a~oms of F* F have weights strictly less than p except if F is con
centrated at finitely many atoms of equal weight. 

(b) For the symmetrized distribution OF the origin is an atom of weight 
p' = Ip;. The weights of the other atoms are strictly less than p'. 

12. Random vectors in jt3. Let L be the resultant of two independent unit 
vectors with random directions (that is, the endpoints are distributed uniformly 
over the unit sphere). Show that P{L ~ I} = 12/2 for 0 < 1 < 2. [See example 
4(e).] 

13. Let the Xk be mutually independent variables assuming the values 0 and 
1 with probability t each. In example 4(d) it was shown that X = .L 2-k X k is 
uniformly distributed over 0, 1. Show that I2-3kX3k has a singular distribution. 

14. (a) If F has a density f such that r is integrable, then the density h 
of F * F is bounded. 

(b) Using the mean approximation theorem of IV,2 show that if f is bounded 
then 12 is continuous. 

[If f is unbounded near a single point it can happen that In. is unbounded for 
every n. See example XI,3(a).] 

15. Using Schwarz' inequality show that if X is a positive variable then 
E(X-p) ~ (E(XP))-l for all p > O. 
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16. Let X and Y have densities [ and g such that [(x) > g(x) for x < a 
and [(x) ~ g(x) for x > a. Prove that E(X) :::;; E(Y). Furthermore, if [(x) = 
= g(x) = 0 for x < 0 then E(Xk):::;; E(yk) for all k. 

17. Let Xl' X2 , ••• be mutually independent with the common distribution F. 
Let N be a positive integral-valued random variable with generating function 
pes). If N is independent of the Xj then max [Xl' ... , XN ] has the distribution 
P(F). 

18. Let Xl"'" Xn be mutually independent with a continuous distribution 
F. Let X = max [Xl, ... , Xn] and Y = min [Xl' ... , Xn]. Then 

'P{X ~ x, Y > y} = (F(x) - F(y»n for y < x 
and 

,pry > y I X = x} = [(F(x) -F(y»/F(x)]n-l. 

19. Using the same notations one has for each fixed k < n 

. n - 1 F(x) t' 

---- lor x < t 
, P{Xk ~ x I X = t}' n F(t) 

1 for x > t. 

Derive this (a) by an intuitive argument considering the event {Xk = X}, and 
(b) formally from (9.4). 

20. Continuation. Prove that 
n-1 1 it t 

E(Xk I X = t) = - -( ) y F{ dy} + - . 
n F 1 -00 n 

21. Random sums. In example 9(c) let X k equal 1 and -1 with probabilities 
p and q = 1 - p. If N is a Poisson variable with expectation t the distribution 
of SN is identical with the distribution occurring in problem 9. 

22. Mixtures. Let the distribution G in (9.9) have expect~tion m(x) and 
variance a2(x). Prove that the mixture U has expectation and variance 

a = f:oooo m(x)l£{dx}, b = f_+oooo a2(x),u{dx} + f-: (m2(x) - a2),u{dx}. 

23. With obvious notations E(E(Y I X» = E(Y) but 

Var (Y) = E(Var (Y I X» + Var (E(Y I X». 

Problem 22 is a special case. 
24. Random sums. In example 9(c), E(SN) = E(N)E(X)" 

Var (SN) = E(N) Var (X) + {E.(X»2 Var (N). 

Prove this directly and show that it is contaiQed in the last two problems. 
Note. The following problems refer to convolutions of unimodal distributions 

defined in footnote 19 of section 9. It has been conjectured that the convolution 
of two such distributions is again unimodal. One counterexa,mple is due to K. L. 
Chung, and problem 25 contains another. Ptoblem 26 shows the conjecture to 
be valid for symmetric24 distributions. This result is due to A. Wintner. 

24 For the difficulties arising in the unsymmetric case see I. A. Ibragimov, Theory of 
Pro,bability and Its Applications, vol. 1 (1956) pp. 225-260. [Translations.] 
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25. Let u(x) = 1 . for 0 < x < 1 and u(x) = 0 elsewhere. Put 

£ (X) 1 - £ (X) v(x) = a u a + -b- u b 

where 0 < a < b. If £ and a are small and b large, then w = v * v is nqt 
unimodal although v is. 

Hint to avoid calculations: The convolution of two uniform densities is the 
triangular density and hence w(a) > £2a-l and w(b) > £2b-1 and the integral of 
w from b to 2b is >!-(l- £)2. It follows that w must have a minimum between 
a and b. 

26. Let F be a uniform distribution and G unimodal. If both F and G are 
symmetric show by simple differentiation that the convolution F * G is uni
modal. Conclude (without further calculations) that the statement remains true 
when F is any mixture of symmetric uniform distributions, and hence that the 
convolution of symmetric unimodal distributions is unimodal. 



CHAPTER VI 

A Survey of'Some Important' 

Distributions and, Processes, 

This chapter is the product of the deplorable need. to avoid'repetition and 
cross references between chapte~s intended for independent reading. For 
example, the theory of stable distributions will be developed independently, 
by semi-group methods (IX), by Fourier analysis (XVII), and-' , at least 
partly-by Laplace transforms (XIII). Giving the definitions and examples 
at a ,neutral place is economical and makes it possible to scrutinize some 
basic relations without regard to purity of methods. ~ , 

The miscellaneous topics covered in this chapter are not necessarily 
logically connected: the queuing process, has little to do with martingale 
theory or stable distributions. The chapter is not intended for consecutive 
reading; the individual sections should be taken up as occasion arises or 
when their turn comes up. Sections 6-9 are somewhat interrelated, but 
independent of the rest. They treat some important material not covered 
elsewhere in the book. 

1. STABLE DISTRIBUTIONS iN jtl 

Stable distributions playa constantly increasing role as a natural general
ization of the normal distribution. For their description it is convenient to 
introduce the short-hand notation 

(1.1) udv 

to indicate that the random variables U and V have the same distribution. 
Thus U d aV + b means that the distributions of U and V differ only by 
location and scale parameters. (See definition I in V ,2.) Throughout this 
section X, Xh X2 , • •• denote mutually independent random variables with a 
common distribution Rand Sn = Xl + ... + Xn • 

169 
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'Definition 1. The distribut~on R is stable (in the broad sense) if for each n 
there exist constants Cn > 0, Y n such that 1 

(1.2) 

and R is not concentrated at one pOint. R is stable in the strict sense if (1.2) 
holds with Y n = O. 

Examples will be found in section 2. An elementary derivation of some 
basic properties of stable' distributions is so instructive that we proceed 
with it at the cost of some repetition. The systematic theory developed 
in chapters IX and XVII does riot depend on the following discussion. 

Theorem 1. The norming constants are of th~ form Cn = nl/a. with 
o < ex' < 2. The constant ex will be called the characteristic exponent of R. 

Proof. The a;:gument. is greatly simplified by symnfetrization. If R is 
stable so is the distribution oR of X1 - X2 and'the norming constants Cn 

are the same. It suffices therefore to prove the assertion for, a symmetric 
stable R. 

We start from the simple remark that 8 m+n is the sum of the independent 
variables 8 m and 8 m+n - 8 m distributed, respectively, as cmX and cnX 

Thus for symmetric stable distributions 

(1.3) 

Similarly, the sum 8 rk can be broken up into r independent blocks of k 
terms each, whence Crk -= CrCk for all rand k. For subscr~pts of the form 
n = rV we conclude by induction that 

(1.4) if n = rV then Cn = c;. 

Next put v == m. + n and note that because of the symmetry of the 
variables in (1.3) we have for t > 0 

(1.5) 

It follows that for ,,> n the ratios cnlc'f} remain bounded. 
To any integer r there exists a unique ex such that Cr = r1/a.. To prove 

that 'cn = nl/a. it suffices to show that if cp '= pl/fJ then {3 = ex. Now by 
(1.4) 

if n = ri 

if v ='pk 

then 

then 

c = n 1/a. n 

C = v1/fJ t' • 

But for each ,,= pk there exists an n = ri such that n < " <rn. Then 

C'f} = v1/fJ < (rn)l/fJ = rl/fJc':[fJ. 

1 For an alternative form see problem 1. 
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Since the ratios c nlCy remain bounded this implies that fJ ~ ex. Inter
changing the roles of rand p. we find similarly that (J ~ ex, and hence, 
f3 = !x. 

To prove that ex ~ 2 we remark that the normal distribution is stable 
with ex = 2. For it ,(1.3) reduces to the addition rule for variances, and the 
latter implies that any stable distribution with finite variances ,necessarily 
corresponds to ex = 2. To conclude the proof it suffices ther~fore to show 
that any stable distribution with ex > 2 would have a finite variance. 

For symmetric distributions (1.2) holds with Yn = 0, and hence we can 
choose a t s~ch that P{ISnl > tc·,.J < 1 for all n. For reasons of symmetry 
this implies that n[l-R(tcn)] remains bounded [see V,(5.10)]. It follows 
that xac[l - R(x)] < M for all x > t and an appropriate constant M. 

, Thus the contribution of the interval' 2k - 1 < X <2k to the integral for 
E(X2) is bounded by M2(2-ac>k, arid for ex > 2 this' would be the general 
term of a convergent series. ~ 

The theory of stable distributions simplifies greatly by the gratifying fact 
that the centering constants Y n may be disregarded in practice. This is so 
because we are free to center the distribution R in an arbitrary manner, 
that is, we may replace R(x) by R(x+b). The next theorem shows that, 
except when r:t. = 1, we can use this freedom to eliminate Y n from (I.2). 

Theorem 2. If R is stable l-vith 'an exponent ex ~ 1 the centering constant 
b may be chosen so that R(x + b) is strictly stable. 

Proof. Smn is the sum of m independent variables each distributed as 
cnX + Yn' Accordingly 

(1.6) 

Since m and n play the same role this means that we have identically 

(1.7) (cn-n)Ym = (cm-m)Yn' 

When ex.= 1 this statement is empty,2 but when ex ~ 1 it implies that 
Yn = b(cn-n) for all n .. From (1.2) one sees finally that the sum S~ of n 

variables distributed' as X', - b satisfies the condition 'S~ d CnX/. ~ 

The relation (1.3) was derived from (1.2) under the sole assumption that 
Y n = ° and, holds therefore for all strictly stable. distributions. It implies that 

(1.8) 

whenever the ratio sit is rational A simple continuity argument3 leads to 

2 For the case ex = 1 see problem 4. 
3 Concerning the continuity of stable distributions see problem 2. 
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Theorem 3. If R is strictly stable with exponent ex then (1.8) holds for 

all s > 0 and t > 0. 

For the normal distribution (I.8) merely restates the addition rule for the 
variances. In general (1.8) implies that aI/linear combinations a l X2 + a2X2 

belong to the same type. 
The importance of the normal distribution m is due largely to the 

central limit theorem. Let Xh ... , Xn be mutually independent variables 
with a common distribution F having zero expectation and unit variance. 
Put Sn = Xl + ... + Xn. The central limit theorem4 asserts that the 
distribution of, Snn~! tends to m. For distributions without variance 
similar limit theorems'may be formulated, but the norming constants must 
be chosen differently. The interesting point is that all stable distributions 
and no others occur as such limits. The following terminology will facilitate 
the discussion of this problem. 

Definition 2. The distribution F of the independent random variables Xk 

belongs to the domain of attraction of a distribution R if there exist norming 
constants an > 0, bn such that the distribution of a;;I(Sn -bn) tends to R. 

Our last statement can now be reformulated to the effect that a distribution 
R possesses a domain of attraction iff it is stable. Indeed, by the ve~y definition 
each stable R belongs to its own dom~in of attraction. That no other 
distribution appears as limit becomes plausible by the argument used in 
theorem 1. 

Our results have important and surprising consequences. Consider, 
for example, a stable distribution satisfying (1.8) with ex < 1. The average 
(Xl + ... +Xn)/n has the same distribution as . Xln-I+I/cx, and the last 
factor tends to 00. Roughly speaking we can say that the average of n 
variables is likely to be considerably larger than any given component Xk • 

This is possible only if the maximal term' Mn = max [Xl' ... ,Xn] is likely 
to grow exceedingly large and to receive a preponderating influence on the 
sum Sn. A closer analysis bears out this conclusion. In the case of positive 
variables the expectation of the r~tio Sn/Mn tends to (l-ex)--l, and this is 
true also for any sequence {X n} whose distribution belongs to the domain of 
attraction of our stable distribution. (See problem 26 of XIII,l!.) 

Note on history •. The general theory of stable distributions was initiated5 by P. Levy 
(1924), who found the Fourier transforms of all strictly stable distributions. (The others 

4 The central lImit theorem proves that the normal distribution is the only stable distri
bution with'variance. 

5 The Fourier transforms of symmetric..stable distributions were mentioned by Cauchy, 
but it was not clear that they.really corresponded to probability distributions. This point 
was settled by G. Polya for the case ex < 1. The Holtsmarkdistribution of example 2(c) 
was known to astronomers, but not to mathematicians .. 
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were originally called quasi-stable. As we have seen, they playa role only when ex = I, 
and this case was analyzed jointly by P. Levy and H. Khintchine.) A new and simpler 
approach to the whole theory was made possible by the discovery of infinitely divisible 
distributions. This new approach (still based on Fourier analysis) is also due to P. Levy 
(1937). The interest in the theory was stimulated by W. Doblin's masterful analysis of 
the domains of attraction (1939). His criteria were the first to involve regularly varying 
functions. The modern theory still carries the imprint of this pioneer work although 
many authors have contributed improvements and new results. Chapter XVIII contains 
a streamlined treatment of the theory by the now classi'?ll Fourier methods, while chapter 
IX presents the same theory by a direct approach which is more in line with modem 
methods in Markov processes. Great simplifications and a unification of many criteria 
were made possible by the systematic exploitation of J. Karamata's theory of regularly 
varying functions. An improved version of this theory is presented'in VIII,8-9. 

2. EXAMPLES 

(a) The normal distribution centered to zero expectation is strictly stable 

with Cn = J~. 
(b) The Cauchy distribution with arbitrary location parameters has density 

1 c 
7T c2 + (X_y)2 . 

The convolution property II,(4.6) shows that it is stable with IX. = 1. 
(c) Stable distribution with ex = i. The distribution 

(2.1) 

with density 

(2.2) f(X) = 1 e-1/2(~), 
v'27TX3 

X>O 

[and f(x) = 0 for x < 0] is strictly stable with norming constants Cn = n2 • 

This can be shown to be elementary integrations, but it is preferable to 
take the assertion as a consequence of the fact that F has a domain of 
attraction. Indeed, in a symmetric random walk let Sr be the epoch of the 
rth return to the origin. Obviously Sr is the sum of r independent identically 
distributed random variables (the waiting times between successive returns). 
Now it was shown at the end of 1; III,(7.7) that 

(2.3) P{S!" < r 2t} ---+ F(t) r -- 00. 

Thus F has a domain of attraction and is therefore stable. [Continued 
in example (e).] 

(d) The gravitational field of stars (Holtsmark distribution). In astro
nomical terms the problem is to calculate the x-component of the gravi
tational force exercised by the stellar system at a randomly chosen point O. 
The underlying idea is that the stellar system appears as a "random aggregate" 
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of points with "randomly varying masses." These notions could be made 
, precise iI! terms of Poisson distributions, etc., but fortunately no subtleties 

are required for the problem at hand. ' ' 
Let us agree to treat the density of the stellar system as a free parameter 

and to let X;. stand for the x;.component of the gravitational force of a 
stellar system with density A.. We seek the conceivable types of such 
distributions. Now the intuitive notion ofa "random aggregate of stars" 
presupposes that two independent aggregates with densities sand t may be 
combined into a single aggregate of density s + t.' Probabilistically this 
amounts to the postulate that' the sum of two independent variables 
distributed as Xs and X t should have the same distribution as Xs+t • We 
indicate this symbolically by 

(2.4) 

Considering that a change of density from 1 to A. amounts to a change of 
the unit of length from 1 to l/{II and that the gravitational' force varies 
inversely with the square of the distance we see that X t must h~ve the 
same distri~ution as tiX l . This means that the d'istri-butions of X t differ 
only by a scale parameter and (2.4) reduces to (1.8) with ex = t. In other 
words, X;. has a symmetric stable f:listribution with exponent t . .It will tum 
out that (up to the trivial scale parameter) there, exists exactly one such 
distribution, and so we have solved our problem without' appeal to deeper 
theory. The astronomer Holtsmark obtained an' equivalent answer by 
other methods (see problem 7) and, remarkably, before P. Levy's work. 

(e) First-passage times in Brownian motion. We start from the notion 
of a one-dimensional diffusion process, that is, we suppose that the in
crements X(s+t) - X(s) for non-overlapping time intervals are inde
pendent and have a symmetric normal distribution with variance t. We 
assume as known that the paths depend continuously on time. If X(O) = 0 
there exists an epoch T a at which the particle' reaches the position a > 0 
for the first time. To derive the distribution function Fa(t) = P{Ta < t} 
we observe that the notion of an additive process presupposes a complete 
lack of after-effect (the strong Markov property). This means that the incre
ment X(t+ Ta) - a of the abscissa. between epochs Ta and Ta + t is 
independent of the process before Ta. Now to reach a position a+b> a 
the particle must first reach a, and we conclude that the ,residual waiting 
time Ta+b - '-:ra before reaching a + b is independent of Ta and has the 
same distribution as T b. In other words, Fa * Fb = Fa+b- But the transition 
probabilities depend only on the ratio x 2/t and therefore Ta must have the 
same' distribution as a2Tl _ This means that the distributions F<J differ 
only by a scale parameter and hence they are stable with exponent ex = 1_ 
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This argument, based on dimensional analysis, proves the stability of 
the first-passage distribution but does not lead to an explicit form. To 
show that F coincides with the distribution of example (c) we use a reasoning 
based on symmetry (the so-called reflection principle). Because of the 
assumed continuity of paths the event {X(t) > a} can occur only if the level 
a has been crossed at some epoch T a < t. Given that T a = T <t wehave 
X(T) = a, and for reasonS of symmetry the probability that X(t) - X(T) > 0 
is t. We conclude that 

(2.5) P{Ta < t} :..- 2P{X(t) > a} = 2[1 - ffi(a/v't)] 

which is equivalent to (2.1). 
(f) Hitting points in two-dimensional Brownian motion. A two-dimensional 

Brownian motion is formed by a pair (X(t), Y(t)) of independent one-
r . 

dimensional Brownian motions. We are interested in the point (a, Za) at 
which the path first reaches the line x = a > O. As in the preceding example 
we note that the path can reach the line x = a+b > a only after crossing 
the line x = a; taking(a~ Za) as new origin we conclude that Za+b has 
the same distribution as the sum of two independent varhbles distributed 
as Za and Zb' Now an obvious similarity consideration shows that Za has 
the same distribution as aZl and we conchide that Za has a symmetric 
stable di~tribution with exponent ex = 1. Only the Cauchy distribution fits 
this description, and so the hitting point Za has a Cauchy distribution. 

This instrudive dimensional analysis does not determine the scale param
eter. For an explicit calculation note that Za = Y(Ta) where Ta is the 
epoch when the line x = a is first reached. Its distribution is given in (2.5) 
while Y(t) has normal density with variance t. It foll~ws that Zit has a 
density given by6 

(2.6) 

(We haye here an example for the subordination of processes to which we 
shall return in X,7.) 

(g) Stable distributions in economics. Arguments related to the dimen
sional analysis in the last t~o e~amples have been used by B. Mandel brot 
to show that various economic processes (in particular income distributions) 
should Qe subject to stable (or "Levy-Pareto~') distributions. So fa~ the 
strength of this interesting theory, which has attracted attention among 
economists, resides in the theoretical argument rather than observ:).tions. 
[For the apparent fit of the tails of the distributio'n to many empirical 
phenomena from city size to word frequency see II,4(h).] 

6 The substitution y = l(x2 +a2)/t reduces the integrand to e-'II. 
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(h) Products. There exist many curious relCltions between stable distri
butions of different exponents. The most interesting' may be stated in the 
form ,')f the foHc'vving proposition. Let X and Y be indep(~ndent strictly 
stable variables with characterist~c exp'::.'n~nts :x and {3 respectively, 
Assume Y to be a positive va:dable (\~;h~;nce (3 < 1). The product Xylia 
has a stable distribution with expone!~i exp. In particular, the product cf a 
normal variable and the square root of the stable variable of ex{~m?!e ( .. ~) is a 
Cauchy variable . 

. The assertion follows as a simple coronary to a theorem concerning 
subordinated processes7 [example X,7(c)]. Furthermore, it is easily verified 
by Fourier analysis (problem 9 of XViI ,12) and, for positive variables, also 
by Laplace transforms [XIII,7{e) and problem 10 of XIII, 11]. 

3. INFINITELY DIVISIBLE DISTRIBUTI0NS IN jp 

Definition 1. A distribution F is infinitely divisible if for every n there 
exists a distribution Fn such that F = F~*. 

In other words} F is infiniteZv divisible iff for each n it can be represented 
as the distribution of the sum Sn = X1.n + ... + X n .n of n independent 
random var!ables with a common distribution F n' 

This definition is valid in any number of dimensions, but for the present 
we shall limit our attention to one-dimensional distributions. It should be 
noted that. infinite divisibility is a property 'of the type, that is, together 
with F all distributions difftring from F only by location parameters are 
infinitely divisible. Stable distributions are infinitely divisible· and dis
tinguished by the fact that F n differs from F only by location parameters. 

Examples. (a) On account of the convolution property 11,(2,3) all gamma 
distributions (including the exponential) are infinitely divisible.' That the 
same is true of their disGrete counterpart, the "negative binomial" (including 
the geometric) distributions was shown in 1; XII,2(e). 

(b) The Poisson and the compound Poisson distributions are infinitely 
divisible. It will turn out that all infinitely divisible distributions are limits 
of compound Poisson distributions. 

7 For a direct verification requiring a minimum of calculations find the distribution of 

Z = XlVYl + X2~ by first calculating the conditional distribution of Z given that 
Yl = Yl and Y2 = Y2' The distribution of Z is a function of Yl + Y2 and the change of 
variables u = Yl + Y2' V = Yl - Y2 shows that it differs only by a scale factor from that 
of the two summands. The same calcul~.tion 'Norks for sums of n similar terms. 

8 It should be understood th:lt thl! random variables Xk •n serve merely to render 
notations simpler and more intuitive. For fixed n the variables XUI' ...• Xn.n are 
supposed to pe mutually independent, but the variables X;.m and Xk •fI with m :F n need 
not be defined on the same probability space. (In other words, a joint distribution for 
Xk .m and Xk .fI need not exist.) This remark applies to triangular arrays in general. 
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(c) The distribution Il,(7.13) connected with Bessel functions is infinitely 
divisible but this is by no means obvious. See example XIII,7(d), 

(d) A distribution F carried by a finite interval is not infinitely divisible 
except if it is concentrated at one point. Indeed, if IS",I < a with probability 
one then IXk;nl < an-1 and so Var (Xk •n ) < a2n--2• The variance of F i.s 
therefore <a2n-1 and hence zero. ~. 

Returning to definition I let us consider what happens if we drop· the 
requireraent that the Xk •n have the same distribution and require only 
that for each n there exist n distributions Fl .n, ... , Fn.n such that 

(3.1) 

Such generality leads to a new phenomenon best illustrated by examples. 

Examples. (e) If F is infinitely divisible and U arbitrary, G = U * F 
can be written in the form (3.I) with Gl.~ = U and all other Gk .", equal 
to Fn - l . Here the first component plays an entirely different role from ~ll 
other components. 

(/) Consider a convergent series X = ~ Xk of mutually independent 
random variables. The distribution F of X is the convolution of the 
distributions of Xl' X2 , ••• , Xn - l and the remainder (Xn+XnH + ... ) 
and so F is of the form (3.1). Such distributions will be studied under the 
name of infinite convolutions. Example I,ll(c) shows the uniform distri~ 
bution to be among them. .. 

The distinguishing feature of these examples is that the contribution of 
an individual component XI . n to Sn is' ~ssential, whereas in the case of 
equally distributed components the contribution of eac.h tends to zero. 
We wish to connect infinitely divisible distribut.ions to the typical limit 
theorems involving "many small components." It is then necessary to 
supplement our scheme by the requirement that the individual components 
Xk •n become asymptotically negligible in the sense that for each €. > 0, 

(3.2) (k = 1, ... , n) 

for 11 sufficiently large. In the terminology of VrU,2 this means that the 
Xk,n tend in probability to zero uniformly in k = 1, ... , n. Systems of 
variables of this type appear so often that it it;, convenient to give them a 
name. 

Definition 2. By a triangular· array is meant a double sequ.ence of random 
variables Xk •n (k = 1, 2, ... ,n; n = 1, 2, ... ) such that the variables 
X1 . 1P ••• ,Xn . n of the nth row are mutually independent. 

The array is a null array (or has asymptotically negligible components) if 
(3.2) holds. 
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More generally on~ may consider arrays with r n variables in the nth 
row with r n --+ 00. The gain in generality is slight. (See problem 10.) 

Example. (g) Let {X;l be a sequence of identically distributed independ
ent random variables and 8 n = Xl + ... + Xn • The normalized sequence 
S,p;;l represent the nth row sum of a triangular array in which Xk •n = 
= XTfl;;l. This array is a null array if an --+ 00. An array of a different sort 
was considered in the derivation of the Poisson distribution in 1; VI,6. ~ 

In chapters IX and XVII we shall prove the remarkable fact that a limit 
distribution of the row sums 8 n of a triangular null array (if it exists) is 
infinitely divisible. As long as the asymptotic negligibility condition (3.2) 
holds it does not matter whether or not the components Xk • lI have a(common 
distribution, and in (3.1) we may replace the equality sign by a -lImit: the 
class of infinitely divisible distributions coincides. with the class of li~it 
distributions of the row sums of triangular nuB arrays. 

Examples for applications. (h) The shot effect in vacuum tu'bes. Variants 
and generalizations of the following stochastic process occur in physics 
and in communication engineering. 

We propose to analyze the fluctuations in electrical currents due to the 
chance fluctuations of the numbers of electrons arriving at an anode. It is 
assumed that the arrivals form a Poisson process, and that an arriving 
electron produces a current whose intensity x time unit later equals I(x). 
The intensity of the ~urrent at epoch t is then formally a random variable 

co 

(3.3) X(t) = Il(t-Tk ), 
k=l 

where the Tk represent the epochs,ofpast electron arrivals. (In other words, 
the variables t-TI , T2-TI , T3 -T2,. __ are mutually independent and 
have a common exponential distribution.) 

A direct analysis of the sum (3.3) by the methods of stochastic processes 
is not difficult, but the simple-minded approach by triangular arrays may 
serve as an aid to intuition. Partition the interval - 00, I into small 
subintervals with endpoints Ik = t - kh (where k = 0, 1, ... ). By the 
very definition of the Poisson process the contribution of the interval 
t lc ,lk_; to the sum in (3.3) is comparable to a binomia1 random variable 
assuming t!-Je value 0 with probability I - r.x.h and J(t-Ik ) with probability 
M. Theexpe~-:tation nfthis variable is r.x.h l(kh), its variance cxh(l-r.x.h) J2(kh}. 

We take h = l/-J~ and construct the trianguJar array in which Xk •n is 
the contribution of the interval tk,lk_ 1• The row sums have then expectation 
r.x.h ~ /(kh) and variance r.x.h(l--xh) L /2{kh). If any meaning can be attached 
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to the series (3.3) the distributions of the row sums must tend to the distri
bution of X(t) and so we must have 

(3.4) E(X(t» = '" f.~[(s) ds. Var (X(t» = '" I.~ [2(S) ds. . 

These conclusions are easily confirmed by the theory of triangular arrays. 
The r'!lations (3.4) are known as Campbell's theorem. At present it does 
not appear deep, but it was proved in 1909 decades ahead of a systematic 
theory. At that time it appeared remarkable and various proofs have been 
given for it. (Cf. problems 22 in VIII,10 arid 5inXVII,12.) . 

(i) Busy tr~nk/ines. A variant of the 'preceding example may illustrate 
the types of possible generalizations. Consider a telephone exchange with 
infinitely many trunklines .. The incoming calls form a Poisson process, and 
an arriving call is directed to a free trunkline. The ensuing holding times have 
a common distribution F; as usual, they are assu'med independent of the 
arrival process and of each other. The number of busy lines at epoch t is a 
random variable' X(t) whose distribution' can oe derived by the method of 
triangular arrays. As in the p'receding example we partition 0, t, into n 
intervals of length h = tIn and denote by Xt •n the number of conversations 
that originated betweenn - kh and n- (k-l)h --and are still going on at 
epoch t. 'When n is large the variable Xk •n assumes in practice only the 
values 0 and 1, the latter with probability exh[l-F(kh)].' The-expectation of 
Sn is then the sum of these probabilities, and· passing to the limit we conclude 
that the number of busy lines has expectation 

(3.5) E(X(t» = ex Lco [l-F(s)] ds. 

Note that the integral equals the expectation of the holding times. • 

Historical note. The notion of infinite divisibility goes back to B. de Finetti (1929). 
The Fourier transforms of infinitely divisible distributions with finite variance were 
found by A. Kolmogorov (1932),'and those of the general infinitely divisible distributions 
by P. Levy (1934), who also treated the problem from the point of view of stochastic 
processes. All subsequent investigations were strongly influenced, by his pioneer work. 
The first purely analytical derivations of the general formula were given in 1937 inde
pendently by Feller and Khintchine. These authors proved also that the limit distributions 
of null arrays are infinitely divisible. 

4. PROCESSES WITH INDEPENDENT INCREMENTS 

Infinitely divisible distrib1Jtions are intimately connected with stochastic 
processes with independent increments. By this we mean a family of random 
variables X(t) depending on the continuous time parameter t and such that 
the in ---ements X(tt+l) - X(tt) are mutually independent for any finite set 
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tl < t2 < ... < tn' At this juncture we require no theory of stochastic 
processes; we argue simply that if certain phenomena can be described 
probabilistically, the theory will lead to infinitely divisible distribution~. In 
this sense we have considered special processes with independent increments 
in 1; XVII,I and in example III,8(a). We limit our attention to numerical 
variables X(t) although the theory carries over to vector v~riabJes. 

The process has stationary increments if the distribution of X(5+t) - X(s) 
depends only on the length t of the interval but not on s. 

Let us partition the interval s, s+t by n + 1 equidistant points 
s - to < tl < ... < tn = S + t and put X k •n = X(tk )- X(tk _ 1). The 
variable X(s+t) - X(s) of a process with stationary independent increments 
is the sum of the n independent variables Xk •n with a comm'On di~tribution 
and hence X(s+t) - X(s) has an infinitely dbJisible distribution. We- shall 
~see that the converse is - also true. In fact, a one-parametric family of 
probability distributions Qt defined for t > 0 can serve as the distribution 
of X(s+t) ~X(s) ;n a proc~ss with stationary independent increments iff 

(4.1) QS+l = Qs * Qt s, t > o. 
A family of distributions satisfying (4.1) is said to form a semi-group :,ee 
IX,2). Every infinitely divisible distribution can be taken as element Qe 
(with t > 0 arbitrary) of such a semi-group. 

Before passing to the non-stationary case let us consider typical examples. 

Examples. (a) The compound Poisson process. With an arbitrary pro~
ability distribution F and ex. > 0 

(4.2) 

defines a compound Poisson distribution, and it is easily verified that (4.1) 
holds. Suppose now that Qt represents the distribution of X(t)- X(O) 
in a stochastic process with stationary independent increments. When F 
is concentrated at the point 1 this process reduces to an ordinary Poisson 
process and (4.2) to - -

(4.3) P{X(t) - X(O) = n} = e-at (ex.t)n. 
n! 

The general model (4.2) may be interpreted in terms of this special 
Poisson process as follows. Let Y1 , Y2 , •.. be independent variables with 
the common distribution F, and let N(t) be t~e variable of a pure Poisson 
process with P{N(t) = n} =e-al(ex.t)n/n!, and independent of the Y k . Then 
(4.2) representS the distribution of the random sum Y1 + ... + YN(t). 
In other words, with the nth jump of the Poisson process there is associated 
an effect Y 7P and X(t) - X(O) represents the sum of the effects occurring 
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during 0, t. The randomized random walk studied in 11,7 isa compound 
Poisson process with Yk assuming the values ± 1 only. Empirical applica
tions are illustrated at the end of this section. 

(b) Brownian motion or the Wiener-Bachelier process. Here X(O) = 0 
(the process starts at the origin) and the increments X(t+s) - Xes) have 
a normal distribution with zero expectation and variance t. Wiener and 
Levy have shown that the sample functions of this process are continuous 
with probability one, and this property characterizes the normal distribution 
among all infinitely divisible distributions. 

(c) Stable processes. The relation (1.8) for a strictly stable distribution 
merely paraphrases (4.1) with Qt(x) = R(r-1/ax). Thus this distribution 
defines transition probabilities in a process with stationary independent 
increments; for ex. = 2 it reduces to Brownian motion. ~ 

The main theorem of the theory (see chapters IX and XVII) states that the 
most general solution of (4. I)-and hence the most general infinitely divisible 
distribution-may be represented as a limit of an appropriate sequence of 
compound Poisson distributions. This result' is surprising in view of the 
great formal difference between examples (a) and (b). 

Even in non-stationary processes with independent - increments the 
distribution of X(t+s) - X(t) appears as the distribution of the row 
sums of our triangular array {Xk,n}' but a slight continuity condition 
must be imposed on the process to assure that (3.2) holds. Example (e) will 
explain this necessity. Under a slight restriction only -infinitely divisible 
distributions appear as distributions of X(t+s) - X(t). 

Examples. (d) Operational time. A simple change of the time scale will 
frequently reduce a general process to a more tractable stationary proc~ss. 
Given any continuo~s increasing function cp we may switch froin the 
variable X(t) to Y(t) = X(cp(t». The _property of indepeQ,dent increments 
is obviously preserved, anc;l with an appropriate choice' of cp the new 
process may also have stationary increments. In practice the choice is 
_usually dictated by the nature of things. For example, at a telephone 
exchange nobody would compare ~n hour at night with the busy hour 
of the day, while it is natural to measure time in variable units such t.hat the 
expected number of calls per unit remains constant. Again, in a growing 
insurance business claims will occur at an accelerated rate but this departure 
from stationarity is removed by the simple expedient of introducing an 
operational time measuring the frequency of claims. 

(e) Empirical applications. An unending variety of practical problems 
can be reduced to compound Poisson· processes. Here are a few typical 
examples. (i) The accumulated damage due to automobile accidents, fire, 
lightning, etc. For application~ to collective risk theory see example Sea). 
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(ii) The total catch by a fishery boat in search of schools of fish (J. Neyman). 
(iii) The content of water reservoirs due to rainfall and demand. Other 
storage facilities are treated in like manner. (iv) A stone at th~ pottom of a 
river lies at rest for such long periods that its successive displacements are 
practically instantaneous. The total displacement within time 0, t may be 
treated as a compound Poisson process. (First treated by different methods 
by Albert Einstein Jr. and G. Polya.) (v) Telephone calls, or customers, 
arriving at a server require service. Under appropriate conditions the total 
service time caused by arrivals \,Vithin the time interval 0, t represents a 
compound Poisson process. The remarkable "feature of this process is that 
the value of ,X(t) is '!ot observable at epoch t because it depends on service 
times that stilI lie in the future. (vi) For energy changes of physical particles 
due to collisions see example X, l(b). ~ 

*5. RU~ PROBL~S IN COMPOUND POISSON 
PROCESSES 

Let X(t) be the variable of a compound Poisson process, that is, the 
increment X(t+s) - X(s) over any time interval of duration t has the 
,probability distribution: Qt of (4.2). Let c > 0 and z:> 0 be fixed. By 
ruin we mean the event -

(5.1) {X(t) >. z + ct}. 

We regard' c as a constant and z > 0 as a free parameter, and, we denote 
by 'R(z) the probabiliiy that no ruin will ever occur. We shall argue formally 
that if the ,problem ma~es sense R(z) must be a non-increasing solution of 
'the functio'nal equation (5.2). First a few examples may indicate the v~riety 
of practical s~tuations to ,which our problem is applicable. 

" . 

Examples. (a) Collec,tive risk theory. 9 Her:e X(t) 'stands for the- accumu-
lated amount of claims within the time interVal" 0, t against an insurance 
company. Itis assumed tl1at the ocCurrence of claims is subject to a Poisson 
process and that. the individual claims have the distribution F. In principle 
these "claims" may ~e positive or negative. (For example, a death may free 
the company of an obligation and increase the reserves.) In practice a grow
ing company will measure time iIi operational, -units proportional to the 

. . . ; 

• This section treats a special topic. It is of great practical interest, but will not be 
referred to in the present book except for examples where it will be t~ted bynew methods. 

9 ~ huge literature is- devoted to this theory (inaugu~ted by F. Lundberg). For a 
relatively recent survey see H. Gramer, ~n so,,:,e questions connee,ted with mathematical risk, 
U~iv. Calif. Publications in Statistics, vol. 2, no. 5 (l954) pp. 99-125. Cramer's asymptotic 
~stlmates (obtained by deep Wiener-Hopftechniques) are obtained in an elementary manner 
In examples XI,7(a) and XII,~(d). 
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total incoming premiums [see example 4(d)]. It may then be assumed 
that in the absence of claims the reserves increase at a constant rate . c. 
If z stands for the initial reserves at epoch 0, the company's total reserve at 
epoch t is represented ~y the random variable z + ct - X(t), and "ruin" 
stands for a negative reserve, that is, failure. 

(b) Strong facilities. An idealized water reservioir is being filled by 
rivers and rainfall at a constant rate c. At random intervals the reservoir 
is tapped by amounts Xl' X2 , • • •• The compound Poisson model applies 
and if z stands for the initial content at epoch 0 then z + ct - X(t) 
represents the content at epoch t provided that no ruin occurs before t. 
For the huge literature ~n related problems see the monographs listed at the 
end of the book. 

(c) Scheduling of patients. IO We agree to treat the times devoted by a 
doctor to his patients as independent random variables with an exponential 
distribution and mean duration a-I. As long as treatments continue without 
interruption the departures of treated patients are subject to an grdinary 
Poisson process. Let X(t) stand for the number of su~h departures within 
- . 
0, t. Suppose that z patients are waiting at epoch 0 (the beginning of the 
office hours) and that thereafter new patients arrive at epochs c-l , 2c-1 , 

3c-l , .... The doctor will not be idle as long as X(t) < z + ct. ~ 

The following formal argument leads to an equation determinirig the 
probability of ruin R. Suppose that the first jump of the sample function· 
occurs at epoch T and has magnitude x. For no ruin ever to occur it is 
necessary that x < Z + CT and that for all t > T the increments X(t) - x 
be < z - x + ct. Such increments being independent of the past the latter 
event has probability R(Z-X+CT). Summing over all p~ssible T and x we 
get 

(5.2) J.
oo iz+cr 

R(z) = ae-ar.dT R.(Z+CT-X) F{dx}. 
o -00 

This is the desired equation, but it can be simplified .. The change of variable 
s = Z + CT leads to 

(5.3) R(z) = ~ e-(a!.;)(s-z) ds R(s-x) F{dx}. 
J

'oo is 
. c z -00 

Consequ~ntly R· is differentiable, and a simple differentiation lead~ to the 
final integro-dijferential equation 

(5.4) . a aJz. 
R'(z) = ~ R(z) - C -00 R(z - x)F{dx}. 

10 R. Pyke, The supremum and infimum of the Poisson process,. Ann. Math. Statist., vol. 
30(959) pp. 568-576. Pyke treats only the 'pure Poisson process but obtains more precise 
results (by different methods). 



Note that by definition R(s) = 0 for s < 0 so that the integral on the 
right is the convolution F* R. We shall return to (5.4) in examples 9(d); 
XI, 7(a); and XII,5(d). 

6. RENEWAL PROCESSES 

The basic notions of renewal theory were introduced in 1; XIII in 
connection with recurrent events. It will be seen that the introduction of a 
continuous time parameter depends on notational, rather than conceptual, 
changes. The salient feature of recurrent events is that .the successive waiting 
times T k are mutually independent random variables with a common 
distribution F; the epoch of the nth occurrence is .given by the sum 

{6.1) 

By convention So = 0 and 0 counts as o~urrence· number zero. 
Even in stochastic processes depending on a continuous time parameter 

it is frequently possible to discover one or more sequences of epochs of 
the form (6.1). In such cases surprisingly sharp results are obtainable by 
simple methods. Analytically we are concerned merely with sums of 
independent positive variables, and the only excuse for introducing the term 
"renewal process" is its frequent occurrence in connection· with other 
processes and the tacit implication that the ,powerful tool of the .renewal . 
equation is used.l1 

. . 
Definition 1. A sequence of random variables Sn constitutes a renewal 

process if it is of the form (6.1) where the TJ: are mutually independent 
variables with a common distribution F such that12 F(O) = o. 

Th~, ;ar:ables being positive there is no da~r i~ TI{lll~ll· i[I~l 

even !the integral diverges (in which case we write,. = 00). The expectation 
p will be called mean recurrence time. As usual in similar situations, it is 
irreJevant for our present analysis whe.ther the variables Tk occur in some 
stochastic proces,s or whether the seque~ce {Ti } itself defines our probability 
space. 

In most (but not all) applications the T J can be interpreted as "waiting 
times" and the Sn are. then referred to as renewal (or regeneration) epochs. 

r---I 
It seems intuitively obvious that for a fixed finite interval I = a, b the 

number of renewal epochs Sn falling within I is finite with probability 

11 For a more sophisticated generalization of the recurrent events see J. F. C. Kingman. 
The stochastic theory of regenerative events. Zeitschrift Wahrscheinlichkeitstheorie, vol. 2 
(1964) pp. 180-224. 

12 An atom of weight p < 1 at the origin would have no serious effect. 



VI.6 RENEWAL PROCESSES 185 

one and hence is a well-defined random var'iable N. If the event {Sn E I} 
.is called "success" then N is the total number of ,successes in infinitely many 
trials and its expectation equals 

ex> ex> 

(6.2) U{I} = 2 P{Sn E I} = 2 Fn*{I}. 
n=O n=O 

For tht? study of this mea~ure we introduce, as usual, its distripution function 
·defined by 

ex> 

(6.3) U(x) = 2 Fn*(x) 

It js understood that U(x) = 0 for x < 0, but U has an atom of unit 
weight at the origin. 

In the discrete case studied in 1; XIII the measure U was concentrated 
at the' integers: Uk stood for the probability that one among the Sn equals 
k. Since this event can occur only once, Uk can also be interpreted as the 
expected number of n for which S~ = k. In the present situation U{/} 
must be interpreted as· an expectation rather than as a probability because 
the event {Sn E /} can occur for many n. 

It is necessary to prove that U(x) <.00. From' the definition of con-

volutions for distributions concentrated on 0, 00 it is clear that 
Fn *(x) < Fn(x), and hence the series in (6.3) converges at least geometrically 
at each point where F(x) < 1. There remains the case of distributions 
concentrated on a finite interval, but then there exists an integer r such that 
F r *(x) < 1. The terms with n = r, 2r, 3r, ... form a convergent subseries, 
and this implies the convergence of the whole series in (6.3) because its terms 
depend monotonically on n. ' 

As in the discrete case the renewal measure U is intimately connected with 
the renewal equation 

(6.4) 

Spelled out it reads 

(6.5) Z(x) = z(x) + fZ(X-Y) F{dy}, ,x> 0, 

where the interval of integration is considered dosed. Actually the limits of 
integration may be replaced by - 00 and 00 provided it is understood that 
z(x) = Z(x) = 0 for x < O. We shall adhere to this convention. 

The basic fact concerning the renewal equation is contained in 

Theorem 1. If z is bounded and vanishes for x < 0 the convolution 
Z = U* z defined by 

(6.6) Z(X) = fZ(X-y) U{dy} 
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represents a solution of [he renewal equation (6.5). There exists no other 

solution vanishing on - 00, ° and bounded on finite intervals. 

Proof. We know already that the series (6.3) defining U con
verges for all x. Taking the convolution with z it is seen that Z is 
bounded on finit~ intervals and satisfies the renewal equation. The difference 
of two such solutions would satisfy V = F * V, and hence also V = 
= Fn * * V for all n. But Fn *(x) ~ 0 for all x, and if V is bounded this 
implies that VEx) = ° for all x. ~ 

\Ve shall return to the renewal equation in XI~ 1 where we shall study the 
asymptotic properties of V and Z. (For a generalized version of the renewal 
equation see section 10.) 

It should be noticed that U itself satisfies 

(6.7) . Vex) = 1 + S.;I; V(x-y) F{dy}, x> 0, 

which is the special case of the renewal equation with z = 1. This can be 
seen directly by a probabilistic reasoning known as "renewal argument" 
which is of frequent use. Since ° counts as a renewal epoch the expected 

I--i 
number of renewal epochs in the closed interval 0, x is one plus the expected 

-I 
number in the half-open interval 0, x. This interval contains renewal 
epochs only if T1 < x; given that T1 = Y < x, the exrected number of 

----l 
renewal epochs in 0, x equals V(x-y). Summing ~wer y we get (6.7). 

Two simple generalizations of the renewal process are useful. First, by 
analogy with transient recurrent events we may permit defective distributions. 
The defect q = 1 - F( (0) is then interpreted as probability of termination. 
Abstractly speaking, the real line is enlarged by a point .Q called "death," 
and Tk is either a positive number or n. for ease of reference we introduce 
the informal 

Definition 2.13 A terminating or transient renewal process is an ordinary 
rene~\;'al process except that F is defective. The defect q = 1 - F(oo) is 
interpreted as probability of termination. . 

For consistency, 0 is counted as renewal epoch number zero. The prob
ability that the process effectively survives the renewal epoch number n 
equals (! _q)n and tends to 0 as n ~ 00. Thus with probability one a 
terminmhw process ~erminates at a finite time. The total mass of Fn * is 
(l_q)n :lIlU so the expected number of renewal epochs is U( (0) = q-1 < 00. 

This is, so to speak, the expected number of generations attained by the 

13 See example 7([) for an illustration and problem 4 for a genen!.lizalion .. 
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process. The probability that Sn ~ x and the process dies with this nth 
renewal epoch is qFn *(x) . . We have thus the 

, . 
Theorem 2. In a terminating renewal process, qU is the proper prob-

ability distribution of the duration of the process (age at time of death). 

The second generalization corresponds to delayed recurr,ent events and 
consists in permitting the initial waiting time to have a different distribution. 
In such cases we begin the numbering of the Tj with j = 0 so that now 
So = To #- O. -

Definition 3~ A sequence So, S1, ... forms a delayed renewal process if it 
is of the form (6.1) where the Tk are mutually independent strictly positive 
(proper or defective) variables and Tb T2 , ••• (but not To) have a common 
distribution. 

7. EXAMPLES AND PROBLEMS 

Examples such as self-renewing aggregates, counters, and population 
growth carryover from the discrete case in an obvious manner. A special 
problem, however, will lead to interesting questions to be treated later on. 

Example. (a) An inspection paradox. In . the theory of self-renewing 
aggregates a piece of equipment, sayan electric battery, is installed and 
serves until it breaks' down. Upon failure it is instantly ~eplaced by a like 
battery and the process continues without interruption. The epochs of 
renewal form a renewal process in which' Tk is the lifetime of the kth battery. 

Suppose now that the actual lifetimes are to be tested by inspection: 
we take a sample of batteries in operation at epoch t > 0 and observe their 
lifetimes. Since F is the distribution of the lifetimes for all batteries ~ne 
expects that this applies also to the inspected specimen. But this is not so. In 
fact, for an exponential distribution F the situation differs only verbally from 
the waiting time paradox in 1,4 where the lifetime of the inspected item has 
an entirely different distribution. The fact that the. item was inspected at 
epoch t changes its lifetime distribution and doubles its expected duration. 
We shall see in XI,(4.6) that this situation is typical of all rl!newal processes. 
The practical implications are serious. We see that an apparently unbiased 
inspection plan may lead to false' conclusions because what we actually 
observe need not be typical of the population as a whole. Once noticed the 
phenomenon is readily understood, (see 1,4), but it reveals nevertheless 
possible pitfalls and the necessary interplay between theory and practice. 
Incidentally, no trouble arises if one decides to test the first item installed 
after epoch t. ~ 

. This is a good occasion to introduce three random variables of interest in 
renewal theory. In the preceding example all three refer to the item in 
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operation at epoch t > 0 and may be described by the self-explanatory 
terms: residual lifetime, spent lifetime, and total lifetime. The formal 
definition is as follows. 

To given· t > 0 there corresponds a unique (chance-dependent) subscript 
N l such that SN

t 
< t < SN

t
+l. Then: 

(a) The residual waiting time is SN,+1 - t, the time from t to the next 
renewal epoch. 

(b) The spent waiting time is t - SN" the time elapsed since the last 
renewal epoch. 

(c) Their sum SN,+1 - SN, = T N,+1 is the length of the recurrence 
interval covering the epoch t. 

The terminology is not unique and varies with the context. For example, 
in random walk our residual waiting time is called point of first entry or 

hitting point for the interval t, 00. In the preceding example the word 
lifetime was used for waiting time. We shall investigate the three variables 
in XI,4and XIV,3. 

The Poisson process was defined as a renewal process with an exponential 
distribution for the recurrence times T;. In many server and counter 
problems it is natural to assume that the incoming traffic forms a Poisson 
process. In certain other processes the interarrival times are constant. To 
combine these two cases it has become fashionable in queuing theory to 
admit general renewal processes with arbitrary interarrival times. 14 

We turn to problems of a fairly general character connected with renewal 
processes. The distribution underlying the process is again denoted by F. 

We begin with· ~hat could be described roughly as the "waiting time W 
for a large gap." Here a renewal process with recurrence times T; is 
stopped at the first occurrence of a time interval of duration ~ free of 
renewal epochs, whereupon the process stops. We derive a renewal equation 
for the distribution V of the waiting time W. .As the latter necessarily 
exceeds ~ we have Vet) = 0 for t < ~. For t > ~ consider the mutually 
exclusive possibilities that Tl > ~ or Tl = Y <~. In the first case the 
waiting time W equals ~. In the second case the process starts from 
scratch and, given that Tl = y, the (conditional) probability of {W < t} 
is V(t~y). Summing over ·all possibilities we get . 

(7.1) 
fH 

Vet) = 1 - F(~) + Jo V(t-y) F{dy}, 

and, of course, Vet) = 0 for t < ~. This equation . reduces to the standard 

14 The generality is I somewhat deceptive because it is hard to find practical examples 
besides the bus running without schedule along a circular route. The illusion of generality 
detracts from the sad fact that a non-Poissonian input is usually also non-Markovian. 



VI.7 EXAMPLES AND PROBLEMS 189 

renewal equation 

(7.2) 

with the defective distribution G defined by 

(7.3) G(x) = F(x) if x < ~; G(x) = F(~) if x > ~ 
and 

(7.4) z(x) = 0 if x <~; . z(x) = 1 - F(~) if x > ~. 
The most important special case is that of gaps in a Poisson process 

where F(t) = 1 - e-ct and the solution V is related to the covering 
theorems of 1,9 [see .problem 15 and example XIV,2(a). For a different 
approach see problem 16.] 

Examples for empirical applications. (b) Crossing a stream of traffic. Is 

Cars move in a single lane at constant speed, the successive passages forming 
a sample from a Poisson process (or some other renewal process). A 
pedestrian arriving at the curb-or a car arriving at an intersection-will 
start crossing as soon as he observes that no car will pass during the next ~ 

seconds, namely the time required for his crossing. Denote by W the time 
required to effect the crossing, that is, the waiting time at the curb plus ~. 

The distribution V of W satisfies (7.1) with F(t) = 1 - e-ct • [Continued' 
in examples XI,7(b) and XIV,2(a).] 

(c) Type II Geiger counters. Arriving particles constitute a Poisson 
process and each arriving particle (whether registered or not) locks the 
counter for a fixed time ~. If a particle is registered, the counter remains 
'"dead" until the occurrence of an interval of duration ~ without new 
arrivals. Our theory now applies to the distribution V of the duration of 
the dead period. (See 1; XIII, 11, problem 14.) . 

(d) Maximal observed recurrence time. In a primary renewal process 
denote by Zt the maximum of T j observed16 up to epoch t.· The event 
{Zt < ~} occurs iff up to epoch t no time interval of duration ~ was free 
of renewal epochs, and so in our notations P{Zt> ~} = Vet). ~ 

A great many renewal processes occurring inapplications may be described 
as alternating or two stage processes. Depending on the context the two stages 
may be called active or passive, free or dead, .excited or normal. Active and 
passive periods alternate; t~eir durations are independent random variables, 
each type being subject to a common distribution. 

15 For the oldq literature and variants (treated by different methods) see J. C. Tanner, 
The delay to pedestrians crossing a road, Biometrika, vol. 38 (1951) pp. 383-392. 

16 More precisely, if n is the (chance-dependent) index for which Sn-I S t < Sn then 
Zt = max [TI , ... , Tn-I' ;J. Variabl~s of this nature were studied systematically by 
A. Lamperti. 
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Examples. (e) Failures followed by delays. The simplest example is given 
by actual replacemen~s of a piece of equipment if each failure is followed by 
a delay (to be interpreted as time for discovery or repair). The successive 
service times T1 , T2 , . •• alternate with the successive dead periods Yh 

Y2, ... and we get a proper ren~wal process with recurrence times T; + Vi' 
The same process may. b~ viewed as delayed renewal process with the first 
renewal epoch at T1 , and recurrence times Y; + TH1• 

(f) Lost calls .. Consider a single telephone trunkline such that the 
incoming calls form a Poisson process with interarrival distribution 
G(t) = I - e-ct while the durations of the ensuing conversations are 
independent random variables with the common distribution F. The 
trunkline is free or dead, and calls arriving during dead periods are lost and 
have no influence on the process. We have here a two stage process in which 
the distribution of the recurrence times is F * G. (See problem 17 as well 
as problems 3-4 in XIV,IO.) 

(g) Last come first served. Sometimes the distributions of the alternating 
waiting times are not known a priori but must be calculated from other data. 
As an example consider a data processing machine in which new information 
arrives in accordance with a Poisson process so that the free periods have an 
exponential distribution. The time required to process the new information 
arriving at any epoch has a probability distribution G. 

Busy and free periods alternate, but the duration of busy periods depends 
on the manner in which information arriving during a busy period is treated. 
In certain situations only the latest information is of interest; a new arrival 
is then processed immediately and all previous information is discarded. 
The distribution V of the duration of the busy periods must be calculated 
from a renewal equation (see problem 18). 

(h) Geiger counters. In type I counters each registration is followed by 
a dead period of fixed duration ~ and arrivals within the dead period 
have no effect. The process is the same as described in example ( e), the 
Ti having an exponential distribution, the Yi being equal to ~. In type 
II counters also the unregistered arrivals produce lockinz and the situation 
is the same except· that the distributions of the Y i depend on the primary 
process and must be calculated from the renewal equation (7.1) [example 
(c)]. ~ 

8. RANDOM WALKS 

Let Xh X2 , ••• be mutually independent random variables with a 
common distribution F and, as usual, 

(S.1) So = 0, 

We say that Sn is the position, at epoch n, of a particle performing a 
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general random walk. No new theoretical concepts are introduced,17 but 
merely a terminology for a short and intuitive description of the process 
{Sn}. For example, if I is any interval (or other set), the event {Sn E /} 

is called a visit to I, and the study of the successive visits to a given interval 
I reveals important characteristics of the fluctuations of Sl, S2, . . .. The 
index n will be interpreted as time parameter and we shall speak of the 
"epoch n." In this section we describe some striking features of random 
walks in terms of the 'successive record values. The usefulness of the results 
will be shown by the applications in section 9. A second (independent) 
approach is outlined in section 10. 

Imbedded Renewal Processes 

A record value occurs at epoch n > 0 if 

(8.2) j=O,l, ... ,n-l. 

Such indices may not exist for a given sample path; if they do exist they 
form a finite or infinite ordered sequence. It is therefore legitimate to speak 
of the first, second, ... , occurrence of (8.2). Their epochs are again random 
variables, but possibly defective. With these preparations we are now in a 
position to introduce the important random variables on which much of the 
analysis of random walks will be based. 

Definition.. The kth (ascending) ladder index is the epoch of the kth 
occurrence of (8.2). The kth ladder height is the value of Sn at the kth 
ladder epoch. (Both random variables are possibly defective.) 

The descending ladder variables are defined in like mariner with the inequality 
in (8.2) reversed. 18 

The term ascending will be treated as redundant and used only for emphasis 
or clarity. 

In the graph of a sample path (So, Sl, ... ) the ladder points appear as 
the points where the graph reaches an unprecedented' height (record value). 
Figure 1 represents a random walk {Sn} drifting to - 00 with the last 
positive term at n = 31. The 5 ascending and 18 descending ladder points 
are indicated by • and 0, respectively. For a random walk with Cauchy 
variables see figure 2. (page 204) 

17 Sample spaces of infinite random walks were considerecf. also in volume 1, but there 
we had to be careful to justify notions such as "probability of ruin" by the obvious limiting 
processes. Now these obvious pas,sages to the limit are justified by measure theory. 
(See IV,6.) 

18 Replacing the defining strict inequalities by > and ~ one gets the weak ladder 
indices. This troublesome distinction is unnecessary when the underlying distribution is 
continuous. In figure 1 weak ladder points are indicated by the letter w. 
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Figure 1. Random Walk and the Associated Queuing Process. The variables Xn of the 
random walk {Sn} have expectation -1 and variance 16. Ascending and descending ladder 
points are indicated by • and 0, respectively. The seventh ladder point is (26, 16) and 
represents with high probability the maximum of the entire random walk. 

[The letter w indicates where a record value is ass~med for a second or thir~ time; 
these are the weak ladder points defined by (8.2) when the strict inequality is replaced 
by >.] 

Throughout the graph 8 n exceeds its expected value -11. In fact, n = 135 is the first 
index such that Sn < -n (namely S135 = -137). This accords with the fact that the 
expectation of such n is infinite. 

The variables Xn are of the form Xn = ~n - .9In, where the variables ~n and d n are 
mutually independent and uniformly distributed over 1, 3, 5, 7, 9 and 2, 4, 6, 8, 10, 
respectively. In example 9(a) the variable Wn represen.ts the total waiting time of the nth 
customer if the interarrival times assume the values 2, 4, 6, 8, 10 with equal probabilities 
while the service times equal 1,3,5, 7, or 9, each with probability t. The distribution of Xn 
attributes probability (5 - k)/25 to the points ±2k - 1, where k = 0, 1, 2, 3,4. 

Example. (a) In the "ordinary" random walk F has the atoms 1 and -1 
with weights p and q. The ascending ladder variables are defective if 
q > p, the defect p!q [see 1; XI,(3.9)]. The kth ladder height necessarily 
equals k and for this n~ason volume 1 mentions only ladder epochs. The 
kth ladder index is the epoch of the first visit to the point k. Its distribution 
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was found in 1; XI,4(d) and in the special case p = l al~eady in tneorem 
2 of 1; 111,4. 

The first ladder index' ff 1 is the epoch of the first entry into 0, 00, and the 
first ladder height £1 equals SoY

l
' The continuation of the random walk 

beyond epoch ffl is a probabilistic replica of the entire random walk. 
Given that ffl = n, the occurrence of a second ladder index a an epoch 
k > n depends only on Xn+l"'" Xk , and hence the number of trials 
between the first ladder index and the second is a random variable ff2 which 
is independent of ffl and has the same distribution. In this way it is seen 
more generally that the kth ladder index and the kth ladder height may be 
written in the form 

where the .':Y j and.Yt'j are mutually independent random variables distributed, 
respectively, as ffl and £'1' In other words, the ladder indices and heights 
form (possibly terminating) renewal processes. 

For terminating processes it is intuitively obvious that Sn drifts to 
- 00, and with probability one Sn reaches a finite' maximum. The next 
section will show that the ladder variables provide a powerful tool for the 
analysis of a class of processes of considerable practical interest. 

Example. (b) Explicit expressions. Let F have the density defined by 

(8.3) abe
ax if '< 0 1 X • 

a + b . , 
abe-

bX if > 0 I X. • 

a + b 

This random walk has the rare distinction that all pertinent distributions 
can be calculated explicitly. It is of great interest in queuing theory because 

f is the convolution of two exponential densities concentrated on 0, 00 
and - 00, 0, respectively. This means that Xj may be written as the 
difference Xj '= (!Jj - sl j of two positive exponentially distributed random 
variables. Without loss of generality we assume a < b. 

The ascending ladder height .1C 1 has the density ae-bx
; this variable is 

defective and its defect equals (b -a)jb . . The ascending ladder epoch ffl 
has the generating function b-1p(s) where 

------'--
(8.4) 2p(s) = a + b - .J (a+b)2 - 4abs. 

The defect is again (b -a)lb. 
The descending ladder height ~l has density aellX for x < 0, the 

descending ladder epoch ::T; has, the generating function a-1p(s). In 

the special case a = b it: reduces to I -.J I-s, and this generating 
function is familiar from ordinary random walks (or coin tossing). [For 
proofs and other results see XII,4-5 and XVIII,3. See also example 4 e).J 
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9. THE QUEUING PROCESS 

An incredibly voluminous literature19 has been devoted to a variety of 
problems connected with servers, storage facilities, waiting times, etc. 
Much progress has been made towards a unification, but the abundance 
of small variants obscures the view so that it is difficult to see the forest for 
the trees. The power of new and general methods is still underrated. We 
begin by a formal introduction of a stochastic process defined by a recursive 
scheme that at first sight appears artificial. Examples will illustrate the wide 
applicability of the scheme; later on we shall see that sharp results can be 
obtained by surprjsingly simple methods. (See XII,S.) 

Definition 1. Let Xb X 2, • •• be mutually independent random variables 
with a common (proper) distribution F. The induced queuing process is the 
sequence a/random variables Wo, Wb ... defined recursively by Wo = 0 and 

W n + Xn+l if W n + X n+ 1 > 0 
W n+1 = 

o if W n + Xn+l < 0 
(9.1) 

In short, W n+l = (W n + X n+1) U O. 
For .an illustration see figure 1. 

Examples. (a) The one-server queue. Suppose that "customers" arrive 
at a "server" the arrivals forming a proper renewal process with inter
arrival times20 d 1 , d 2 , •• '. (the epochs of arrivals are 0, d 1 , d 1 + d 2 , ••• 

and the customers are labeled 0, 1, 2, ... ). With the nth customer there 
is associated a service time [JI n' and we assume that the fJI n ~re independent 
of the arrivals and of each other and subject to a common distribution. 
The server is either "free" or "busy"; it is free at the initial epoch O. The 

19 For references consult the specialized books listed in the bibliography.· It would be 
difficult to give a brief outline of the development of the subject with a proper assignment 
o'r credits. The most meritorious papers responsible for new methods are now rendered 
obsolete by the progress which they initiated. [D. V. Lindley's integral equation of queuing 
theory (1952) is an example.] Other papers are noteworthy by their treatment of (some
times very intricate) special problems, but they find no place in a skeleton survey of the 
general theory. On the whole, the prodigal literature on the several subjects emphasizes 
examples and variants at the expense of general methods.· An assignment of priorities is 
made difficult also by the ,many duplications. [For example, the solution of a certain 
integral equation occurs in a Stockholm thesis of 1939 where it is credited to unpublished 
lectures by Feller in 1934. This solution is now known under several names.] For the 
history see two survey papers by D. G. Kendall of independent interest: Some problems in 
the theory of queues, and Some problems in the theory of dams, J. Roy. Statist. Soc. Series 
B vol. J.3 (1951) pp. 151-185, and vol. 19 (1957) pp. 207-233. 

20 Nom1ally the interarrival times will be constant or exponentially distributed but it is 
fashionable to permit arbitrary renewal processes; seC' footnote 14 to section 7. 
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sequel is regulated by the following rule. If a customer arrives at an epoch 
where the server is free, his service commences without delay. Otherwise 
he joins a waiting line (queue) and the server continues uninterruptedly to 
serve customers in the order of their arriva121 until the waiting line dis
appears and the server becomes "free." By queue length we mean the number 
of customers present including the customer being served. The waiting time 
W n of the nth customer is the time from his arrival to the epoch where his 
service commences; the total time spent by the customer at the server is 
W n + ffl n · (For example, if the first few service times are 4,4, 1, 3, .. . 
and the interarrival times are 2, 3, 2, 3, ... , customers number 1, 2, .. . 
join queues of length 1, 1, 2, I, ... , respectively, and have waiting times 
2, 3, 2, 2, ... ). 

To avoid trite ambiguities such as when a customer arrives at the epoch 
of another's departure we shall assume that the distributions A and B of 
the variables d nand ffI n are continuous. Th~n the queue length at any 
epoch is well defined. 

We proceed to devise a scheme for calculating the waiting times W n 
recursively. By definition customer number 0 arrives at epoch 0 at a free 
server and so his waiting time is Wo = O. Suppose now that the nth 
customer arrives at epoch t and that we know his waiting time W n' His 
service time commences at epoch t + W n and terminates at epoch 
t + Wn_ + ffl n• The next customer arrives at time t + d n+1• He finds 
the server free if W n + ffln < d n+l and has a waiting time W n+l 

= Wn + ffln - d n+l if this quantity is > O. In other words, the sequence 
{W n} of waiting times coincides with the queuing process induced by the 
independent random variables 

(9.2) Xn = r!ln-l - d n , n = 1,2, ... 

(b) Storage and inventories. For an intuitive description we use water 
reservoirs (and dams), but the model applies equally to other storage 
facilities or inventories. The content depends on the input and the output. 
The input is due to supplies by rivers and rainfaIi, the output is regulated 
by demand except that this demand can be satisfied only when the reservoir 
is not empty. 

Consider now the water contents22 0, WI' W2>' " at selected epochs 
0, Tl' T2' •••• Denote by- Xn the actual supply minus the theoretical (ideal) 

21 This "queue discipline" is totally irrelevant to queue length, duration of busy periods, 
and similar problems. Only the individual customer feels the effect of the several dis
ciplines, among which "first come first served," "first come last served" and "random 
choice" are the extremes. The whole picture would change if departures were permitted. 

22 For simplicity we start with an empty reservoir. An adjustment to arbitrary initial 
conditions causes no difficulties [see example (c)1. 
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demand during 7 n-h 7 n and let us pretend that all changes are instantaneous 
and concentrated at the epochs 7 1 , 72, .. " We start with Wo = 0 at 
epoch O. In general the change W n+l - W n should equal X n+1 except 
when the demat. ·f exceeds the contents. For this reason the W n must satisfy 
(9.1) and so the successive co.ntents are subject to. the queuing pro.cess induced by 
{X k } provided the theoretical net changes ·Xk are independent random 
variables with a common distribution. 

The problem (for the mathematician ifnot for the user) is to find conditions 
under which the X k will appear as independent variables with a common 
distribution F and to find plausible forms for F. Usually the 7k will be 
equidistant or else a sample from a Poisson process, but it suffices for our 
purposes to assume that the 7k form a renewal pro.cess with interarrival times 
d l , s1'2' .... The most frequently used models fall into one of the following 
two categories: 

(i) The input is at a constant rate c, the demand ffI n arbitrary. Then 
Xn = cd n - ffl n· We must suppose this Xn to be independent of the 
"past" Xl"'" Xn- l. (The usual· assumption that s1'n and 81n be in
dependent is superfluous: there is no reason why the demand ffln should 
not be correlated with ·the duration ,s# n.) 

(ii) The output is at a constant rate, the input arbitrary. The description 
is the same with the roles of d nand ffI n reversed. 

(c) Queues/o.ra shuttle train. 23 A shuttle train with r places for passengers 
leaves a station every hour on the hour. Prospective passengers appear 
at the station and wait in line. At each departure the first r passengers in 
line board the train, and the others remain in the waiting line. We suppose 
that the number of passengers arriving between successive departures are 
indepen.dent random variables .9fh .9f2 , ••. with a common distribution. 
Let W n be the number of passengers in line just after the nth departure, 
and assume for simplicity Wo = O. Then W n+1 = W n + d n+l - r if 
this quantity is positive, and W n+l = 0 otherwise. Thus W n is the variable 
0./ a queuing process (9.1) generated by the random walk with variables 
Xn = d n - r. ~ 

We turn to a description of the queuing process {W n} in terms of the 
random walk generated by the variables Xk . As in section 8 we put So = 0, 
S" = Xl + ... + Xn and adhere to the notation for the ladder variables. 
For ease of description we use the terminology appropriate for the server 
of example (a). 

--23 P. E. Boudreau, J. S. Griffin Jr., and Mark Kac, An elementary queuing problem, 
Amer. Math. Monthly, vol. 69 (1962) pp. 713-724. The purpose of this paper is didactic, 
that is, it is written for outsiders without knowledge of the subject. Although a different 
mode of description is used, the calculations are covered by those in example XII,4(c). 
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Define v as the subscript for which SI ~ 0, S2 > 0, ... , SY_l > 0, but 
Sy < 0. In this situation customers number I, 2, ... , v -I had positive 
waiting times W;I. = SI' ... , WY- 1 = SY-l' and customer number v was 
the first to find the server free (the first lucky customer). At the epoch of 
his arrival the process starts from scratch as a replica of the whole process. 
Now v is simply the index of the first negative .sum, that is, v is the first 
descending ladder index, and we denote it consistently by .r~. We have 
thus reached the first conclusion: The descending ladder indices correspond 
to the lucky customers who find the server'free. Put differently, the epochs of 
arrival of the lucky customers constitute a renewal process with recurrence 
times distributed as .r~. 

In practical cases the variable .r~ must not be defective, for its defect 
p would equal the probability that a customer never finds the server free 
alid with probability one there would be a last lucky customer followed by 
an unending queue. It will turn out that :r~ is proper whenever 
E(&lk) < E(dk ). 

Suppose n9w that customer number v _. 1 arrives at epoch T. His 
waiting time. was Wy- 1 = Sy-l and so the epoch of his departure is 
T + WY - 1 + fJly-l' The first lucky customer (number v) arrives at epoch 
T +.d y when the server was free for 

d - W 1 - fJI 1 = -S 1 - X = -S y y- y- y- y y 

time units. But by definition S" is the first descending ladder height 
.Yt'~ . As the process starts from scratch we have reached the second con
clusion: The durations of the free periods are independent random variables 
with the same distribution as -.Yt'~ (the recurrence time for the descending 
ladder heights). In other words, customer number .r~ + ... +.r; is 
the rth customer who finds the server free. At the epoch of his arrival the 
server has been free for -.Yt'; time units. 

It should now be clear that between successive ladder epochs the· segments 
of the graph for the queuing process {W n} are congruent to those for the random 
walk but displayed vertically so as to start at a point of the time axis (figure 1). 
To describe this analytically denote for the moment by [~] the last descending 
ladder index < n; in other words, [n] is a (random) index such that [n] < n 
and 

(9.3) S[n]~Si j=O,I, ... ,n. 

This defines [n] uniquely with probability 1 (the distribution of Xi being 
continuous). Clearly 

(9.4) 

This relation leads to the most important conclusion if we look at the 
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variables Xl' ... ' Xn in reverse order. Put for abbreviation X~ = 
Xn , .•• , X~ = Xl. The partial sums of these variables are 

S~ = X~ + . . . + X~ = Sn - Sn-k' 

and (9.4) shows that the maximal term of the sequence 0, S~, ... ,S~ has 
subscript n - [n] and equals W n. But the distribution of (X~, ... , X~) is 
identical with that of (Xl' ... ,Xn ). We have thus the basic 

Tbeorem~24 The distribution of the queuing variable W n is identical with 
the distribution of the random variable 

(9.5) 

in the underlying random walk {Xk }. 

The consequences of this theorem will be discussed in cnapter XII. 
Here we show that it permits us to reduce certain ruin problems to queuing 
processes despite the dissimilarity of dre appearance. 

Example. (d) Ruin problems. In section 5 ruin was defined as the event 
that X(t) > z + ct for some t where X(t) is the variable of a compound 
Poisson process with distribution (4.2). Denote the epochs of the successive 
jumps in this process by 71' 72' . • •• If ruin occurs at all it occurs also at 
some epoch 7k and it suffices therefore to consider the probability that 
Sn = X( 7 n) - C7 n > z for some n. But by the definition of a compound 
Poisson process X(7 n) is the sum of n independent variables Y k with 
the common distribution F, while 7 n is the sum of n independent expo
nentially distributed variables d k • Accordingly we are in effect dealing with 
the random walk generated by the variables Xk = Y k .:..- cdk whose 
probability density is given by the convolution 

~ jOOea(:e-71)/c F{dy}. 
·c :e 

(9.6) 

Ruin occurs iff in :the random walk the event {Sn ~ z} takes place.for some n. 
To find the prqbability of ruin amounts therefore to finding the distributions 
of the variables W n in the associated queuing process. 

(e) A numer'ical illustration. The most ·important queuing process arises 
when the interarrival and service times are exponentially distributed with 
expectations lla and lIb, respeGtively, where" a < b. From the character
istics of this process described in example 8(b), one can conclude that the 
waiting time of the nth cuslomer has a limit distribution W with an atom of 

24 Apparently first noticed by F. Pollaczek in 1952 a-nd exploited (in a different context) 
by F. Spitzer, The Wiener-Hopf equation whose kernel is a probability density, Duke 
Math. J., vol. 24 (1957) pp. 327-344. For Spitzer's proof see problem 21. 
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weight 1 - alb at the origin and density b b a ae-(b-a)z for x > 0. The 
a 

expectati9n equals b b ). The free periods of the counter have the same . ( -a 
den$ity as the first descending ladder height, that is, ae-at • In this case the 
free periods and the interarrival times have the same distribution (but this is 
not so in other queuing processes). . 

The number N of the first customer to find the counter empty has the 
generating function p(s)la with. p defined in (8.4). Consider now the busy 
period commencing at epoch 0, that is, the time interval to the first epoch 
when th~ server becomes free. This period being initiated by customer 
number 0, the random variable N also equals the number of customers during 
the initial busy period. An easy calculation shows that its expectation equals 
bl(b-a) its variance ab(a+b)/(b-a)3. 

Finally, let T be the duration of the busy period. Its density is given 
explicitly by XIV, (6.16) withcp = a and cq = 'b. This formula involving 
a Bessel function does not lend itself to easy calculations, but the moments 
of T can be calculated from its Laplace transform derived by different 
methods in examples XIV,~(a) and XIV!6(b). The result is 

E(T) =1 and Var (T) = (a+b) 1 3. 
(b-a) (b-a) 

In the queuing process busy periods alternate with free periods, and their 
expectations are 1 (b-a) and lla, respectively. Thus (b~ .. a)la is a measure 
of the fraction of the time during which the server is idle. More precisely: if 
U(t) is the idle time up to epoch t, then t-1EU(t) --+ (b-a)fa. 

TABLE 1 
b = 1 

a = 0.5 a = 0.6 a = 0.7 a = 0.8 a = 0.9 a = 0.95 

Waiting time Expectation 1 1.5 2.3 4 9 19 
(steady Variance 3 5.3 10 24 99 399 
state) 

Busy period Expectation 2 2.5 3.3 5 10 399 
Variance 12 25 63 225 1900 16,000 

No. of cus- Expectation 2 2.5 3.3 5 10 399 
tomers per Variance 6 15 44 200 1700 15,200 
busy period 
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In the table the expected service time is taken as unit, and so a represents 
the expected number of customers arriving during one se~vice time. The 
table shows the huge variances of the busy periods. It follows that fantastic 
;tuctuations of the busy period must be expected. One sees that the customary 
reliance on expectations is very dangerous in practical applications. For a_ 
busy period with variance 225 the fact that the expectation is 5 has little 
practical significance. 

The multidimensional analogue to our queuing process is more intricate~ The founda
tions for its theory were laid by J. Kiefer and J. Wolfowitz [On tht!" theory of queues with 
many servers, Trans. Amer. Math. Soc., vol. 78 (1955) pp. 1-18]. 

10. PERSISTENT AND TRANSIENT RANDOM WALKS 

We proceed to a classification of random walks which is independent of 
section 8 and closely related to the renewal theory of section ·6. Given a 
distribution function F on the line we introduce formally an interval function 
defined by 

00 

(10.1 ) U{i} = IPk*{l}. 
k=O 

The series is the same as in (6.2), but when F is not concentrated on a 
half-line the series may diverge even when I is a finite interval. It wil1 be 
shown that the convergence or divergence of (10.1) has a deep significance. 
The basic facts are simple, but the formulations suffer from the unfortunate 
necessity of a special treatment for arithmetic distributions. 25 

For abbreviation we let Ih stand for the interval -h < x <h and 
Ih + t for .t-h < x < t+h. 

Theorem 1. (i) If F is non-arithmetic either U{I} < ex) for every finite 
'intervalor else U{I} = ex) for all intervals. 

(ii) If F is ar,ithmetic with span A. either U{I} < ex). for every finite 
interval or else U{I} = 00 for every interval containing a point of the form nA.. 
. (iii) If U{Ih } <:: 00 then for all t and h > 0 

(lO.2) U{Ih + t} < U{I2h}. 

For ease of reference to the two cases we introduce a definition (in which 
F receives an adjective rightfully belonging to the corresponding random 
walk). 

Definition. F is transient if U{I} < 00 for all finite intervals, and per
sistent otherwise. 

25 F is arithmetic if all its points of increase are among the points of the form 0, ±A., 
± 2A., ... , The largest A. with this property is called the spah of F. (See V ,2.) 
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Besides its probabilistic significance the theorem has a bearing on the 
integral equation 

(10.3) 

which is the analogue to the renewal equation (6.4). We use this integral 
equation as starting point and prove theorem 1 together with 

Theorem 2. Let z be continuous, and 0 < z(x) ~ flo for Ixi < hand 
z(x) = 0 outside Ih • If F is transient then 

(10.4) J+OO 
Z(x) = -00 z(x~y) U{dy} 

is a uniformly continuous solution of (10.3) with 

(10.5) o < Z(x) < flo . U{I2h }. 

Z assumes its maximurrz at a point in Ih• 

Proof of the two theorems. (i) Assume that U{I~} < 00 for some (X > o. 
Choose h < t(X and Jet z vanish outside Ih but not identically. We try to 
solve (10.3) ~y successitve approximations putting Zo = z and, recursively, 

(10.6) . Zn(x) = z(x) + f_+oooo Zn_1(x-y) F{dy}. 

With Un defined by 

(10.7) Un{l} = FO*{I} + ... + pn*{I} 

we have obviously 

(10.8) 

(the integration extending in effect over an interval of length < 2h). The 
function Zn so defined is continuous, and we prove by induction that it 
assumes its maximum fln at a point ~ n such that z( ~ n) > O. This is 
trivially true for Zo = z. If it is true for Zn-l one sees from (10.6) that 
z(x) = 0 implies Zn(x) < /In_1 whereas fln ~ Zn(~n-1) > Zn-1(~n-l) = 
f.ln-1· 

It follows that the interval Ih + f n is contained in I2h and so by (I0.8) 

(10.9) 

which proves that the functions Zn remain uniformly bounded. Since 
Zo < Zl < ... it follows that Zn -- Z with Z satisfying (10.5). 

By monotone convergence it follows from (10.6) and (10.8) that the limit 
Z satisfies the integral equation (10.3) and is of the form (l0.4). The in
equality (10.5) holds because of (10.9). The upper bound depends only on 
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the maximum flo of z, and we are free to let z(x) = flo for all x within a 
proper subinterval J" of Jh• In this case we get from (10.8) 

(10.10) Zn(x) > flo Un{l" + x} 

This inequality holds for all 'Yj < 11, and hence also for 'Yj = h (since Jh 

is closed). The last two inequalities together prove the truth of (10.2). This 
implies that U{J} < 00 for intervals of length < h. But every finite interval 
can be partitioned into finitely many intervals of length < h, and therefore 
U{J} < 00 for all finite l. Finally, taking differences in (10.4) it is seen that 

IZ(x+c5) - Z(x) I < U{l2h} . sup Iz(x+c5) - z(x)l. 

Accordingly, Z is uniformly continuous and all asseitions concernmg 
transient F are proved . 

. (ii) There remains the case where U{lcr} = 00 for ffvery ~ > O. Then 
(10.10) shows that Zn(x) ~ 00 for all x in a neighborhood of the origin .. 
If t is a.' point of increase of F it follows from (10.6) that Zn(x) ~ 00 for 
all x in a neighborhood of t, By induction the same is true of each point of 
increase of F2 *, F3 *, . . .. Assume F non-arithmetic. If' F were cOll
centrated on a half-line we would have U{lcr} < 00 : (section 6). By lemma 2 
of V,4a therefore the points of increase of p2 *, pa *, . .. are dense on the 
line and so Zn(x) ~ 00 everywhere. This implies Un{l} ~ 00, for all 
intervals .. With the obvious modification this argu~ent applies also to 
arithmetic distributions, and so the theorems .are proved. ~ 

In chapter XI we shall return to the renewal ~quation (10.3), but now we 
tum to the implications of theorem 1 for random walks. Let Xl' X:h .. ~ 
be independent random variables with the common distribution F, and put 
Sn = Xl + ... + X n· By "visit to J at epoch n = 1, 2~ ... " is meant the 
event that Sn E T. . 

Theorem 3.26 If F is transient the numoer' of visits to a finite interval J is 
finite with probability one, and the expected number of such visits equals U{J}. 

If F is persistent and non-arithmetic every interval J is vlsite~ infinitely 
often with probability one. If F is persistent and arithmetic with span ~ .then 
every point nA. is visited infinitely often with probability one. '. 

Proof. Assume F transient. The probability of a visit to J ·after epoch n 
does not exceed the nth remainder of the series in (10.1) and so for n suffi
ciently large the probability of more than n' visits is < E. :' is proves 
the first assertion. 

26 The theorem is a consequence of the second zero-or-one law in IV,6. If rp(J + t) is 
the probability of entering J + t infinitely often then for fixed J the function· rp can 
assume only the values 0 or 1. On the other hand, considering the first step in the random 
walk one sees that rp = F* rp and hence rp = const (see XI,9). 
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Assume now 'F persistent and non-arithmetic. Denote by Ph(t) the 
probability of a visit to III. + t. It suffices to prove that Ph(t) = I for all 
h > 0 and all t, for this obviously implies the certainty of any number of 

. visits to each interval. 
Before proceeding we observe that if Sn = x we may take x as a new 

origin to conclude that the probabilIty of a subsequent visit .to III. equals 
PAC-X). III particular, if x is a point in Ih.H the probability of a subsequent 
visit to III. is <- P2h( -t) .. 

We begin now by showing that Ph(O) = 1. For an arb ih'ary, bu~ fixed, 
h > 0 4enote by Pr the probability of at least r visits to III.' . Then 
PI + P2 + . " is the expected number of visits' to III. and hence infinite by . 
the definitIon of persist~ncy: On the other hand, the preliminary remark 
makes it clear that Pr+l < Pr . P2h(0). The div.ergence of "IJir therefore -
'requires that P2h(0) = 1. ' 

Passing to general intervals Ih+ t , assume first that F is not arithmetic. 
By lemma 2 ofV,4a every interval contains a point of increase of Fk* for 
some k and therefore the probability Ph(t) {)f entering IhH is positive for 
all h > O. and all t. But we saw already that even after entering· Ih+ t a 
return to III. is certain, and by the preliminary remark this implies that 
P2h( -t) = 1. Since hand t are arbitrary this concl~des the proof for non~ 
arithmetic distributions. 'But the same argument 'applies to arithmetic 
distributions. ~ 

In testing whether the series (10.1) for .U{I} converges one has usually to 
rely on limit theorems which provide information only for very large intervals. 
In such situations it is advisable to rely on the following 

Criterion. If F is transient, then x-1U{I:/} remains bounded as x ~ 00. 

The assertion is obvious from (10.2) since any interval Inh may be par,. 
titi~ned into n intervals of the form I h+ t • As an illustration of the method 
we prove 

Theorem 4. A distribution with expectation fl is persistent if fl = 0, 
transient if fl :;C O. 

Proof. Let fl = O. By the weak law of large numbers there exists an 
integer n€ such that P{ISnl < En} > i for all n > n€. Accordingly 
Fn *{la} > l for all n such that n€ < n < a/E. If a > 2En€ there are more 
than a/(2E) integers n satisfying this condition, and hence U{la} > a/(4E). 
Since, E is arbitrary this implies that the ratio a-1U{la} is not bounded, and 
hence F cannot be transient. 

If fl > 0 the strong law of large numbers guarantees that with a prob
lbility arbitrarily close to one Sn will be positive for all n sufficiently large. 
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The probability of entering the negative half-line infinitely often is therefore 
zero, and thus F -is transient. ~ 

In a persistent process the sequence {Sn} necessarily changes sign 
infinitely often and so the ascending and descending ladder processes are 
persistent. It may come as a surprise that the converse is false. Even in a 

. transient random walk {Sn} may change signs infinitely often (wiih probability 
one). In fact, this is the case when F is symmetric. Since a finite interval 

-a, . a will be visited only finitely often this implies (very roughly speaking) 
that the changes of signs are due to occasional jumps of fantastic magnitude: 
ISnl is likely to grow over all bounds, but the fantastic inequality 
Xn+l < -Sn - a win occur infinitely often however large the constant a. 

Figur~ 2 illustrates the occurrence of large jumps but is not fully representa
tive of the phen6menon-because it was necessary to truncate the distribution 
in order to obtain a finite graph. . 
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F~f{ure 2. Random Walk Generated by the Ca.uchy Distribution. (The distributi9n was 
. truncated so as ,to eliminate jumps of the magnitude of the graph.) 
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11. GENERAL MARKOV CHAINS 

The generalization of the discrete Markov chains of 1; XV to Cartesian 
(and more general) spaces is simple. In the discrete case the transition 
probabilities were given by a stochastic matrix with elements Po whose 
rows- were probability distributions. Now we have to consider transitions 
from a point x to an arbitrary interval or set r in :R,n; we denote the 
probability of this transition by K(x, r). The novel feature is that we must 
impose some regularity conditions to ensure that the necessary integrations 
can be performed. Continuity would do for most practiCal purposes, but 
nothing is gained by restricting the full generality. 

Definition 1. A stochastic kernel K is a function of two variables, a point 
and a set, such that K(x, r) is (i) for a fixed x a probability distribution in 
r, and Jii)for any interval r a Baire function in x.-

It is not required that K be defined on the whole space. If x and - rare 
restricted to a set Q we say that K is concentrated on Q. Sometimes it is 
necessary to admit defective distributions and we speak then of substochastic 
kernels. Frequently K will be of the form 

(11.1) K(x, r) = Ir k(x, y) dy 

and in this case k is called a stochastic density kernel. Following the 
convention of V,(3.3) we indicate (11.1) by the shorthand notation 

K(x, dy}= k(x, y) dy. 

[Strictly speaking, k represents densities with respect to Lebesgue measure 
or length'; densities with respect to an arbitrary measure m would be 
denoted by K(x, dy) = k(x, y) m{dy}.] 

Before giving a formal definition of Markov chains we can assemble 
the appropriate analytical apparatus by analogy with the discrete case. 
The probability of a transition from x to r in two steps is defined by 

(11.2) K(Z)(x, r) = In K(x, dy) K(y, r), 

the integration extending over the whole space or the set n on which K is 
concentrated. Relation (11.2) states that the first step leads from x to some 
point y and the second from y to r. The crucial assumption is that, given 
the intermediate point y, the past history in no way influences the further 
transitions. A similar argument holds for the higher transition probabilities 
K(n). If we put K(l) = K we have for arbitrary positive integers 

(11.3) K(m+n)(x, r) = In K(m)(x, dy)K(n)(y, r); 
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this reduces to 01.2) when m = n = 1. Keeping m = 1 and letting 
n = 1, 2, 3, . .. we get an inductive definition for K(n). For consistency we 
define K(O) to stand for the probability distribution concentrated at the 
point x (the so-called Kronecker delta kernel). Then (11.3) is valid for 
m ~ 0, n > O. The operation (11.3) between two kernels occurs frequently 
also outside probability theory and is known as composition of kernels. It is 
in all respects similar to matrix multiplication. 

It is hardly necessary to emphasize that the kernels K(n) are stochastic. 
If K has a density, the same is true of K(n) and the composition formula 
for densities is 

(11.4) k(mi-nl(X, z) = r k(m)(x, y) k(n)(y, z) dy. In 
Examples. (a) Convolutions. If k(x, y) = fey-x), where f is a prob

ability density, the composition (11.4) reduces to ordinary convolutions. 
The same is true generally if K is homogeneous in ihe sense that 

K(x, f) = K(.x+s, f+s) 

where r + s is the set obtained by translating r through s. For con
volutions on the circle see theorem 3 in VIII,7. 

(b) Energy losses under collisions. In physics successive collisions of a 
particle are usually treated as a chance process such that if the energy (or 
mass) before collision equals x > 0 the resulting energy (mass) is a random 
variable Y such that P{Y E f} = K(x, r) where K is a stochastic kernel. 
The standard assumption is that only losses are possible, and that the ratio 
Y/x has a distribution function G independent of x; then P{Y < y} 
= G(yjx) which defines a stochastic kerneL 

In a related problem in stellar radiation [example X,2(b)] Ambarzumian 
considered the special case G(y) = y).. for 0 < y < 1 where A is a positive 
constant. This corresponds to a density kernel Ay)..-1 x-).. concentrated on 
o < y < x and it is easily verified that the higher densities are given by 

( 11.5) k(n)(x, y) = . 'L- log ~ > 
), n ),,-1 ( )n-l 

(1f-l)! x).. y 
o < y < x. 

The particular value A ~ 1 corresponds to a uniform distribution (t.he 
fraction lost is "randomly distributed") and (11.5) then reduces to 1,(8.2). 
[Continued in exampleX,1(a).] 

(c) Random chains. Consider a chain (or polygonal line) in jp whose 
links have unit length and where the angles between adjacent links depend 
on a chance mechanism. Many (frequently rather involved) variants occur 
in polymer chemistry, but we consider only the case where the successive 
angles are independent random variables. 
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By length L of a chain with endpoints A and B we mean the distance 
between A and B. Addition of a unit link to a chain of length x results in 

a chain length ~ x2 + 1 - 2x cos () where () is the angle between the new 
link and the line through A and B. We treat () as a random variable and 
consider in particular two distributions th.at are of special interest in chemistry. 

(i) Let 0 equal 600 or 1200 with probabilities t each. Then cos () = ±! 
and the length of the prolonged chain is subject to the stochastic kernel 

K(x, r) attributing probabiliti~~ l to the two points J x2 ± x + 1. For 
fixed x the distribution K(n) is concentrated on 2n points. 

(ii) Let the direction of the new link be chos~n "at random," that is, 

suppose cos () to be urtiformly dIstributed in -1, 1. (See 1,10.) The 
prolonged chain has a length L between x + 1 and Ix -11. Within (his 
range by the law of the cosines 

P{L < y} = P{2x cos () > x2 + 1 + y2} = t - [X2+ 1 +y2]/4x. 

Thus the length is determined by the stochastic density kernel 

k(x, y)= y/2x Ix -:-11 < y < x + 1. 

The length Ln+l of a chain with n + 1 links has density k(n)(l, y). (See 
problem 23.) 

(d) Discrete Markov chains. A stochastic matrix (Pii) may be considered 
as a stochastic density k(i,j) = PH defined on the set Q of positive integers 
and with respect to the measure m attributing unit weight to each integer. 

Absolute and Stationary Probabilities 

Saying that a sequence Xo, Xl' ... is s.ubject to the transition probabilities 
K(n) means that K(n)(x, r) is the conditional probability of the event 
{Xm+n E r} given that Xm = x. If the probability distribution of Xo is 
Yo the probability distribution of Xn is given by 

01.6) y,,(r) = fnyo{dx} KCn)(x, r). 

Definition 2. The distribution Yo is a stationary distribution for K if 
Yn = Yo for all n, that is, if 

(11.7) Yo{r} = fnYo{ dx} K( x, r). 

The basic facts concerning stationary distributions are the same as in 
the case of discrete Markov chains. Under mild regularity conditions on 
K there exists a unique stationary distribution and it represents the asymptotic 
distribution of Xn under any initial distribution. In other words, the influence 
of the initial state fades away and the system tends to a steady state governed 
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by the stationary solution. This is one form of the ergodic theorem. (See 
VIII,7.) 

Examples. (e) The queuing process {W n} defined in (9.1) is a Markov 
t--

process concentrated on the closed interval 0, 00. The transition prob
l-

abilities are defined only for x, y > 0 and there K(x, 0, y) = F(y--x). 
The existence of a stationary measure will be proved in VIII,7 . 

. (j) Let Xl' X2 , • •• be mutually independent positive variables with a 

distribution F with a continuous density f concentrated on 0, 00. Define 
a sequence of random variables Yk recursively by 

(11.8) 

Then {Y n} is a Markov chain concentrated on 0, 00 with transition densities 

(11.9) 
f(x-y) + f(x+y) 

k(x, y) = 
f(x+y) 

The defining equation for a stationary density g IS 

(11.10) g(y) = f.oo g(x+y)f(x) dx + f.Cll g(x)f(x+y) dx. 

If F has a finite expectation !-l then 

(11.11) g(y) = fl-l[l-F(y)] 

O<y<x 

y> x> O. 

is a stationary probability density. In fact, a simple integration by parts 
will show that g satisfies27 (11.10) and we know from V,(6.3) that g is a 
probability density. (See problem 22.) 

(g) A technical application. 28 A long transmission line consists of indi
vidual pieces of cable whose characteristics are subject to statistical fluctua
tions. We treat the deviations from the ideal value as independent random 
variables YI , Y2 , •• , and suppose that their effect is additive. Reversing 
a piece of cable chariges the sign of its contribution. Assume that the 
deviations Y'c are symmetric and put Xk = IYkl. An efficient construction 
of a long tn nsmission line now proceeds by the following inductive rule: 
the (n + l)st piece of cable is attached in that position which gives its error a 

27 How does one discover such a thing? Assuming hopefully that g and f have deriv
atives we may differentiate (11.10) formally. An integration by parts leads to the relation 
g'(Y) = -g(O)[(y) showing that g must be of the form (11.11). Direct verification then 
proves the validity of (11.11) without differentiability conditions. 

28 Adapted'from a discrete model used by H. von Schelling, Elektrische Nachr.-Technik. 
vol. 20 (1943) pp. 251-259. 
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sign opposite to the sign of the accumulated error of the preceding n pieces. 
The accumulated errors then follow the rule (11.S); the stationary density 
(11: 11) is actually a limiting distribution: the error of a line consisting of n 
pieces is (for large n) distributed approximately with density (11.11). On the 
other hand, if the pieces of cable were combined randomly, the central limit 
theorem would apply and the variance of the error would increase linearly 
with n, that is, with the length of the cable. The simple procedure of testing 
the sign of the error thus permits us to keep it in bounds. ~ 

In the preceding examples a Markovian sequence Xo, Xl> ... was defined 
in terms of an initial distribution Yo and the transition probabilities K. 
The joint distribution of (Xo, Xl' ... , Xn) is of the form 

yo{dxo} K(xo, dx l ) ••• K(xn _ 1 , dxn ) 

discussed in III,S and 1; XV,I. We have here a typical example of the 
advantage of defining absolute probabilities in terms of conditional ones. A 
more systematic way would be to start from the postulate 

(11.12) P{Xn+l E r I Xo = X o, ... , Xn = xn} = K(xn • f) 

as definition. Here the J,farkov property is expressed by the fact that the 
right side is independent of xo, Xl, ... , X n - 1 so that the "past history" has 
no effect. The disadvantage of this definition is that it would involve us in 
problems of existence of conditional probabilities, their uniqueness, etc. 

(For Markov processes depending on a continuous time parameter see 
chapter X.) 

* 12. MARTINGALES 

For a first orientation we may consider a stochastic process {Xn} such 
that the joint distribution of (Xl' ... , Xn) has·a strictly positive continuous 
density Pn' Conditional densities and expectations are then defined every
where in the elementary way of IIL2. The variables X" and Y r. are 
supposed to have expectations. 

The sequence {Xn} will be called absolute(vfair if for n = 1,2, ... 

(12.n E(Xn+l I Xl' ... ,X ) = O. 

A sequence {Y,J is a martingale if 

(12.2) n= 1,2 .... 

(A more flexible definition will be given presently.) 

• Martingales are treated because of their great importance, but they are not used as 
a too! in this book. 
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The connection between the two types is simple. Given an absolutely 
fair sequence {Xn} put 

(12.3) Y n = Xl + .... + Xn + c 

where c is a constant. Then 

(12.4) 

The conditioning variables Xi may be replaced by the VA:, and so (12.4) is 
equivalent to (12.2). On the other hand, given a martingale {Yn } put 
Xl = YI - E(YI ) and Xn+l = Y n' Then {Xn} is absolutely fair and (12.3) 
holds with c = E(YI ). Thus {Y n} is a martingale" iff it is of the form (12.3) 
with {Xn} absolutely fair. 

The concept of martingales is due to P. Levy, but it was J. L. Doob who 
realized its unexpected potentialities and developed the theory. It will 
be shown in VII,9 that under mild bounded ness conditions the "variables 
VA: of a martingale converge to a limit; this fact is important for the modern 
theory of stocHastic processes. 

Examples. (a) Classical gambling is concerned with independent variables 
Xn with E(Xn) = O. Sl1ch a game is absolutely fair29 and the partial sums 
Sn = Xl + ... + Xn constitute a martinga"le. Consider now an ordinary 
coin-tossing game in which the gambler chooses his stakes according to 
some rule involving the outcome of previous trials. The successive gains 
cease to be independent random variables but the game remains absolutely 
fair. The idea of a fair game is that the knowledge of the past should not 
enable the gambler to imProve on his fortu"nes. Intuitively this means that 
an absolutely fair game should remain absolutely fair under any system of 
gambling, that is, under rules of skipping- individual trials. We shall see that 
this is so. 

(b) Po/yo's urn scheme of [1; V,2(c)]. An urn contains b black and r 
red balls. A ball is drawn at random. It is replaced and, moreover, c balls 

d
b. 

of the color drawn are a ded. Let Yo = -b and let Y n be the proportIOn 
+r 

of black balls attained by the nth drawing. Then {Y n} is a martingale. In 
this case the convergence theorem guarantees the existence ~f a limit distri-
bution [see examples VII,4(a) and VII,9(a)]. " 

(c) Concordant 30 functions. Let {Xn} be a Markov chain with transition 
probabilities given by the stochastic kernel K. Nothing is assumed con
cerning the expectations of Xn • The function u is called concordant with 

29 The practical limitations of this notion are discussed in 1; X,3. It will be recalled 
that there exrst "fair" games in which with probability > 1 - E the gambler's gain at the 
11th trial ts as large as, say, n/log n. 

80 This term was introduced by G. Hunt. 
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respect to K if 

(12.5) u(X) = J K(x, dy) u(y). 

Define random variables Y k by Y k = u(X.:> and assume that all expectations 
exist (for example, that u is bounded). The relation (12.5) is the same as 
E(Yk+1 I Xk = x) = u(x), and thus E(Yk+1 I Xk) = Y k. Since {X.} is 
Markovia:-_ this implies (12.4), and since Yk is a function of Xk , this in 
turn implies (12.2) (see V,IOa). Thus {Y n } is a martingale. This 
result is of great value in the boundary theory for ~larkov cnains because 
the existence of a limit for Y n usually implies the existence of a limit for 
the given sequence {Xn }. [See exam pies (I) and VII,9(c).] 

(d) Likelihood ratios. Suppose it is known that in a stochastic process 
Xl' X2 , ••• the joint densities of (Xl' ... ,Xn) are eith~r Pn or qn' but we 
do not know which. To reach a decision statisticians introduce the new 
ranciom variables 

(12.6) Y = qn(X I , ••• , Xn) 
n • 

Pn(X I , ••• , Xn) 

Under sufficient regularity conditions it is plausible that if the true densities 
are Pn the observed values of Xl' ... ,Xn will on the average cluster around 
points where Pn is relatively large. If this is so Y n is likely to be small or 
large according as the true density is Pn or qn' The asymptotic behavior 
of {Y n} is therefore of interest in statistical deeision theory. 

For simplicity we assume that the densities Pn are strictly positive and 
continuous. If the Pn represent the true densities, then the conditional 
density of X~+l for gIven Xl"" ,Xn equals the ratio Pn+l/Pn' and hence 

(12.7) E(Y n+1 I Xl = Xl' ... , Xn = xn) = 

= L+<:e Qn+1(x1, ••• , X n, Y) . Pn+1(x1 • ••• • X n• Y) dy. 

-<:e Pn+I(Xt , ..•• X lI • Y) Pn(xb •.. , xn) 

The factors Pn+1 cancel. The second denominator is independent of y, 
and the integral of qn+1 is given by the marginal density qn+l' Thus (12.7) 
reduces to qnfPn and so (L2.4) is true. Accordingly, under the present 
conditions the likelihood ratios Y n form a martingale. ~ 

The conditioning used in (12.2) is not particularly fortunate because one 
has frequently to replace the conditioning variables Y1 •..•• Y n by some 
functions of them. [Such was the case in (12.4).1 A greater defect is revealed 
by example (a). The underlying process (say coin tossing or roulette) is 
represented by a sequence of random variables Zn' and the gambler's 
gair. at the (n + 1)st trial is some function of Zl' ... ,Zn+1 and, perhaps, 
other variables. The observable past is represented by (Zl"'" Zn), 
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which may provide more information than the past gains. For example, 
if the gambl.er skips trials number I, 3, 5, ... the knowledge of his gains up 
to epoch 2n is at best equivalent to the knowledge of Z2' Z4' ... , Z2n' 

Here the additional knowledge of Zb Z3' . .. could in principle imply an 
advantage, and absolute fairness in this case must be based on conditioning 
by ZI"" ,Zn' Thus conditioning with respect to 'several sets of random 
variables may be necessary, and to take care of all situations it is best to use 
the conditio~ing with respect to arbitrary a~algebras of events. 

Consider then a sequence {Y,J of random variables in an arbitrary 
probability space and den'ote by 2ln the a-algebra of events generated by 
(\'1"'" Y n ) (see V,10a). The defining relation (12.2) is now the same as 
E(Y n+l \21n } = Y n' We wa~t to take this as the defining relation but 
replace the a-algebra 2l n by a larger a-algebra ~n' In most cases ~n will 
be generated by Yb ... , Y n and additional random variables depending 
on the past. The' idea is that any random variable depending on the past 
must be measurable with respect to ~n' and in this sense ~n represents the 
information contained in the past history of the process. As this information 
grows richer with time we shaH suppose that the ~n increase, that'is, 

(1t8) m em c ... 
~1 ~2 • 

Definition 1. Let Yl~ Y2, ••• be random variables with expectations. Let 
~1' ~2' ••• ' be a-algebras of events satisfying (12.8). 

The seque'}ce {Y n} is a martingale with respect to , {~n} iff 
, 

(12.9) E(Yn+'1 I ~n)= Y no 

[Because of the non uniqueness of the conditional expectations, (12.9) 
should be read "there exists a version of the conditional probability for 
,which (12.9) is true." This remark applies in the sequel.] 

Npte that (12.9) implies that Y n is ~n measurable, and this has two 
important consequences. Since ~ n ::J ~n-l the basic identity V ,(11. 7) for 
iterated expectations shows that 

E(Y n+l I ~ ,,-1) = Y n-l' 

By induction it is seen th.at the definition (12.9) entails the stronger relatl'ons 

(12.10) k ~ 1, 2, ... , n. 

It follows in particular that every subsequence YYl' YY2' ... of a martingale 
is again a martingale. 

Next we note that ~n contains the a-algebra generated by the variables 
y l' ... , Y n' ,and the same argu:nent shows that {Y n} is also a martingale 
with respect to {21 n }. Thus (12.9) implies (12.2). 



VI.12 MARTINGALES 213 

Example. (e) Let the a-algebras ~n satisfy (12.8) and let Y be an 
arbitrary rand~m variable with expectation. Put Y n = E(Y I ~n). Then 
Y n is ~n-measurable and hence (12.9) is true. Thus {Y n} is a martingale. ~ 

Returning to example (a) it is now easy to prove the iIl).possibility of 
systems of a fairly general type. Let {Y n} be.a martingale with respect to 
{~n}. To describe the gambler's freedom to skip the nth trial we introduce a 
decision function En; this is a ~ 11-1 measurable31 random variable assuming 
only the values 0 and 1. In the event En = 0 the gambler skips the nth trial; 
in the event En = 1 he bets and in this case his gain at the nth trial is 
Y n - Y n-l' Denoting his accumulated gain up to and including the nth 
trial by Zn we have . 

(12.11) 

By induction it is seen that Zn has an expectation. Furthermore, Zn-b En' 
and Y n-l are ~n-l measurable and hence [see V,(11.6)] 

(12.12) 

Since {Y n} is a martingale the expression within brackets vanishes, and so 
{Zn} is a martingale. We have thus proved a theorem due to P. R. Halmos 
implying the 

Impossibility of systems. Every sequence of decision functions Eb E2, ••• 

c~angesthe martingale {Y n} into a martingale {Zn}. 

By far the most important special case concerns optional stopping. By. 
this is meant a system where the first N trials are accepted and all succeeding 
ones skipped; the Nth trial is the last. Here, N (the stopping epoch) is a 
random variable such that the event {N > k} is in ~k' (In the notation of 
the theorem Ek = 1 for N > k - 1 and Ek = 0 for N < k - 1.) We 
have thus the 

Corollary. Optional stoppillg does not ajfect the martillgale property .. 

Examples. (f) A simple random walk on the line. starts at the origin; 
the particle moves with probability p one step to the right, with probability 
q = 1 - P to the left. If SIl is the position of the particle at epoch n it 
is easily seen that Y n = (q/p)Sn constitutes a martingale with E(Y ,J = 1 
and E(Yo) = 1. [This is a special case of example (c).] 

In the rein problem the random walk is stopped when it first reaches 
one of the positions -a or b, where a and b are positive integers. In this 

31 This condition guarantees that the decision is made on the basis of past history of 
observations. No mathematical theory can disprove prescience of the future, we must 
exclude it from our models. 
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modified process -a < Sn < b and with probability one Sn is ultimately 
fixed at b or at -a. Denote the corresponding probabilities by x and 
1 - x. Since Sn is bounded 

E(Sn)~ x· (!)' + (l-X)(!f 
But E(Sn) = 1 because the expected value of the martingale remains 
constant. T~e right side, therefore, equals 1, and this linear equation 
determines' x. We have thus found the probability x of termination at b 
derived by different methods in 1; XIV,2. The formula breaks down when 
p = q, but in this case {Sn} is a martingale and the s~me argument shows 
that x = a/(a+b): Although the result is elementary and known, the argu
ment illustrates the possjble uses of martingale theory. 
~ (g) On systems. Consider a sequence of independent random variables 
Xn where Xn assumes the ~alue ±2n with probability! each. A gambler 
tosses a coin to decide whether he takes the nth bet. The probability that his 
first try occurs at epoch n is 2-n and in this case his gain is ± 2n. Thus 
the gambler's gain at his first try is, a random variab!t! without expectation. 
The system theorem therefore depends on the fact that we have not changed 
the time parameter. ~ 

It is frequently necessary to work with absolute values and inequalities, 
and for such purposes it is convenient to have a name for processes satisfying 
(12.9) with the equality replaced by an inequality. 

Definition 2. The sequence {Y n} is a submartingale32 if it satisfies the 
martingale definition (12.9) with the equality sign replaced by >. 

It follows again immediately that every submartmgale satisfies the stronger 
conditions. 

(12.13) k = 1, ... , n. 

Lemma. If u js a convex/unction and {Yn} a martingale, then {u(Yn)} is 
a submartingale provided the expectation of u(Yn) exists. In particular, 
{IY nil is a submartingale. 

The proof is immediate from Jensen's inequality [V,(8.6)] which applies to 
conditional expectations as well as to ordinary ones. It states that 

(12.14) 

and the right side equals u(Y n). 

32 The older term "lower semi-martingale" is now falling into disuse. 
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The same proof shows that if {Y n} is a submartingale and Ll a conVex 
non-decreasing function, then {u(Y n)} ig again a subrnartingale, provided 
u(Y n) has an expectation. 

13. PROBLEMS FOR SOLUTION 

1. The definition (1.2) of stable distributions is equivalent to: R is stable iff 
to arbitrary constants Cl> C2 there exist constants c· and Y such that 

d 
CIXI + C2X2 = cX + y. 

2: Every stable distribution is continuous. It suffices to prove it for symmetric 
R. From (1.3) conclude: If R had an atom of weight p at the point s > 0, 
then it would have an atom of weight > p2 at each point of the form s(cm + cn)/cm+n 
(see V,4a). Furthermore, a unique atom of weight p < 1 at the origin would 
induce an atom of weight p? at the origin for R * R whereas stability requires an 
atom of weight p. 

3. For F to be stable it suffices that (1.2) holds for n = 2 an:! 3. (P. Levy) 
Hint: Products of the form crc~ where j, k = 0, ±1, ±2, ... are either dense 

in 0, 00 or powers of a fixed number c. The latter must be shown to be im
possible in the present case .. 

Note. Curiously enough it does not suffice that (1.2) holds for n = 2. See 
example XVII,3(f) and problem 10 of IX, 10. 

4. For a stable distribution with expo~ent <X = 1 the centering constants in the 
defining relation ·0.2) ia~~.-fy Ymn = mYn + nYm [see (1.6)]. The analogue to 
(1.8) is 

d 
S(XI +Y log s) + t(X2 +Y log t) = (s + t)(X +y·log (s + t». 

5. If F and G are stable with the same exponent <X so is F* G. Find the 
centering constants Yn for F* G in terms of the constants for F and G. 

6. For a symmetric stable distribution R the symmetrization inequality V,(5.11) 
implies that n[1-R(cnx)] remains bounded. Conclude that R has absolute 
moments of order <<X. [Use V,(6.3).] By symmetrization the last statement 
carries over to unsymmetric R. 

7. Alternative derivation of· the Holtsmark distribution. Consider a balf of 
radius r about the origin and n stars (points) placed independently and randomly 
in it. Let each star have unit mass. Let Xl> ... , Xn be the x-components of 
the gravitational force due to the individual stars, and Sn = Xl + ... + X n· 
Let r __ 00, 11 __ 00 so that 4r3rrn-1 __ A. Show that the distribution of Sn 
tends to the symmetric stable distribution with characteristic exponent %. 

8. Show that the preceding problem is not essentially modified if the mass of a 
star is assumed to be a random variable with unit expectation provided the masses 
of the stars are mutually independent and also· independent of the position of the 
stars. 

9. Holtsmark distribution, four dimensions. The ·folJr-dimensional analogue to 
the Holtsmark distribution is a symmetric stable distribution with charac.teristic 
exponent ~-. (In four dimensions the gravitational force varies inversely as the 
third power of the distance.) 
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10. A triangular array {Xk •n} with rn components in the nth row can be trans
for~ed into an ess~ntially equi~alent array with n· components in the nth row by 
addmg dummy varIables assummg only the value zero and repeating certain rows 
an appropriate number of times. 

11. Let {Xk .n} be a triangular null array with a common distribution Fn for 
X1,n, ... , Xn,n' Does P{max (IXl.nl, .• . , IXn,nl) > E"} tend to zero? 

12. Find the density for the renewal function U of (6.3) if F has the density 
(a) [(x) = e-x , and (b) [(x) = xe-X • 

13. In a terminating process F has density pee-ct. Find the distributions of 
the lifetime and of the number of renewal epochs. 

14. Generalized terminating renewal process. Instead of assuming that with 
probability q the process terminates instantaneou.sly we let it (with probability q) 
continue for a random duration with a proper distribution Fo and then stop. In 
other words, the renewal epochs are of the form Tl + ... + Tn + Y where 
the last variable has a different distribution. Show that the distribution V of the 
duration of the process satisfies the renewal equation 

(*) (F( (0) = 1 - q). 

15. Show that the waiting time problem for large gaps reduces to a special case 
of the process described in the last problem. Put (7.1) into the form (*). 

16. Poisson process and covering theorems. We recall from example III,3(d) 
that if in a Poisson process n renewa~ epochs occur in 0, t their (conditional) 
distribution is uniform. The probability 1 - Vet) that no gap of length e appears 
follows therefore from the covering theorem 3 in 1,9 in the form 

(t) 
ex) (ct)n-l 

.1 - Vet) =e-CX L ( _ 1)1 fPn(t). 
n=l n . 

(a) Verify that this is indeed a solution of (7.1) when F(x) = 1 - e-CX
• 

(b) Given (t) is the unique solution of (7.1), derive the covering theorem from 
it. (This is an instance of a proof by randomization. See problem 5 of 1; XII, 6.) 

17. The waiting time [or the first lost call in example 7(f) should be interpreted 
as the total lifetime of the terminating process obtained by stopping the original 
process when for the first time a call arrives during a busy period.33 Show that the 
distribution H of the duration of the busy. period of the terminating process is 
given by H{dt} = e-a.t F{dt}, and the recurrence times have the distribution 
G * H. (See also problems 3-4 in XIV,IO.) 

18. Let V be the distribution of the busy period in. example 7(g) ("last come 
first served"). Show that V satisfies the renewal equation V(t) = A(t) + B * Vet) 
where A. and B are defective distributions given by A{dx} = e-CX G{d1:}, and 
B{dx} = [1 -G(x)]ce-cx dx. (Show that we are concerned with a generalized 
terminating process in the sense of problem 14: a renewal process generated 
by B is followed by an undisturbed dead period, the latter having a distribution 
proportional to A.) 

. 
33 This simple approach replaces complicated procedures suggest~d in the literature and 

leads to simpler explicit results. For explicit solutions and estimates see XI,6. 
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19. Small gaps in a Poisson process.'J4 A "coincidence" is said to occur at epoch 
8n if the distance of the rene~al epochs 8n-l and 8n is :$; e. Find a renewal 
equation for the distribution of the waiting time for the first coincidence. From 
this renewal equation conclude that the distribution is proper. 

20.35 Generalization. In the standard renewal process 8n = Tl + ... + Tn find 
a renewal equation for the distribution of the waiting time to the first occurrence 
of the event {Tn ~ Y n}, where the Y k are independent of the process and of 
each other and have common distribution G. 

21. Let ah'" ,an be a finite numerical sequence with partial sums 

Sk = a 1 + ... + ak' 

Define recursively 

VI = a1 U 0, va = (VI +an-l) U 0, ... , Vn = (Vn-l +al) U 0. 

Prove by induction that Vn = max [0, SI' ••• ,sn]' Show that this implies the 
theorem of section 9. 

22. In example 11([) assume that [(x) = 1 for ° < x < 1. Prove that 
g(y) = 2(1 - y) is a stationary density and that k(n)(x, y) = g(y) for n > 2. 
If [(x) = rxe-a.x then g(x) = [(x). 

23. Define a stochastic density kernel concentrated on Q,1 by 

k(x, y) = !(1 - x)-1 if ° < x < y < 1 
and 

k(x, y) = ix-1 if ° < y < x < 1. 

Find a stationary density. (It satisfies a simple differential equation.) Interpret 
pro babilistically. 

24. A Markov chain on 0, 1 is such that if Xn = x then Xn+l is uniformly 
distributed on 1 - x, 1. Show that a stationary density is given by 2x. (T. 
Ugaheri.) 

25. A Markov chain on 0, 00 is defined as follows: If Xn = x, then Xn+1 is 
uniformly distributed over 0, 2x (here n = 0, 1, ... ). Show by induction that 
the n-step transitions have density kernels given by 

k(nl(x, y) = 2n x (! _ I)! (log 2;r-' if 0 < y < 2nx 

and k(n)(x, y) = ° elsewhere. 

34 For variants (treated differently) see E. N. Gilbert and H. O. Pollak, Coincidences 
in Poisson patterns, Bell System Technical J., vol. 36 (1957) pp. 1005-1033. 

35 The "large gap" problem admits of a similar generalization with an analogou~ answer. 



CHAPTER VII 

Laws of Large Numbers. 

Applications in Analysis 

In the first part of this chapter it is shown that certain famous and deep 
theorems of analysis can be derived with surprising ease by probabilistic 
arguments. Sections 7 and 8 treat variants of the laws of large numbers. 
Section 9 con(ains a restricted version of the martingale convergence theorem 
and stands somewhat apart from the remainder. 

1. MAIN LEl\-fMA AND NOTATIONS 

By way of preparation consider a one-dimensional distribution G with 
expectation 8 and variance 0'2. If Xb ... ,Xn are independent variables 
with the distribution G, their arithmetic mean Mn = (Xl + ... + Xn)n--l 

has expectation 8 and variance a2n-l . For large n this variance is small 
and Mn is likely to be close to 8. ·It follows that for every continuous 
function u(Mn) is likely to be close to u(8). This remark constitutes the 
weak law of large nUJrlbers. It is slightly generalized in the following lemma, 
which despite its simplicity will prove a source of valuable information. 

For n = I, 2, ... consider a family of distributions Fn ,8 with expectation 
8 and variance 0';(8); here 8 is a parameter varying in a finite or infinite 
interval. For expectations we use the notation 

(1.1) i+ClO 

En•9(u) = -ClO u(x) F n.8{dx}. 

Lemma 1. Suppose that u is bounded and continuous, and that O'~(O) ---- 0 
for each 8. Then 

(1.2) 

The convergence is uniform In every closed interval in which a;I(O) -)- 0 
uniformly. 

219 
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Proof. Obviously 

(1.3) 1+00 

IEn,o(u)-u(O)1 < -00 lu(x)-u(O)1 Fn.o{dx}. 

There exists a <5 depending on 0 and E such that for Ix-Ol < <5 the 
integrand is < E. Outside this neighborhood the integrand is less than some 
constant M, and by Chebyshev's inequality V,(7.2) the probability carried 
by the region Ix-Ol > <5 is less than a~(O)<5-2. Thus the right side will be 
<2E as soon as n is so large that a~(O) < E<52IM. This bound on n is 
independent of 0 if a;(O) -+ 0 uniformly and if u is uniformly 
continuous. ~ 

Examples. (a) If Fn,a is a binomial distribution concentrated on the 
points kin (k = 0, ... ,n), then a;(O) = O(I-O)n-l -+ 0 and so 

(1.4) i u (~) (n) Ok(1- o)n-k -+ u(O) 
k=O n k 

uniformly in 0 < 0 < I. The implications are discussed in section 2. 
(b) If Fn,o is the Poisson distribution attaching probability e--nO(nOYlk! 

to the point kin, we have a;(O) = 0ln and so 

(1.5) e-nofu(~)(nO)k -+ u(O) 
k=O n k! 

uniformly in every finite O-interval. This formula IS valid also for non
integral n. (Continued in sections 5 and 6.) 

(c) Taking for Fn,o a gamma distribution with expectation 0 and 
varIance Oln we get 

(1.6) 1 f.oo u(x) . (nx)n-1e_ nx/o n dx -+ u(O) 
(n-1)! 0 . 0 0 

uniformly in every finite interval. Again this formula holds for non-integral 
n provided (n -I)! is replaced by r(n). It will be shown in secti"on 6 that 
(1.6) is an inversion formula for Laplace transforms. 

(d) Statisticians frequently face the situation described at the beginning 
of this section but consider the expectation 0 an unknown parameter to 
be estimated from observations In statistical language the relation(I.2) 
then states that u(Mn) is an asymptotically unbiased estimator for the unknown 
parameter u(O). [The· estimator would be unbiased if the two sides in (1.2) 
were equal.] ~ 

We shall see that each of these examples leads to important results of 
independent interest, but some preparations are necessary for the further 
development of the theory. 
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Notations for Differences 

In the next few sections we shall employ the convenient notation~ of the 
calculus of finite differences. Given a finite or infinite numerical sequence 
ao, aI' . .. the differencing operator ~ is defined by ~ai = ai+l - a,. It 
produces a new sequence {~ai}' and on applying the operator ~ a second 
time we get the sequence with elements 

~ 2ai = ~ai+l - ~ai = ai+2 - 2ai+1 + ai. 

Proceeding in like manner we may define the rth power 6,.r inductively by 
~r = ~~r-l. It is easily verified that 

(1.7) ~rai = ± (~)( -l)r-;ai+;' 
;=0 } 

For consistency we define ~o as the identity operator, that is, ~oai = ai. 
Then (1.7) holds for all r > O. Of course, if ao, ... ,an is a finite sequence 
the variability of r is limited. 

Many tedious calculations can be avoided by noticing once and for all a 
curious reciprocity relation valid for an arbitrary pair of sequences {a i } 

and {Ci}; it enables us to express the differences ~r a, in terms of ~r Ci and 

vice versa. To derive it mul.tiply (1.7), by (;) Cr and sum over r = 0, ... , "'. 

The coefficient of ai+; is found to equal 

i ("') (~)( -l)r-;cr = (-l)-;C.)V~(",-j)( -l)"-;-kci+k' 

r=; r } k=0 k 

(Here the new summation index k = r - j was introduced.) The last sum 
equals ~V-;C;, and thus we have found the 

General reciprocity formula 

(1.8) iCr("')~rai = iai+;(~)( -l),,-;6,.V:-;c;. 
r=O r ;=O} 

Examples. (a) (Inversion formula.) Consider the constant sequence with 
a i = 1 for all i. Then ~oai = 1 but all other differences vanish, and so 
(1.8) reduces to 

(1.9) 

If we change ~he sequence {c;} into {ck+;} we see that (l.9) remains valid 
with Co and Cj replaced by Ck and ck+;' respectively, and so (1.9) is an 
inversion formula expressing the given sequence in terms of its differences 
Here '" can be chosen arbitrarily. 
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(b) Let 0 < () < 1 be fixed and define Cr = (r. Then 

I1kcr = ()r(1 - ())k( -1)1.: 

and so (1.8) takes on the form 

( 1.10) 

VII.2 

We deal frequently with sequences with terms ak = u(x+kh) obtained 
from a function u by fixing a point x and a span h > O. For obvious 
reasons it is then convenient to replace the difference operator 11 by the 
difference ratios 11 = h-l l1. Thus 

·h 

(1.11) 11 u(x) = [u(x+h)-u(x)]fh 
h 

and more generally 

(1.12) I1r u(x) = Jeri (~)( -l)r-iu(x+jh). 
h i=O } 

In particular, 110 u(x) = u(x). 
h 

2. BERNSTEIN POLYNOMIALS. ABSOLUTELY 
MONOTONE FUNCTIONS 

We return to the important relation (1.4). The left side is a polynomial, 
called the Bernstein polynomial of degree n corresponding to the given 
function u. To emphasize this dependence we shall denote it by Bn . u • Thus 

(2.1) 

where for convenience we put n--1 = h. Comparing with (1.10) one sees 
that Bn.u may be l1'ritten in the alternative form 

(2.2) Bn.i()) = i (n)(h()t I1r u(O), 
r=O r h 

An amazing number of far-reaching conclusions can be drawn from the 
discovery that the representations (2.1) and (2.2) for the Bernstein poly
nomial are equivalent. Before proceeding in this direction we restate for the 
record the result qerived in example l(a). 

I--l 
Theorem 1. If u is continuous in the closed interval 0, 1 the Bernstein 

polynomials Bn.uC()) tend uniformly to u(()). 

In other words, for given € > 0 

(2.3) 



VII.2 BERNSTEIN POLYNOMIALS. ABSOLU1EL Y MONOTONE FUNCTIONS 223 

for all n sufficiently large. The famous Weierstrass approximation theorem 
asserts the possibility of uniform approximation by some polynomials. The 
present theorem is sharper inasmuch as it exhibits the approximating 
polynomials. The above proof is due to S. Bernstein. 

As a first application of our dual representation for Bernstein polynomials 
we derive a characterization of functions that can be represented by a power 
series with positive coefficients: 

(2.4) u(x) = Po + PIX + P2X2 + " ... , p; > 0, ° < x < 1. 

Obviously such a function possesses derivatiyes of all orders and 

(2.5) u(n)(x) ~ 0, O<x<l. 

For many purposes in analysis it is,important that the converse is also true, 
that is, any function with the property (2.5) admits of a power series represen
tation (2.4). This was first observed by S. Bernstein, but the usual proofs are 
neither simple nor intuitive. We shall show that the representation (2.2) for 
Bernstein polynomials leads to a simple proof and to the useful result that 
the two· properties (2.4) and (2.5) are equivalent to a third one, namely 

(2.6) tJ.k :lc(O) > 0, 
h 

1 
k = 0, ... , n - 1, h = - . 

n 

These results are of interest for probability theory, because if {pr} is a 
probability distribution on the integers, (2.4) defines its generating function 
(see 1; XI), and so we are dealing with the pr0blem of characterizing 
probability generating functions. Among our functions they are distinguished 
by the obvious norming condition, u(l) = l. However, the example 
u(x) = (l-x)-I shows that functions with the series representation (2.4) 
need not be bounded. 

Theorem 2. For a continuous function u defined for ° < x < I the three 
properties (2.4), (2.5), and (2.6) are fully equivalent. 

Functions with this property are called absolutely monotone in 0, I. 

Proof. We proceed in two steps and consider first only probability 
generating functions. In other words, we assume now that u is continuous 

t--; 
in the closed interval 0, 1 and that u(l) = l. 

Obviously (2.4) implies (2.5). If (2.5) holds then u and all its derivatives 
are monotone. The monotonicity of u implies that tJ. u(x) > 0, while the 

h 

monotonicity of u' implies that 6. u(x) depends monotonically on x and 
h 

hence 112 u(x) > 0. By induction we conclude that (2.5) implies (2.6), 
h 

and also tJ. n u(O) > 0. 
h 
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Assume (2.6) for k = 0, ... ,n. In view of (2.2) the polynomial Bn .u 
has non-negative coefficients, and (2.1) shows that Bn .u (1) = 1. Thus 
B n . 1I is a probability generating function, and the continuity theorem of 1; 
X£.6 (or below VlII,6) assures us that thelimit u of Bn .u is itself a probability 
generating function. (The assumption u(l) = 1 guarantees that the 
coefficients add to unity.) This concludes the proof for bounded functions. 

If u is unbounded near 1 we put 

(2.7) (m-t ) I (m-l) 
. vex) = u -;;;- x / u -;;;- , 

where m is an arbitrary integer. The preceding proof applies to v and shows 
that each of the properties (2.5) and (2.6) imply the validity of a power series 
expansion (2.4) at least for ° < x < (m - 1)/m. Because of the uniqueness 
of power series representations ar..d the arbitrariness of m this implies that 
(2.4) holds for ° < x < 1. ~ 

3. MOMENT PROBLEMS 

In the last theorem we encountered sequences {ak} all of whose differences 
were positive. In the present section we shall be concerned with the somewhat 
related class of sequences whose differences alternate in sign, that is, sequences 
{ck} such that 

(3.1) 

Such sequences are called completely monotone. 
!-I 

r=O,l, .... 

Let F be a probability distribution on 0, 1 and denote by E(u) the 
integral of u with respect to F. The kth moment of F is defined by 

(3.2) c. = E(X') = fx" F{dx) 

it being understood that the interval of integrat~on is closed. 
Taking successive differences one finds that 

(3.3) (-ly~rck = E(Xk(1 - Xy-k) 

and hence the moment sequence {ck } is completely monotone. Now let u 
, 1--1 

be an arbitrary continuous function in' 0, 1 and let us integrate the expression 
(2.1) for the Bernstein polynomial Bn .u with respect to F. In view of (3.3) 
we get 

(3.4) 

n 
= I u(jJz)pjn) 

j=O 
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where we put for abbreviation 

(3.5) p\nl = e)< _l)n-it,n-ic; 

With the special choice u(x) = 1 we have Bn.u(x) = 1 for all x, and hence 
the p!.n) add to unity. This means that for each n the p~n) define aprobability 
distribution attributing weight p!n) tothepoint jh = jln. (Here j = 0, ... ,n.) 
We denote this probability distribution by Fn , and the expectations with 
respect to it by En. Then (3.4) reduces to En(u) = E(Bn.u ); In view of the 
uniform convergence Bn .u -+ U this implies that 

(3.6) 

So far {ck } was the moment sequence corresponding to a' given distri
bution F. But we may start from an arbitrary completely monotone sequence 
{ck } and again define p~n) by (3.5). By definitiqn these quantities are non
negative, and we proceed to show that they add to co. Indeed, by the basic 
reciprocity formula (1.8) 

(3.7) n n (n) j~ou(jh)p~n) = r~ocr r hT ~r u(O). 

For the constant function u = 1 the right side reduces to co, and this 
proves the assertion. 

We see thus that any completely monotone sequence {ck } subject to the 
trivial norming condition Co = 1· defines a probability distribution {p~n)}, 
and the expectation E .. ,(u) of u with respect to it is given by (3.7). It is 
interesting to see what happens when n -+ 00. For simplicity let u be a 
polynomial of degree N. Since h = lIn it is not difficult to see that 
~r u(O) -+ u(r)(o). Furthermore n(n - 1) ... (n - r + l)hr -+ 1. The serie~ 
h 

on the right in (3.7) contains at most N + 1 terms, and so we conclude that 
as n -+ 00 

(3.8) 
N 

En(u) -+ L Cr u(rl(o) 
r=O r! 

for every polynomial of degree N. In particular, when u(x) = xr we get 

(3.9) 

In other words, the rth moment of the probability distribution Fn tends to Cr' 
It is therefore plausible that there should exist a probability distribution F 
whose rth moment coincides with Cr' We formulate this as 

Theorem 1. The moments Cr of a probability distribution F form a 
cQmpletely monotone sequence with Co = 1. Conversely, an arbitrary completely 
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monotone sequence {cr } subject to the normil1g Co = 1 coincides with the 
moment sequence of a unique probability distribution. 

This result is due to F. Hausdorff and was justly celebrated as a deep and 
powerful result. The systematic use of functional analysis led gradually to 
simplified proofs, but even the best purely analytical proofs remain relatively 
intricate. The present approach is new and illustrates how probabilistic 
reasoning can simplify and render intuitive complicated analytical arguments. 
We shall not only prove the theorem but give an explicit formula for F. 

From (3.8) we know that for any polynomial u the expectations En(u) 
converge to a finite limit. From the uniform approximation theorem (2.3) 

I--l 
it follows that the same is true for any function u continuous in 0, 1. We 
denote th~ limit of En(u) by E(u). The relation (3.6) is then valid under 
any circumstances, but if we start from an arbitrary completely monotone 
sequence {ck } we have to provel that there exists a probability distribution 
F such that the limit E(u) coincides with the expectation of u with respect 
to F. 

For given 0 < t < 1 and € > 0 denote by Ut .(; the continuous function 
1--1 

on 0, 1 that vanishes for x > t + E, equals 1 for x <t, and is linear 
between t and t + E. Let U,,(t) = E,,(u t .e). If t < T then obviously 
Ut .e < UT •e and the maximum of the difference UT •e - Ut •e is «7-t)/E. 
For fixed E > 0 it follows that Ue(t) is a continuous non-decreasing function 
of t. Again, for fixed t the value Ue(t) can only decrease as E --+ 0, and 
hence U(;(t) tends to a limit which we denote by F(t). This is a non-decreas
ing function going from 0 to 1. It is automatically right continuous, 2 but 
this is of no importance since we could achieve this in any case by changing 
the definition of F at its jumps. 

For the distribution function Fn of the probability distribution (3.5) we 
have trivially from the definition of ut •e if 0 > E ' 

(3.10) 

As n --+ 00 $e two extreme members tend to Ue(t - 0) and Ue(t), 
respectively. If t and t - 0 are points of continuity of F, we let E -- 0 
to conclude that all limit points of the sequence {Fn(t)} lie between F(t - 0) 

1 We could stop the proof here, because the assertion is contained in either of two results 
proved elsewhere in the book: 

(a) In the Rie~z representation theorem of V,l since E(u) is obviously a positive linear 
functional of norm 1. 

(b) In the basic convergence theorem of VIn,l. 
The proof in the text (which partly repears that of V,l) is given to render this chapter 

self-contained and to lead to the inversion formula. 
2 For a verification see the proof of the Riesz representation the:on~m in V, 1. 
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and F(r). Finally, letting c5 -+ 0 we conclude that Fn(t) -+ F(t) for each t 
which is a point of continuity for F. This relation reads explicitly 

(3.) 1) L (~)( _1)n-in n-ic; -+ F(t). 
i~ nt j 

For r > 1 an integration by parts permits us to write the rth moment of 
Fn in the form 

(3.12) En(X') = 1 - r f.'.r-1Fn(X) dx. 

We have shown in (3.9) that the left side tends to Cr, and since Fn -- F this 
proves that the rth moment of F coincides with Cr' This concludes the 
proof of theorem 1. ~ 

. 1--1 
Note that if F is an arbitrary probability distribution function on 0, 1 

then (3.11) represents an inversion formula expressing F in terms of its 
moments. ''Ie restate this in 

Theorem 2. For the probability distribution F of theorem 1 the limit 
formula (3.11) holds at each point of continuity. 

To avoid misconceptions it should be pointed out that the situation is radically different 
for distributions that are not concentrated on s(\me finite interval. In fact, in general a 
distribution is not uniquely determined by its moments. . 

Example. The log-normal distribution is not determined by its moments. The positive 
variable X is said to have a log-normal distribution if log X is normally distributed. 
With the standard normal distribution the density of X is defined by 

f(x) = _} x-1e-t (logX)2, 

y 27T 
x> 0, 

and f(x) =-= 0 for x <0. For -1 < a ::; 1 put 

(3.13) fa(x) = f(x)[1 +a sin (27T log x)]. 

We assert that fa is a probability density with exactly the same moments of f. Since fa > 0 
it suffices to show that 

Jooo xk f(x) sin (27T log x) dx = 0, k=0,1; ... 

The substitutions log x = t = Y + k reduce the integral to 

and the last integral vanishes since the integrand is an odd function. (This interesting 
example is' due to C. C. Heyde.) ~ 

This negative result should not give rise to undue pessimism, for suitable regularity 
conditions can remove the source of trouble. The best result is a theorem of Carleman 
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to the effect that a distribution F on - 00, 00 is uniquely determined by its moments If 
(3.14) ~ /J-l/(2n) = 00 

£. f"'2n ' 

that is, if the series on the left diverges. In this book we shall prove only the weaker 
statement that F is uniquely determined by its moments whenever the power series 
L: 1"2ntll/(2n)! ,mverges in some interval. (Section 6 and XY,4.) Both criteria put 
restrictions on the rate of growth of 1"2n' Even in the most general situation the knowledge 
of finitely many moments 1"0,1"1"'" I"n leads to useful inequalities for F similar to 
those derived in Y,7 from the knowledge of 1"0 and fll.3 

*4. APPLICATION TO EXCHANGEABLE V ARJABLES 

We proceed to derive a beautiful result due to B. de Finetti which may 
serve as a typical example of the ease with which theorem I of section 3 leads 
to surprising results. 

Definition. The random variables Xl"", Xn are exchangeable 4 if the 
n! permutations (Xk1 , ••• , XkJ have the same n-dimensional probability 
distribution. The variables of an infinite sequence {X,J are exchangeable if 
Xl' ... ,Xn are exchangeable for each n. 

As the examples will show, there is an essential difference between finite 
and infinite sequences. We consider here the special case of an infinite 
sequence {Xn} of exchangeable variables assuming the l-,alues 0 and 1 only. 
The next theorem asserts that the distribution of such a process {Xn} are 
obtained by randomization of the binomial distribution. As usual we put 
Sn = Xl + ... + Xn and interpret the event {Xk = I} as success. 

Theorem. To every infinite sequence of exchangeable variable~ Xn assuming 
only the values 0 and 1 there corresponds a probability distribution F con

t-! 
cenfrated on 0, 1 such that 

P{XI = 1, ... , Xk = 1, Xk+1 = 0, ... , Xn = O} = 

(4.1) = f.lf)k(l- o)n-k F{ dO} 

(4.2) P(S" = k} = (:) fOk(l-o)n-k F(dO}. 

* Not used in the sequel. 
3 The first sharp results were, obtained by Markov and Stieltjes around 1884. The 

recent literature on the subject is inexhaustible. See, for example, A. Wald, Trans. Amer. 
Math. Soc., vol~ 46 (1939) pp. 280-306; H. L. Royden, Ann. Math. Statist., vol. 24 
(1953) pp. 361-376 [gives bounds on F(x) - F( -x)]. For a general survey see the mono
graph by J. A. Shohat and J. D. Tamarkin, The problem of moments, New York, 1943 
(Math Surveys No.1). See also S. Karlin and W. Studden (1966). 

4 The term symmetrically dependent j'i also in use. 
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Proof. For brevity denote the left side in (4.1) by Pk,n (with 0 ~ k ~ n) 
Put Co = 1 and for n = 1, 2, ... 

(4.3) Cn = Pn.n = P{XI = 1, ... , Xn = I}. 

Then from the probabilistic meaning 

(4.4) Pn""'"l.'TI = Pn-l.n-l - Pn.n = -Llcn_ 1 

and hence 

(4.5) Pn-2.n = Pn-2.n-l - Pn-1.n = Ll2cn_ 2• 

Continuing in this way we get for k < n 

(4 6) P ( l) n-k A n-k 
. Pk,n = Pk,n-l - k+1.n = - L.l. Ck' 

All these quantities are non-negative and hence the sequence {en} is com
pletely monotone. It follows that Cr is the rth moment of a probability 
distribution F, and so (4.1) merely spells out the relation (4.6). The 

assertion (4.2) is contained in it because there are ~) ways in which k 

successes can occur in n trials. ~ 

Generalizations. It is not difficult to apply the same argument to variables 
capable of three values, but we have then two free parameters, and instead 
of (4.2) we get· a mixture of trinomial distributions with F a bivariate 
probability distribution. More generally, the theorem and its proof are 
readily adapted to random variables assuming only a finite number of values. 
This fact naturally leads to the conjecture that the most general symmetrically 
dependent sequence {Xj} is obtained by randomization of a parameter 
from a sequence of independent variables. Individual cases are not diffi
cult to trust but the general problem presents the inherent difficulty that 
"parameters" are not well defined and may be chosen in weird ways. A 
version of the theorem has been proved nevertheless in very great generality. 5 

. The theorem makes it possible to apply laws of large numbers and the 
central limit theorem to exchangeable variables. (See problem 21 in VIII,lO.) 

The next example shows that in individual cases the theorem may lead to 
surprising results. The other examples show that the theorem fails for finite 
sequences. 

Examples. (a) In Polya's urn model of 1; V,2 an urn contains originally 
b black and r red balls. After each drawing the ball is returned and C 

balls of the color drawn are added to the urn. Thus the probability of a 

5 E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. 
Math. Soc., vol. 80 (1956) pp. 470-501. A martingale treatment is found in Loeve (1963). 
See also H. Biihlmann, Austauschbare stochastiche Variabeln und ihre Grenzwertsatze, 
Univ. of California Publications in Statistics, vol. 3 , No. 1 (1960) pp. 1-36. 
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black ball in each of the first n drawings equals 

(4.7) 
r(~c + n) r(b +c r) 

b(b+c)· .. (b + (n-l)c) 
c = -

n (b+r) ... (b + r + (n-l)c) r(b ~ r + n) r(~) 

Put Xn = 1 or 0 according as the nth drawing results in black or red. 
The easy calculation in 1; V,2 shows that these variables are exchangeable 
and hence Cn represents the nth moment of a distribution F. The appear
ance of (4.7) reminds one of the beta integral 11,(2.5), and inspection shows 
that F is the beta distribution 11,(4.2) with parameters f.l = b/c and " = r/c. 
Again using the beta integral it is seen that (4.1) agrees with 1; V,(2.3), and 
(4.2) with 1; V,(2.4). 

(b) Consider the 6 distinguishable distributions of 2 balls in 3 cells and 
attribute probability t to each. Let Xi equal 1 or 0 according as the cell 
number i is occupied or empty. The variables are exchangeable but the 
theorem does not apply. Indeed, from (4.3) we get Co = 1, cI = i, C2 = t, 
Cs = 0 and here the sequence stops. If it were the beginning of a completely 
monotone sequence {cn} we would have c, = Cs = ... = O. But then 
tl.'cI = -t < 0 against the rule. 

(c) Let Xl"'" Xn be independent with a common distribution and 
Sn = Xl + ... + Xn. Put Y k = X k - n-ISn for k = 1, ... , n-l. The 
variables (Y I' ... , Y n-l) are exchangeable but their joint distribution is 
not of the form suggested by de Finetti's theorem. ~ 

*5. GENERALIZED TAYLOR FORMULA AND SEMI-GROUPS 

The preceding three sections dealt with consequences of the limit relation 
in example 1 (a) involving the binomial distribution. We now pass to 
example 1 (b) involving the Poisson distribution. Since this distribution 
represents a limiting form of the binomial distribution one may hope that 
our simple treatment of Bernstein polynomials may be extended to the 
present situation. The starting point for this treatment was the identity 
(1.10) in which the binomial distribution appears on the right. If we put 
() = x/v and let ,,-- 00 this binomial distribution tends to the Poisson 
distribution with expectation x, and (1.10) passes int06 

(5.1) 

• This section may be omitted at first reading. 
6 For a direct proof of the identity (5.1) it suffices to substitute for /lrai its defining 

expression (1.7). The left side then becomes a double sum, and the right side is obtained 
by an obvious rearrangement of its terms. 
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We use this identity with i = ° and aJ = u(jh) where u is an arbitrary 

bounded continuous function on 0, 00, and h a positive constant. With 
x = h() the rel?.tion (5.1) becomes 

(5.2) 

On the right we recognize the expectation of u with respect to a Poisson 
distribution, and we know from example 1 (b) that it tends to . u«()). To 
record this result in a more natural form 'we replace u«()) by u(() + t) 
where t > 0 is arbitrary. We have thus proved the 

Theorem. For any bounded continuous function on 0, 00 

(5.3) 
. ex> ()r . 

2: - t!,.r u(t) -+- u(t+(); 
,....0 r! 11. '. 

here7 
() > 0 and h -+ 0+. . 

This is a fascinating theorem first proved by E. Hille using much deeper 
methods. The left side represents ,the Taylor expansion of u except that the.' 
derivatives are replaced by difference ratios. For analytic functions the left 
side' approaches the Taylor series but the theorem applies also to non
differentiable functions. In this sense (5.3) represents a generalization of the 
Taylor expansion and reveals a new side of its nature. 

There is another way of looking at (5.3) which leads to the so-called 
exponential formula of semi-group theory. (See theorem 2 in X,9.) The 
left ,side of (5.3) contains the formal exponential series and it is natural to use 
it to define an operator exp ()t!,.. The relation (5.3) is then abbreviated to 

16 

(5.4) exp () t!,. u(t) -+- u(t+()). 
16 

To write it more consistently in terms of operators we introduce the translation 
operatorS T«()) ·sending u into the function Uo defined by uo(t) = u(t+()). 

7 It will be noticed that the argument remains valid if both (J .and h are negative 
provided u is defined on the whole line. 

S This is the proof, due to M. Riesz, given (in slightly greater generality) in E. Hille 
and R. S. Phillips, Functional analysis and semi-groups, AMS Colloquium Publications, 
vol. 31 (1957) p. 314. Understandably the authors did not consider it helpful to refer 
to the linear interpolation (5.7) as a Poisson randomization of the semi-group parameter or to 
take Chebyshev's inequality for granted. The probabilistic content was noted by D. G. 
KendalL - It is fully exploited in K. L. Chung, On the exponentia! formulas of semi-group 
theory, Math Scandinavica, vol. 10 (1.962) pp. 153-162. 
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Then T(O) = I is the identity operator and 

(5.5) Ll = h-1[T(h)-1]. 
11. 

In operator language (5.3) now becomes 

(5.6) eOh-1[T(h)-1] -- T(O). 

The main information conveyed by this formula is that the whole family 
of operators T(O) is determined by the behavior of T(h) for small h. 

In retrospect it is now clear that our derivation of (5.6) applies to a much 
more general class of operators. The right side in (5.2) is simply a linear 
combination of values of u and may be interpreted as an interpolation 
formula for u. An analogous. interpolatory expression is meaningful for 
every family of operators {T(O)} defined for 0 > O. Indeed, for fixed 
o and h > 0 the operator 

(5.7) Ah(O) = e-Oh-
1 ~ J-(~)k T(kh) 
k=O k! h 

is a weighted linear combination of operators T(kh). The weights are given 
by the Poisson distribution and are such that as h ~ 0 a neighborhood of 
o preponderates, the complement carrying a weight tending to O. This 
makes it at least plaUSible that with any reasonable notion of convergence 
a.nd continuity we shall have Ah(O) ~ T(O) for any continuous family of 
operators T(O)~ In particular, if the operators T(O) form a semi-group, one 
has T(kh) = (T(h))k and the interpolatory operator Ah(O) is the same as 
appears on the left in (5.6). It is therefore not surprising that the "exponential 
formula" (5.6) is generally valid for continuous semi-groups of bounded 
operators. We shall return to the proof in X,9. 

6. INVERSION FORMULAS FOR 
LAPLACE TRANSFORl\1S 

The preceding section and example 1 (b) were based on a special case of the 
law of large numbers which may be stated as follows: If X is a random 
variable with a Poisson distribution of expectation ),0 then for large it the 
probability of the event IX - ),01 >).e is small. For P{X::;; ).x} we get 
therefore as ). -- 00 

(6.1) -).0 '" ()'O)k 0 
e k---

k~).x k! 1 

if 0 > x 
if 0 < x. 

The expression on the left is a special case of (5.2) when u assumes only the 
values 0 and 1, and so (6.1) is contained in the theorem of the preceding 
section. The usefulness of this formula in analysis will now be illustrated by 



VII.6 INVERSION FORMULAS FOR LAPLACE TRANSFORMS 233 

application5' to Laplace transforms, a topic treated systematically in chapter 
XIII. 

L..et F be a probability distribution concentrated on 0, 00. The Laplace 
transform of F is the function rp defined fo~ A > 0 by 

(6.2) . ",('<) = r e-'8F{dO}. 

The derivatives rp(k)(A) exist and are obtained by formal differentiation: 

(6.3) (~l? rp(k)(A) =Jooo e-J.o Ok F{ dO} . 

From this identity and (6.1) one sees that at every point of continuity of F 

(6.4) I (_1)k Ak'rp(k)(A) ~ F(x)~ 
k~J.z k! . 

This is an inversion formula of great use. It shows, in particular, that a 
distribution F is uniquely determined by its Laplace transform. 

The same argument leads to a' great variety of related inversion formuTas 
applicable under various circumstance. In fact, (1.6) is an inversion formula 
for Laplace integrals of the form 

(6.5) W(A) = f.ooe-J.x u(x) dx. 

Formal differentiation can be performed as in (6.3), and (1.6) states that 
if u is bounded and continuous, then 

(6.6) (_l)n-l(~)'nw(n-I)(n/o) ~ u(O) 
(n-l)! 0 . 

uniformZY in every finite interval. 
[These inversion formulas hold under much wider conditions, but it 

seemed undesirable at this juncture to let the ballast of new terminology 
obscure the simplicity of the argument. An abstract version of (6.6) appears 
in XIII,9.J 

If the distribution F posSesses moments Ill' ... ,1l2n its Laplace transform satisfies the 
inequalities 

2n-1 (-l)k,ukAk ,<;:11 (-l)kIl0k 

2: k! .Srp(/.)-.2 k! 
k=O k=O' 

(6.7) 

which are of frequent use. To verify them we start from the well-known inequalities9 

2n-l (_1)kt A: 2n (-l)ktk 

.2 k! < e-
t <.2 k! ' 

k=O k=O 

(6.8) t > O. 

9 Simple differentiation shows by induction that the difference between any two members 
in (6.8) is a monotone function of t. 
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Replacing t by At and integrating with respect to F one gets (6.7). It follows, in particular. 
that 

(6.9) <peA) = i (-l~~Jl.k 
k=O 

in any interval 0 S A < Ao in which the series on the right converges. It is known from 
analytic function theory that in this case the series in (6.9) uniquely determines <peA) for 
all A > 0, and hence the moments Ill' 1l2' ... determine the distribution F uniquely when
ever the series in (6.9) converges in some interval IAI < Ao. This useful criterion holds also 
for distributions not concentrated on 0, co, but the proof depends on the use of charac-
teristic functions (see XV ,4). . 

*7. LAWS OF LARGE NUMBERS FOR IDENTICALLY 
DISTRIBUTED VARIABLES 

Throughout this section we use the notation Sn = Xl + ... + Xn· 
The oldest version of the law of large numbers states that if the Xk are 
independent and have a common distribution with expectation f.l and 
finite variance thenlo for fixed E > 0 as n --+ 00 

(7.1) 

This chapter started from the remark that (7.1) is contained in Chebyshev's 
inequality. To obtain sharper results we derive a variant of Chebyshev's 
inequality applicable even when no expectation exists. Define new random 
variables X~ by truncation of X k at an arbitrary, but fixed, level ±sn' 
Thus 

(7.2) 
x 

X
I _ k 
k- o 

Put 

(7.3) S ' = X' + . .; . + X' n 1 n' 

Then obviously 

when \Xkt < Sn 

when IXkl > Sn. 

m~ = E(S~) = nE(XD. 

(7.4) P{ISn-m~1 > t} < P{IS~-m~1 > t} + P{Sn ~ S~} 

because the event on the left cannot occur unless one of the events on the 
right occurs . 

• The to~ics of this section are related to the oldest probabiiistic theory but are of no 
particular significance in the remainder of this book. They are treated for the.ir historical 
and methodological interest and because many papers are devoted to partial converses of 
the law of large numbers . 

. 10 (7.1) is equivalent to n-1Sn - Il ~ 0, where ~ signifies "tends in probability 
to." (See VIII,2.) 



VII.7 LAWS OF LARGE NUMBERS 235 

This inequality is \'alid also for dependent variables with varying distri
butions, but here we are interested only in identically distributed independent 
variables. Putting t = nx and applying Chebyshev's inequality to the first 
term on the right, we get from (7.4) the following 

Lemma. Let the Xk be independent with a common distributionF. Then 
for x> 0 

(7.5) p( ! Sn - E(XD > x)s ; 2 E(x~2) + 'nP{IX11 > Sn}. 
n . n x 

As an application we could derive Khintchine's law of large numbers 
which states that (7.1) holds' for all E > 0 whenever the X k have finit.e 
expectation fl. The proof would be essentially a repetition of the pro~f for . 
the discrete case given in 1; X,2. We pass therefore directly to a stronger 
version which includes a necessary and sufficient condition. For its formula
tion we put for t > Q 

(7.6) 

and 

(7.7) 

T(t) = [l-F(t)+F( -t)]t 

. 1 it. 2 it aCt) = - x 2 F(dx) = -T(t) + - xT(x) dx. 
t -t t ° 

(The identity of these two expressions follows by a si~ple integration by 
parts.) 

Theorem 1. (Generalized weak law of large numbers.) Let the Xk be 
independent with a common distributionF. In order that there exist constants 
J.ln such that for each E > 0 

(7.8) 

it is necessary and sufficient that lI T{t) --+ 0 as t --+ 00. In this case (7.8) 
holds with 

(7.9) 

Proof. (a) Sufficiency. Define fln by (7.9). We use the truncation (7.2) 
with s = n. Then fln = E(~~) and the preceding lemma the left side of 
(7.8) is <E-:-2a(n) + T(n), which tends to 0 whenever T(t)--+O. Thus this 
condition is' sufficient. 

(b) Necessity. Assume (7.8). As in V,S we introduce the variables °Xk 

obtained directly by symmetrization of Xk • Their sum °Sn can be obtained 

11 It follows from (7.7) that T(t) -+ 0 implies aCt) -+ O. The converse is also true; see 
problem 11. For a different proof of theorem 1 see XVII,2a. 
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by symmetrization of Sn - nfl. Let a be a median of the variables X k • 

Using the inequalities V,(5.6), V,(5.10), and V,(5.7) in that order we get 

2P{lSn-nfll > nE} > P{IOSnl > 2nE} > HI'- exp (-nP{IOX11 > 2nE})] 

> HI - exp (-~nP{lXll > 2nE+ lal})]. 

In view of (7.8) the left side tends to O. It follows that the exponent on the 
right tends to 0, and this is manifestly impossible unless T(t) -- O. ~ 

The condition T(t) -- 0 is satisfied whenever F has an expectation fl. 
The truncated moment fln then tends to fl and so in this case (7.8) is 
equivalent with the classical law of large numbers (7.1). However, the 
classical law of large numbers in the form (7.1) holds also for certain:variables 
without expectation. For example, if F is a symmetric distribution such that 
t[1 - F(t)] -- 0 then P{ln-1Snl > E} -- O. But an expectation exists only 
if 1 - F(t) is integrable between 0 and 00, which is a stronger condition. 

(It is interesting to note, that the strong law of large numbers holds only 
,for variables wi~h expectations. See theorem 4 of section 8). 

The empirical meaning of the law of large numbers was discussed in 1; X with special 
attention to. the classical theory of "fair games." We saw in particular that even when 
expectations exist a participant in a "fair game" may be strongly on the losing side. On 
the other hand, the analysis of the St. Petersburg game showed that the classical theory 
applies also to certain games with infinite expectations except that the "fair entrance fee" 
will depend on the contemplated number of trials. The following theorem renders this 
more precise. 

We consider independent positive variables X k with a common distribution F. [Thus 
F(O) <;: 0.]. The X k may be interpreted as possible gains, and an as th~ total entrance fee 
for n trials. We put 

(7.10) ,,(s) = f.'x F{dx}, 
fl(S) 

s[1 - F(s)J = pes). 

Theorem 2. In order that there exist constants an such that" 

(7.11) 

it is necessary and sufficient that 12 pes) -+ (1) as s -+ (1). In this case there exist numbers sn 
such that 

(7.12) 

and (7.11) holds with an = nl'(sn)· 

Proof. (a) Sufficiency. Assume pes) -+ (1). For large n the function nl1(s)/s assumes 
values> 1, but it tends to 0 as s -+ (1). The function is right continuous, and the limit from 
the left cannot exceed the limit from the right. If sn is the lower bO\lnd of all s such that 
nfl(s)r1 < 1 it follows that (7.12) holds. 

12 It will be seen in VIII,9 (theorem 2) that p(~) -+ (1) iff l1(s) varies slowly at infinity. 

The relation (7.11) is equivalent to a~ISn ~ 1 (see VIII,2). 



VII.S HRONG LAWS 237 

Put ftn = ft(sn) = E(XO.We use the inequality (7.5) of the lemma with x = ~ftn to 
obtain· 

( 
Sn } 1 . P - - 1 > ~ S 22 E(Xi~) + n[1-F(sn)]' 

nftn rllftn . 
(7.13) 

An integration by P'!rts reduces E(Xi2) to an' integral with integrand x[1 - F(x)], and by 
assumption this function is o (p. (x». Thus E(X?) = o(snPn>, ~nd in view of (7.12) this 
meam. that the first term on the tight in (7. 13). tends to O. Similarly (7.12) and the definition 
(7.10) of pes) show that n[1 - F(sn)] -+ O. Thus (7.13) reduces to (7.11) with a,. = nftn. 

(b) Necessity. We now assume (7.11) and use the truncation (7.2) with sn = 2On. Since 
E(X~2) S Snftn we get from the basic inequality (7.5) with x = €Onln . 

(7.14) 

Since we are dealing with positive variables 

(7.15) P{Sn < 2an} S P{maxXks lan} = ~(2an)' 
k:Sn 

By assumption the left side ,tends to 1, and this implies n [1 - F(2a~)] -+ 0 (because 
x S r(l-z) for x S 1). If nftrJan tended -to zerot-he same would be true of the right side 
in (7.14) and this inequality would manifestly contradi~t the assumption (7.1~) .. This 
argument applies also to subsequences and shows that nftnlan remains bounded away 
from zero; this in turn implies that p(2On) -+ co. 

To show that p(x) -+ co for any approach x -+ co choose an· such that 
2an < x S 2an+l' Then p(x» (2an)anIOn+I' and it is obvious that (7.11) necessitates the 

. boundedness of the ratios On+l/an.· ~ 

*8. STRONG LAWS 

Let Xl' X2 , ••• be mutually independent random variables with a common 
distribution F and E(Xk) = O. As usual we put Sn = Xl + ... + Xn • 

The weak law of large numbers states that, for every E > 0 

(S.l) 

This fact does not eliminate the possibility that n-ISn may become arbitrarily 
large for infinitely many n. For example, in a symmetric random walk the 
probability that the particle passes through the origin at the nth step tends to 
0, and yet it is certain that infinitely many such passages will occur. In 
practice one is rarely interested in the probability in (8.1) for any particular 
large value of n. A more ~nteresting question is whether n- l ISnl will 
ultimately become and remain small, that is, whether n-l ISnl < E 

simultaneously for all 11 >N. Accordingly we ask for the probability of the 
event13 that n-1Sn -- O. 

* This section may be omitted at the first reading. 
13 It follows from the zero-or-one law of IV,6 that this probability equals 0 or 1, but we 

shall not use this fact. 
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If this event has probability one we say that {Xk } obeys the strong law of 
large numbers. 

The next theorem shows that this is the case whenever E(X1) = O. [That 
this statement is much stronger than the weak law of large numbers follows 
from the fact that (8.1) was seen to hold also for certain sequences {X k } 

without expectation. By contrast the existence of an expectation is a necessary 
condition for the strong law. In fact, the converse to the strong law, discussed 
at the end of this section, shows that in the absence of an expectation the 
averages n-1 ISnl are certain infinitely often to exceed any prescribed 
bound a.] 

. Theorem 1. (Strong law of large numbers.) Let Xl, X2, • " be independent 
identically distributed variables lvith E(X) = O. Then n-1Sn -- 0 with prob
ability 1. 

The proof depends on truncations and is in effect concerned with sequences 
with varying distributions. To avoid duplications we therefore postpone the 
proof and prepare for it by establishing another theorem of wide applicability. 

Theorem 2. Let Xl, X2, • •• be independent random variables with arbitrary 
distributions. Suppose that E(Xk ) = 0 for all k and 

(8.2) 

Then the sequence {Sn} converges with probability one to a finite limit S. 

Proof. We refer to infinite-dimensional sample space defined by the 
variables Xk • Let A(E) be the event that the inequality ISn-Sml > E holds 
for some arbitrarily large subscripts 11, m. The event that {Sn} does not 
converge is the monotone limit as E -- 0 of the events A(E), and so it 
suft1ces to prove that P{A(E)} = O. Let Am(E) be the event that 
ISn - Sml > E for some n > m. Thep A(E) is the limit as m -- 00 of the 
decreasing sequence of events Am( E), and so it suffices to prove that 
P{Am(E)} -- O. Finally, for n > m let Am.n(E) be the event that 
ISk - Sml > E for some m < k < n. By Kolmogorov's inequality 

Letting n ---+ 00 we conclude that 
00 

(8.4) P{ Arn( E)} < E-2 I E(X!) 
k=rn+l 

and the right side tends to 0 as m --+ 00. 
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This theorem has many applications. The following is a variant to be used 
for the proof of the strong law of large numbers. 

Theorem 3. Let Xl' X2 ••• be independent variables with arbitrary distri
butions. Suppose that E(Xk) = 0 for all k. If bl < b2 < ... ~ r:t;J and if 

(8.5) 2 b-;;2 E(X!) < 00 

then with probability one the series 2 b;;IXk converges and 

(8.6) 

Proof. The first assertion is an immediate consequence of theorem 2 
applied to the random variables b;;IXk • The following widely used lemma 
shows that the relation (8.6) takes place at every point at which the series 
converges, and this completes the proof. ~ 

Lemma 1. ("Kronecker's lemma".) Let {xk } be an arbitrary numerical 
sequence and 0 < bl < b2 < ... -+ 00. If the series 2~ bkxk converges, then 

x + ... + X 
I n 0 -+ • 

bn 

(8.7) 

Proof. Denote the remainders of our convergent series by 
n = 1,2, ... 

and hence Xn = bn(Pn-1 - Pn), 

Pn. Then for 

Xl + ... + xn 1 n-l Po 
(8.8) = -Pn + - 2Pk(bk+l- bk ) + - . 

bn bn k=l bn 

Suppose \Pk\ < E for k > r. Since bn -+ 00 the contribution of the first 
r terms in the sum tends to zero, while the remaining terms add to at most 
E(bn - br)/bn < E. Thus (8.7) is true. ~ 

Before returning to the strong law of large numbers we pr:ove another 
lemma of a purely analytic character. 

Lemma 2. Let the variables Xk have a common distribution F. Then for 
any a> 0 

(8.9) 

if and only if E(Xk ) exists. 

Proof. According to lemma 2 of V,6 an expectation E(X1) exists if and 
only if 

(8.10) f.OO [l-F(x)+F( -x)] dx < 00. 
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The series in (8.9) may be considered as a Riemann sum to the integral, and 
since the integrand is monotone the two relations (8.9) and (8.10) imply each 
other. ~ 

We are finally in a position to prove the strong law oflarge numbers.l4 

Proof of theorem 1. We use truncation and define new random variables as 
follows: 

X~ = Xb X~ = 0 

X~ = 0, X~ = Xk 

if IXkl < k 

if /Xkl > k. 

Since a finite expectation exists we conclude from the preceding lemma with 
a = 1 that 

(8.12) 2 P{X~ ~ O} < 00 

and this implies that with probability one only finitely many variables X~ 

will be different from o. Thus, with obvious notations, ~ S" -:-. 0 with n n 
probability one. 

Next we shall prove that 

(8.13) 

By theorem 3 this implies that with probability one 

(8.14) -

But E(X~) -- 0 and hence obviously 

n 

(8.15) n-lE(S~) = n-1 2 E(X~) ~ o. 
k=l 

To conclude the proof it remains only to verify the assertion (8.13). Now 

(8.16) E(X~2) =;~,i-"'I'I<,x' F{dx}. 

It follows that 

(8.17) 

The inner sum is less than 2lj and so the right side is less than 

(8.18) 

This accomplishes the proof. 

14 For a more direct proof see problem 12. 
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We saw that the weak law in the form (7.8) applies also to certain sequences without 
expectation. This is in striking contrast to the strong law for which the existence of E(XI) 
is necessary. In fact, the next theorem shows that in the absence of a finite expectation the 
sequence of averages Snln is unbounded with probability one. 

Theorem 4. (Converse to the strong law of large numbers.) Let Xl' X2, ••• be independent 
with a common distribution. If ECIX11) = 00 then for any numerical sequence {Cn} with 
probability one 

(8.19) 

Proof. Let Ak stand for the event that IXkl > ak. These events are mutually independ
ent and by lemma 2 the absence of an expectation implies that L P{ An} diverges. By 
the second Borel-Cantelli lemma (see 1; VIII,3) this means that with probability one 
infinitely many events Ak will occur, and so the sequence IXkllk is unbounded with 
Fobabilityone. But since Xk = Sk - Sk-l the boundedness of ISni/n would entail the 
boundedness of IXkllk, and so we conclude that the sequence of averages Sn/n is uu
bounded with probability one. 

This proves the assertion (8.19) for tQc special case Ck = 0, and the general case may l::>e 
reduced to~t by symmetrization. As in V,5 we denote by oXk the symmetrized variables 
Xk • From the symmetrization inequality V,(5.1) it follows that E(IOXki) = 00, and so the 
sequence of averages. °Snln is unbounded with probability one. But °Sn may be obtained 
by symmetrization of Sn - en, and so the probability that (Sn -cn)/n remains bounded 
is zero. ~ 

*9. GENERALIZATION TO MARTINGALES 

Kolmogorov's inequality of V,8(e) provided the main tool for the proofs 
in section 8. A perusal of these proofs reveals that the assumed independence 
of the variables was used only to derive certain inequalities among expecta
tions, and hence the main results carryover to ma~tingales and sub~artin
gales. Such generalizations are important for many application~ and they 
throw new light on the nature of our theorems . 

. We recall from VI,12 that .a finite or infinite sequence of random 
variables lJr constitutes a submartingale if for all r 

(9.1) for k=1,2, ... ,r-l, 

where ~l C ~2 C . .. is an increasing sequence of a-algebras of events. 
When all' the inequalities are replaced by equalities then {Ur } is called a 
martingale. [In each case the r - 1 conditions (9.1) ar~ automatically 
satisfied if they hold for the particulal~ value k = r - 1.] Recall also that if 
{X k } is a sequence of independent. random variabies with E(Xk ) = 0, then 
the partial sums S11 form a martingale; furthermore, if the variances exist, 
{S~} is a sllbmartingale. 

Theorem. 1. (Kolmogorov's inequality fnr positive SUbmartingaies.'. Let 
U

I
, ... , Un be positive variables. .S'uppose that the subrrwrtingal.,? condition 

* The conteilt~ of this section wi11 not be used in the sequel. 
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(9.1) is satisfiedfor r ~ n. Thenfor t> 0 

(9.2) 
, 

If {Uk} is an arbitrary martingale then, the variables IUkl form a sub
martingale. (See the lemma in VI,I2.) It follows that theorem 1 entails the 
important 

Corollary. (Kolmogorov's inequality for martingales.) If Vb"', Un 
constitute a martingale then for t > 0 

(9.3) 

Proof o! theorem 1. We repeat literally the proof of Kolmogorov's in
equality in V,8(e) letting S: = Uk' The assumption that the Sk are sums of 
independent random variables was used only to establish the inequality 
V,(8.16) which now reads 

(9.4) 

. Now 1..41 is ~rmeasurable, and therefore 

(9.5) 

[See V,(10.9)]. Taking expectations we get ,(~.4). 

We turn to a generalization of the infinite convolution th~orem of section 8, 
although it leads only to a special case of the general martingale convergence 
,theorem. Indeed,. Doob has shown that the following theorem remains valid 
if the condition E(S!) < 00 is replaced by the weaker requirement that 
E(ISnD remain bounded. The proof of the general theorem is intricate, 
however, and our version is given. because of the great importance of the 
theorem and the siniplidty of the proof. (For a generalization see problem 
13.) 

Theorem 2. (Martingale convergence theorem.) Let {Sn} be an infinite 
martingale with E(S!) < C < 00 for all n>' Thereexists a random variable 
S such that Sn -+ S with probability one. Furthermore. E(Sn) = E(S) for 
all n. ' 

Proof. We repeat the proof of theorem 2 in section 8. The assumption that 
the Sk are sums of independent variables was used only in (8.3) to prove 
that 

(9.6) n, m ~o. 

Now we know from VI,12 that the martingale property of {Sn} implies that 
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E(Sn I SrrJ = Sm for n > m. By the fundamental property V,(10.9) of 
conditional expectations this implies 

(9.7) n > m. 

Taking expectations and recalling the formula V,(lO.lO) for iterated 
expectations we conclude that E(SnSm) = E(S!) and hence 

E(S!-S~) = E(S!) - E(S~), n > m. 

But by the lemma of VI,12 the variables S; form a submartingale, and so 
the sequence {E(S!)} is monotonically increasing. By assumption it is 
bounded, and hence it has a finite limit. This implies the truth of (9.6). 
The martingale properly implies that E(Sn) is independent of n, and the 
identity E(S) = E(Sn) follows from the boundedness of the sequence 
{E(S;)} [example VIII, 1 (e)]. ~ 

As an immediate corollary we obtain the following analogue to theorem 3 
of section 8. 

Theorem 3. Let {Xn} be a sequence of random variables such that 

(9.8) 

for all n. If bl < b2 < ... -- 00 and 

(9.9) ~ b;~(XZ) < 00, 

then with probability one 

Xl + ... + X7' 
(9.10) , -- O. 

b '-n 

Proof. It is easily seen that the variables 
n 

(9.11) Un = ~b;;lXk 
k=l 

form a martingale and that E(U;) is bounded by the series in (9.9). The 
preceding theorem therefore guarantees the almost sure convt.:rgence of 
{Un}, and by Kronecker's lemma this implies the assertion (9.10). ~ 

Examples. (a) Polya's urn scheme was treated in examples VI,l1(b) 
and above in 4(a). If Y n is the proportion of black balls at the nth trial 
it was shown that {Y n} is a martingale and we see now that a limit Y = 
lim Y n exists with probability one. On the other hand, the probability of 
a black ball at the nth trial is obtained by randomization of the binomial 
distribution. Thus, if Sn is the total number of black balls drawn in the 
first n trials the distribution of n-1Sn tends to the beta distribution F 
f,mnd in example 4(a). It follows that the limit variable Y has the beta 
distribution F. 
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(b) Branching processes. In the branching process described in 1; XII,5 
the population size Xn in the nth generation has tpe expectation E(Xn) = 
= fln [see 1; XII,(4,.9)]. Given that the (n-l)thgeneration consisted of 'V 

individuals, the (conditional) expectation of Xn becomes fll', and this 
independently of the' size of the preceding generations. Thus, if we put 
Sn = Xnl fln the sequence {Sn} forms a martingale. It is not difficult to 
establish that if E(X~) < 00 then E(S!) remains bounded (see problem 
7 of 1; XII,6), We thus have the striking result that Sn converges with 
probability one to a limit Soo. This implies: jn particular, that the distri
bution of Sn tends to the distribution of 8 00 • These results are due to 
T. E. Harris. 

(c) Harmonic functions. p'or clarity 'we describe a specific example, 
a1tPough the following argument applies to more general Markov chains 
and concordant functions {example VI,12(c)]. 

Let D denote th~ unit disk of points x = (XI' x2) such that x~ + x= ~ 1. 
For any point xED let C:e be the largest circle centered atx and contained 
in . D. -We consider a Markov process {Y n} in D defined as follows. 
Given that Y n = x the variable Y n+1 is uniformly distributed on the circle 
C:e; the initial position Yo = '!J is assuII).ed known. The transition prob
abilities are given by a stochastic kerD:el K which for fixed x is concentrated 
on C:e and reduces there to the uniform distribution. A functio.n u in D 
is concordant if tf(x) equals the average of the value of uon C:e. Consider 
now a harmonic function u that is continuous On the closed disk D. Then 
{u(Y n)} is a bounded martingale and hence Z = lim .u(Y n) exists with 
probability one. Since the coordinate variables xi are harmonic functions 
.it follows that with probability one Y n tends to a limit Y E D. It is easily 
seen that the process cannot converge to an interior point of D, and hence 
with probability one Yn te11:ds to a point Y on the boundary of D. 

An extension of arguments of this sort is used for .the study of asymptotic 
properties of Markov prOcesses,. and also to prove general theorems con
cerning harmonic functions, such as Fatou's theorem concerning the 
existence almost everywhere of radial boundary values.I5 ~ 

10. P~OBLEMS FOR SOLUTION 

1. If u is bounded and continuous on 0, 00 tnen as n -- 00 

k~.r:k) (J +:;'+k+1 U{n!l) - u(l) 

uniformly in every finite interval. 

15 M. BreIot and J. L. Doob, Ann. Inst. Fourier, vol. 13 (1963), pp. 395-415. 
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Hint: Remember the "negative binomial" distribution of 1; VI,8. No cal(..u
lation necessary. 

2. If u has a continuous derivative u', the derivative B' of B tends 
unifarmly to u'. n.U n.u 

3. Bernstein polynomials in ~2. If u(x, y) is continuous in the triangle x > O~ 
Y > 0, x. + y ~ 1, then uniforml)' 

2 u(l ,~) .'k'( .~ .-k)' x i yk(1_x_y)n-i-k -- u(x, y). 
n n J . . n J . 

1--1 
4. A function u continuous in 0, 1 can be uniformly approximated by even 

polynomials. If u(O) = 0 the same is true for odd polynomials.I6 

I---
5. If II is continuous in the interval 0, 00 and u( (0) exists, it can be approxi-

mated uniformly by linear combinations of e-nx. 

6. For the three moment sequences given below find the probabilities iTt> of 
(3.5). Find t~e corresponding distribution F using the limit relation (3.11). 

1 2 
(a) ftn = pn (0 < p < 1), (b) ftn = n + 1 ' (c) !'n = n + 2 . 

7.1' Let p be.a polynomial of degree v. Show that dnp vanishes identically 
h . 

when n > v. Conclude that Bn.'P is a polynomial of degree ~ v (despite its 
formal appearance as polynomial of degree n > v). 

8. When F has a density, (6.4) can be derived by integration from (6.6). 
9. Law of large numbers for stationary sequences. Let {Xk} (k = 0, ± 1, 

±2, ... ) be a stationary sequence and define the X~ by truncation as in (7.2). 
If E(Xk ) = 0 and E(~X~) -- 0 as n -- 00 then 

P{n-I IXI + ... + Xnl > €} -- O. 

10. Let the X k be independent and define the X~ by truncation as in (7.2). 
Let an -+ 0 and suppose that 

n n 

2 P{IXkl > Sn} -- 0, a;;2 2 E(X~2) -- O. 
k=l k=l 

Prove that 

11. (To theorem 1 of section 7). Show that O'(t) -+ 0 implies T(t) -+ O. Hint: 
Prove that T(X) - !T(2x) < E for x sufficiently large. Apply this inequality 
successively to x = t, 2t, 4r, ... ' to conclude that T(t) < 2€. 

12. (Direct proof of the strong law of large numbers.) With the notations used 
in the pruof of theorem 1 in section 8 put Zr = max IS~I for 2r < k < 2r+I. 

16 A famous theorem due to H. Ch. MuntL asserts that uniform approximation is possible 
in terms of lmear combinations of 1, .1;1t1 , x n2 , . •• iff :L: n; 1 diverges. 

!7 The use of this result leads to a considerable simplification of the classical solution 
of th{' moment probiem (for example in the book of Shobat and Tru:Uarkin). 
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Using Kolmogorov's inequality show that 

L P(Zr > E2r} < 00, 

and that this implies the strong law of larg~ numbers. (This proof avoids reference 
to theorems 2 and 3 of section 8.) 

13. (Convergence theorem for submartingales.) Prove th~t theorem 2 of section 
8 applies also to submartingales {Uk} provided UI: > 0 for all k. 

14. Generalize the variant of Chebyshev's inequality in the example of V,7(a) to 
martingales.16 

18 A. W. MarShall, A one-sided analog of KolmogororJ·s inequality, Ann. Math. Statist:, 
vol. 31 (1960) pp. 483-487. 



CHAPTER VIII 

The Basic Limit TheQrems 

The main results of this chapter are found in sections 1, 3, and 6. Sections 
4, 5, and 7 may be considered as sources of interesting examples. These are 
chosen because of their importance in other contexts. 

The last two sections are devoted to regularly varying functions in the 
sense or Karamata. Thi~ interesting theory steadily gains in importance, 
but it is not accessible in textbooks and has not been adapted to distribution 
functions. A tremendous amount of disconnected calculation in probability 
can be saved by exploiting the asymptotic relations in section 9. They are ~f 
a technical nature in contrast to the simple section 8. 

1. CONVERGENCE OF MEASURES 

The following theory is independent of the number of dimensions. For 
convenience of expression the text refers to one-dimensional distributions, 
but with the conventions of III,S the formulas apply without change in higher 
dimensions. 

Two examples are typical for the phenomena.with which we have- to cope. 

Examples. (a). COI1Sider an arbitrary probability distribution F and 
put Fn(x) = F(x-n-1). At a point x at which F is continuous we have 
Fn(x) -+ F(x), but at points of discontinuity Fn(x) ---:;. F(x-). We shall 
nevertheless agree to say that the sequence {Fn} converges to F. 

(b) This ti~e we put Fn(x) = F(x+n) where F is a continuous distri
bution function. Now Fn(x) -+ 1 for all x: a limit exists, but is not a 
probability distribution- function:. Here Fn{l} -+ 0 for every bounded 
interval, but not when I coincides with the whole line. 

(c) Let Fn(x) = F(x+( -l)nn). Then F2~(X) -+ 1 whereas F2n+I(x) -+ O. 
Accordingly, the distribution functions as such do not converge, but neverthe
less Fn {I} -+ 0 for every bounded interval. ~ 

247 
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Basic Notions and Notations 

It will be necessary to distinguish three classes of continuous functions. 
In one dimensionl C( - 00, (0) is the class of all bounded continuous 
functions; C[ - 00, 00] is the subclass of functions with finite limits u( - (0) 
and u( 00 ); finally, Co( - 00, (0) is the su bcIass of functions "vanishing at 
infinity," thaLis, where u(± 00) -:- O. 

We shall say that I is an interval of continuity for the probability distri
bution F if I is open and its endpoints are not atoms.2 The whole line 
counts as an interval of continuity. Throughout this section we use the 
abbreviations 

(1.1) f
+OO 

EnCu) = -00 u(x) Fn{dx}, E(u) = [0000 u(x) F{dx}. 

~ Throughout this section Fn will stand for a proper probability distri
bution, but F will be permitted to b~ defective (that is~ its total mass may 
be <1; see the definition in.V,I). .. 

Definition.3 The sequence {Fn} cl!nverges to the (possibly defective) 
distribution F if 

(1.2) 

for every bounded interval of continuity of F. In this case we write Fn -+ F 
or F = lim Fn. 

The convergence is called proper if F is not defective~ 

For stylistic clarity we speak sometimes of improper convergence to 
indicate that the limit F is defective. 

F or ease of reference we record two simple criteria for proper convergence, 

Criterion 1. The convergence Fn -+ F is proper iff to each € > 0 there 

correspond numbers a and N such that Fn{ -a, a} > 1- € for n > N. 

I For the analogue in higher dimensions note that in one dimension C[ - 00, 00] is 
simply the class of continuous functions on the compactified line obtained by adding 
± 00 to :RI . For C[ - 00, 00] in :R2 both axes are so extended, and this requires the 
existence of J.imits u(x '. ± ~) .and u( ±. or' x) for each. number x. In itself th!s ~lass is .not 
ver) interestmg, but dlstnbutIOn functIOns belong to It. For Co( - 00, (0) it IS reqUIred 
that u(x, ±oo) = u(±oo, x) = O. 

2 In higher dimensions it is required that the boundary of I has probability zero. 
3 For readers interested in general measure theory we remark the following. The 

definitions and the theorems of this section apply without change to bounded measures in 
arbitrary locally compact spaces provided "interval of continuity" is replaced by "open 
set whos~ boundary has measure zero." To bounded intervals there co.-respond subsets 
of compacts sets .. Finally, Co is the ciass of conditions functions vanishing at infinity, 
that is, u E Co iff u i~ continuous and : u\ <" outside some compact sd. The otht:r 
classes play no role in this section. 
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Proof. Without loss of generality we may suppose that -a, a is an 
interval of continuity for the limit F. The condition is sufficient because it 

---
implies that F{ -a, a} > I - €, and hence F cannot be defective. Con-
versely, if F is a probability distribution we may choose a so large that 

F{ -a, a} > 1 - i€. Then Fn{ -a, a} > 1 - € for n sufficiently large, 
and hence the condition is necessary. ~ 

Criterion 2. A sequ~nce {Fn} of probability distributions converges to a 
proper probability distribution F iff (1.2) holds for every bounded or unbounded 
interval I which is an interval of continuity for F. 

(This implies that iIi the case of proper convergence Fn(x) ~ F(x) at 
every point of continuity of F.) 

Proof. We may suppose that Fn ~ F with F possibly defective. 

Obviously F is proper iff (1.2) holds for 1= - co, co, and hence the 
condition of the criterion i~' sufficient. Assume then that F is a proper 

probability distribution. For x > -a the interval - co, x is the union of 
---II -----4 
- co, a and a, x. Using the preceding criterion it is therefore seen that for 

I 

a and n sufficiently large Fn{ - co, x} differs from F{ - co, x} by less 

than 3€. A similar argument applies to x, co and we con~lude that (1.2) 
holds for all semi-infinite intervals. ~ 

We have defined convergence by (1.2), but the next theorem shows that we 
could have used (I.3) as defining relation. 

Theorem 1. (i) In order that Fn ~ F it is necessary and sufficient that4 

(1.3) En(u) ~ E(u) for all u E Co( - co, .co )./ 

Oi) If the convergence is proper then En(u) ~ E(u) for all bounded con
tinuous functions. 

Proof. (a) It is convenient to begin with the assertion concerning proper 
convergence. Assume then that F is a probability distribution and Fn -+ F. 
Let u be a continuous function such that \u(x)1 < M for all x. Let A be 
an interval of continuity for F so large that F{A} > 1 - E. For the 
complement A' we have then Fn{A'} < 2E for all J1 sufficiently large. 

Since u is uniformiy continuous in finite intervals it is possible to partition 
A by intervals II' .. " in so small that within each, Ii oscillates by t:.;·ss 

4 If En(u) _ .• E(u) for a certain ciass of functions one says that Fn converges to F 
"weakly with respect to that class." Th'js convergence in the sense of definition 1 is equi-.,
alent to weak convergence with respect to Co( - OJ, OJ). 
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than. €. These Ik may be chosen so that they are intervals of continuity for 
F. Within A we can approximate U by a step function a assuming a 
constant value in each Ik and such that Iu(x) - a(x)1 < € for all x EA. 
In the coniplement A' we put a(x) = O. Then lu(x)-a(x)1 < M for 
x E A' and 

(1.4) IE(u)-E(a)1 ~ €F{A} + MF{A'} ~ € + M€. 

Similarly for n sufficiently large 

Now En(a) is a finite linear combination of values Fn{Ik} tending to 
F{Ik}. It follows that En(a) -+ E(a) and so for n sufficiently large 

. (1.6) IE(a) - En(a)1 < € • 

Combining th~ last three inequalities we get 

(1.7) IE(u) - En(u)1 ~ iE(u) - E(a)1 + IE(a) - En(a)1 + 
+ IEn(a) - En(u)1 < 3(M + 1)€ 

and as € is arbitrary this implies that En(u) -+ E(u). 
This argument breaks down in the case of improper convergence because 

then Fn{A'} need not be small. However, in this case we consider only 
functions u E Co( - 00, (0) and the interval A may be chosen so large that 
lu(x) I < € for x E A'. Then lu(x) - a(x)1 < € for all x, and the in
equalities (1.4)-(1.5) hold in the sharper form . .w:ith the right side replaced by 
€. Thus (1.2) implies (1.3). . 

(b) We prove5 that En(u) -+ E(u) implies Fn -+ F. Let I be an interval 
of continuity of F of length L. Denote by I" a concentric interval of 
length L + c5 where c5 is chosen so small that F{I,,} < F{I} + €. Let u 
be a continuous function which within I assumes the constant value 1, 
which vanishes outside I", and for which 0 < u(x) < 1 everywhere. 
Then En(u) > Fn{l} and E(u) < F{I,,} < F{l} + €. But for n sufficiently 
large we have En(u) < E(u) + €, and so 

Fn{l} "< En(u) < E(u) + € < F{I,,} + € < F{I} + 2€. 

Using a similar argument with I" replaced by an interval of length L - c5 
we get the reversed inequality Fn{I} > F{/} - 2€, and so Fn -+ F as 
asserted. ~ 

5 It would be simpler to apply the proof of theorem 2, but the proof of the text is more 
intuitive. 
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It is desirable to have a criterion for convergence which does not pre
suppose the knowledge of the limit. This is furnished by 

Theorem 2. In order that the sequence {Fn} of probability distributions 
converges to a (possibly defective) limit distribution it is necessary and sufficient 
that for each u E Co{ - 00, (0) the sequence of expectations, En (u), tends to a 
finite limit. 

PrQof.6 The necessity is covered by theorem 1. For the proof of sufficiency 
we anticipate the selection theorem 1 of section 6. (It is elementary, but it is 
preferable to discuss it together with related topics.) 

According to this theorem it is always possible to find a subsequence {Fn) 
converging to a possibly defective limit <1>. Denote by E*{u) the expectation 
of u with respect to <1>. Let u E Co{ - 00, (0). Then En (u) -+ E*(u) by 

. k 

theorem 1. But Enk{u) -+ lim En{u) as well. Hence E *(u) = lim En{u) and 
u was arbitrary in Co{ - 00, (0). Another application of theorem 1 gIves 
Fn -+ <I> as required.. ~ 

Examples. Cd) Convergence of moments. If the distributions Fn are 
t---I 

concentrated on 0, 1 the definition of u outside this interval is immaterial 
and in the wording of the theorem it suffices to assume u continuous in 
~ 
0, 1. Every such function can be approximated uniformly by polynomials 
(see VII,2) and hence the theorem may be restated as follows. A sequence 

1--1 
of distributions Fn concentrated on 0, 1 converges to a limit F iff for each 
k the sequence of moments En{Xk

) converges to a number !1-k' In this case 
!1-k = E{Xk) is the kth moment of F and the convergence is proper because 
!1-0 = I. (See VII,3.) 

(e) Convergence of moments (continued). In general the expectations of 
Fn need not converge even if Fn -+ F properly .. For example, if Fn 
attributes weight n-1 to n2 and weight 1 - n-1 to the origin, then {Fn} 
converges to the distribution concentrated at the origin, but En(X) -- 00. 

We have however, the following useful criterion. If Fn -- F and for some 
p > ° the expectations En(IXIP) remain bounded, then F is a proper 
probability distribution. Indeed, the contribution of the region Ixl > a to 
En(IXlp) is > aP(I-Fn { -a, an and this quantity can remain <M only 
if 1 - F{ -a, a} < a-PM. Since a may be chosen arbitrarily large F must 

6 The theorem is trivial if one assumes the Riesz representation theorem (see note I, 
in V,1). Indeed, lim En(u) defines a linear functional and according to that theorem the 
limit is the expectation of u with respect to some F. 
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be proper. A· slight sharpening of this argument shows that the absolute 
moments En(IXI(;t) of order ex < p converge to E(IXICl). 

(f) Convergence of densities. If the probability distributions Fn have 
densities In the latter need not converge even if Fn -+ F and F has a 
continuous density. As an example let In(x) = I - cos 2n1TX for 0 <; x < 1 
and In(x) = 0 elsewhere. Here Fn converges to the uniform distribution 
with density I(x) = I for n < x < 1, but In does not converge to f 
On the other hand, if fn -- f l4f1d f is a probability density then Fn -+ F 
where F is the proper distribution with density f Indeed, Fatou's lemma 
[IV.(2.9)] implies that lim inf Fn {l} > F{l} for every interval I of con
tinuity. If the inequality sign prevailed for some I it would hold a fortiori 

for every bigger interval, in particular for - 00, 00. This being impossible 
(I.2) holds. ~ 

In dealing with functions U t such as sin tx or v(t+x) depending on a 
parameter t, it is often useful to know that for n sufficiently large the 
relation IEn(ut)-E(ut)1 < € holds simultaneously for all t. We prove 
that this is so if the family of functions u t is equicontinuoUs , that is, if to 
each € > 0 . there corresponds a 0 independent of t such that 
lu t(x 2) - ut(x1)1 < € whenever Ix2-x1 1 < o. 

Corollary. Suppose that Fn -+ F properly. Let {ut } be a family of 
equicontinuous functions depending on the parameter t and such that 
lutl < M < 00 for some M and all t. Then En(ut ) -+ E(ut ) uniformly in t. 

Proof. The proof in theorem 2 that En(u) -- E(u) depended on partition
ing the interval A into intervals within each of which u varies by less than €. 

In the present situation this partition may be chosen independently of t and 
the assertion becomes obvious. ~ 

Example. (g) Let u/x) = u(tx) where u is a differentiable function 
with lu'(x)1 < I. By the mean value theorem 

lut(x2)-ut(X1)! < It I . Ix2-x1 1, 

and so the family is equicontinuous provided t is restricted to a finite 
---

interval -a, a.. Therefore En(ut) -- E(ut) uniformly In every finite 
t-interval. ~ 

2. SPECIAL PROPERTIES 

According to definition 1 to V,2 two distributions U and V are of the 
same type if they differ only by location and scale parameters, that is, if 

(2.1) Vex) = U(Ax+B), A > 0 

We now show that convergence is a property of types in the sense that a 



VIII. 2 . SPECIAL PROPERTIES 253 

change of location parameters does not affect the type of the limit distribution. 
It is this fact which makes it legitimate to speak of an "asymptotically normal 
sequence" without specifying the appropriate parameters. More precisely 
we prove 

Lemma 1. Let U and V be two probability distributions neither of which 
is concentrated at one point. Iffor a sequence {Fn} ofprobability distributions 
and constants an > 9 and (Xn > ° .' . 
(2.2) Fn(anx+bn) -+ U(x), Fn«(Xnx+{3n) -+ Vex) 

at all points of continuity, then 

(2.3) 

and (2.1) is true. Conversely, if (2.3) holds then each of the two relations (2.2) 
implies the other and (2.1). 

Proof. For reasons of symmetry we may assume that the first relation in 
(2.2) holds .. To simplify notati'ons we put Gn(x) = Fn(anx+b1J and also 
Pn = (Xn/an and Un = (Pn-bn)/an. Assu,me then that Gn -+ U. If 

(2.4) 

then obviously 

(2.5) 

Pn~A, 

with Vex) = U(Ax + B). We have to prove that (2.5) cannot take place 
unless (2.4) holds. 

Since V is not concentrated at one point there exist at least two values 
x' and z" such that the sequences {PriX' + un} ~nd {Pnx" + Un} remain 
bounded. This implies the bounded ness of the sequences {Pn} and {un}, 
and hence it is possible to find a sequence of integers nk such that Pn" -+ A 
and un" -+ B. But then V(x) = U(Ax + B), and hence A > 0, for other
wise V cannot be a probability distribution. It follows that the limits A 

. and B are the same for all subsequences, and so (2.4) is true. ~ 

Example. The lemma breaks down if V is concentrated at one point. 
Thus if Pn -+ 00 and Un = (- 1)n the condition (2.4) is not satisfied but 
(2.5) holds with V concentrated at the origin. ~ 

Two types of sequences {Fn} of probability distributions occur so 
frequently that they deserve names. For notational clarity we state the 
definitions formally in terms of random variables X n , but the notIons 
really refer only to their distribt..ttions Fn. The definitions are therefore 
meaningful without reference to any probability space. 

Definition 1. Xn converges in probability to zero if 
(2.6) P{IXnl > €} -+ 0 
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for any € > O. We indicate this by Xn -+ O. 
p p 

By extension Xn ---* X means the same as Xn - X ---* O. 

Note that (2.6) holds iff the distributions Fn tend to the distribution 
concentrated at the origin. In general, however, Fn -+ F implies nothing 
about the convergence of Xl' X2 , •••• For example, if the Xj are independ
ent with a common distribution F then Fn -+ F but the sequence {Xn} does 
not converge in probability. 

The following simple lemma is of frequent use but not always mentioned 
explicitly. (For example, the truncation method used in 1; X depends 
implicitly on it.) . 

Lemma 2. Denote the disTributions of Xn and Yn by Fn and Gn. Suppose 
. p 
that Xn - Yn ---* 0 and Gn -:+ G. Then also En -+ G. 

~ 

In particular, if Xn ~ X then Fn -+ F where F is the distribution of X. 

Proof. If Xn < x then either Yn < X + € or Xn - Yn < -E. The 
probability of the latter event tends to 0 and hence Fn(x) < Gn(x+€) + € 

for all n sufficiently large. The same argument leads to an analogous 
inequality in the opposite direction. ~ 

Definition 2. The sequence {Xn} is stochastically bounded if for each 
€ > 0 there exists an a such that for all n sufficiently large 

(2.7) P{IXnl > a} < € •. . 
This notion applies equally to distributions in higher dimensions and 

vector variables Xn • 

A properly convergent sequence is obviously stochastically bounded 
whereas improper convergence excludes, stochastic boundedness. We 
have therefore the trite but useful criterion: If the distributions Fn converge, 
then the limit F is a proper distribution iff {Fn} is stochastically bounded. 

If {Xn} and {Yn} are sto~hastically bounded, so is {Xn+ Yn}. Indeed, 
the event IXn+ Ynl > 2a cannot occur unless either {Xnl > a or IYnl > a 
and therefore 

(2.8) P{IXn+ Ynl > 2a} < P{IXnl >~ a} + P{IYnl > a}. 

3. DISTRIBUTIONS AS OPERATORS 

The convolution U = F * u of a point function u and a probability 
distribution F was defined in V,4. If we define a family of functions Ut 
by Ut(x) = u(t-x) we can express the value U(t) as an expectation 

(3.1) [
+<Xl 

Vet) = .. -O"l u(t-y) F{dy} = E(ut)· 
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We use this to derive a criterion for proper convergence. It is based on the 
class C[ - 00, 00] of continuous functions with limits u( ± 00) because 
such functions are uniformly continuous. 

Theorem 1. A sequence of probability distributions Fn converges properly 
to a probability distribution F ifffor each u E C[ - 00, 00] the convolutions 
Un = Fn * u converge uniformly to a limit U. In this case U = F * u. 

Proof. The condition is necessary because the uniform continuity of. u 
implies that the family {Ut} is equicontinuous and so by the last corollary 
Un ~ F* u uniformly. Converseiy, the condition of the theorem entails 
the convergence of the expectations En(u). We saw in section 1 that this 
implies the convergence Fn ~ F, but it remains to show that F is proper. 
For this purpose we use criterion 1 of section 1. 

If u increases monotonically from 0 to 1 the same will be true of each Un. 
Because of the uniform convergence there exists an N such that 
I Un (X) - U N{x)1 < e for n > N and all x. Choose a so !large that 
UN(-a)<e. "Now UN is defined by a convolution of the form (3.1); 
restricting the interval of integration to - 00 < y. < - 2a we see that for 
n>N 

2£ > Un( -a) > u(a)Fn( -2a). 

Since u increases to unity it follows that for n and a sufficiently large 
Fn( -a) will be as small as we please. For reasons of symmetry the same 
argument applies to l - F(a), and hence F is proper by virtue of 
criterion 1. 

To illustrate the power of our last result we derive an important theorem 
of analysis whose proof becomes particularly simple in the present prob
abilistic setting. (For a typical application see problem 10.) 

Example. (a) General approxin:lQtion theorems. With an arbitrary prob
ability distribution G we associate the family of disttibutions G", differing 
from it only by a scale parameter: G",(x) = G(x/h). As h -- 0 the distri
butions G", tend to the distribution concentrated at the origin, and hence by 
the preceding theorem G", * u ~ u for each u E C[ - 00, 00], the con
vergence being uniform. 7 

7 For a direct verification note that 

Gh * u(t) - u(t) = f:CX)CX) [u(t-y) - u(t)]G {dYlh}. 

To given E > 0 there exists a <5 such that within each interval oflength 2<5 the oscillation 
of u is less than E. The contribution of the interval lyl :$; <5 to the integral is then <E, 
and the contribution of Iyl > <5 tends to 0 because G}, attributes to Iy~ > <5 a mass 
tending to 0 as lz -- o. 
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If G has a density g, the values of G" * u are given by 

(3.2) 1+<Xl . ) 1 
Gh * u(t) = u(y) g(t - Y - dy. 

-<Xl h h \ 

When g has a bounded derivative the same is true of Gh and (3.2) may be 
differentiated under the integral. Taking for g the normal density we get 
the following ~ 

Approximation lemma. To each u E C[ - 00, 00] there exists an infinitely 
differentiable v E C[ - 00, 00] such that lu(x) - v(x)1 < E for all x. ~ 

In the present context it is desirable to replace the clumsy convolution 
symbol * by a simpler notation emphasizing that in (3.1) the distribution 
F serves as an operator sending u into U. This oper~tor will be denoted by 
the German letter (J and we agree that V = 6U means exactly the same as 
V = F* u. The true advantage of this apparent pedantry will become 
visible only when other types of operators appear in the same context. It 
will then be convenient to see at a glance whether a distribution plays its 
original probabilistic role or serves merely as an analytic operator (even 
though this fine distinction may lead to schizophrenia among the distribu
tions themselves). With this explanation we introduce the 

Notational convention. With each probability distribution F we associate 
the operator (J from C[ - 00, 00] to itself which associates with the function 
u the transform (Ju = F * u. As far as possible distributions and the associated 
operators will be denoted by corresponding Latin and German letters. 

As usual in operator notation (J<£u denotes the result of ~ operating on 
<£u, and so 6<£ denotes the operator associated with the convolution F * G 
of two probability distributions. In particular, (In is the operator· associated 
with Fn *, the n-fold convolution of f with itself. 

Example. (bj If Ha denotes the atomic distrlbu~ion concentrated at a, 
then ~a is the translation operator i>au(x) = u(x-a). In particular, i>o 
serves as the identity operator: i>ou = u. 

We now define the norm II u II of the bounded function u by 

(3.3) Ilull = sup lu(x)1 

With this notation the statement "uti converges uniformly to u" simplifies 
to Ilun - ull -)- O. Note that the norm satisfies the easily verified triangle 
inequality Ilu + vII < Ilull + 1It'11· 

An operator T is called bounded if tnere exists a constant a such that 
IITul1 < a' Hu!l. The smallest number with this property is called the norm 
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of T and is denoted by II Til. With these notations the principal properties 
of the linear operators associated with distribution functions are: 

They are positive, that, is, u > 0 implies (Yu > O. They have norm.1, 
which implies 

(3.4) 

Finally, they commute, that is, (Y<£ = <£(Y. 

Definition.8 If (Yn and (Yare operators associated with probability 
distributions Fn and F we write (Yn -)0- (Y iff 
(3.5) 

for each U E C[ - 00, 00 J. 

In other words, (Yn -)0- (Y if Fn * u -)0- F * u uniformly. Theorem 1 
may now be restated as follows. ' 

Theorem la. F,.. -)0- F properly iff (Yn --+ (Y. 
The next lemma is basic. It has the form of an algebraic inequality and 

illustrates the suggestive power of the new notation. 

Lemma 1. For operators associated with probability distributions 

(3.6) II (Y1(Y2U - <£t<£2u ll < 11(Y1U - <£1u ll + 11(Y2U - <£2u ll. 
Proof. The operator on the left equals ((Y1 - <£1)(Y2 + ((Y2 - <£J<£1 and 

(3.6) follows from the triangle inequality and the fact that (Y2 and <£1 have 
norms < 1. Notice that this proof applies also to defective probability 
distributions. ~ 

An immediate consequence of (3.6) is 

Theorem 2. Let the sequences {}~} and {un} of probability distributions 
converge properly to F and G respectively. Then 

(3.7) 

(The convergence is proper by the definition of F * G: The theorem is false 
if F or G is defective. See problem 9.) 

As a second application we prove that theorem 1 remains valid if the class 
of functions u is restricted to the particularly pleasing functions with 
derivatives of all orders. In this way we obtain the more flexible 

8 In Banach space terminology (3.5) is described as strong convergence. Note that it 
does not imply ·IIBn - H II ~ O. For example, if Fn is concentrated at l/n and 3 is the 
identity operator, then IJnu(x) - (Ju{x) = u{x-n-1) - u{x) and (3.5) is true but 
II~n - rrll = 2, becam:e tllere exist functions [vi ~ 1 such that 1)(0) = 1 and 
v{ _11-1) = -1. 
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Criterion 3. Let the Fn be probability distributions. If for each infinitely 
difJerentiable9 v E C[-oo, 00] the sequence {(Jnv} converges uniformly, 
then there exists a proper probability distribution F such that Fn -)- F. 

Proof. It was shown in example (a) that to given u E C[ - 00, 00] and 
E > 0 there exists an infinitely differentiable v such that /Iu - vii < E. 

By the triangle inequality 

(3.8) 1Idnu-(Jmu 11 < 11 (Jnu-(Jnv II + l1(Jnv -b-mv il + 116mv -6mu 11. 

The first and last terms on the right are < E, and by assumption the middle 
term is < E for all n, m sufficiently large. Thus {6nu} converges uniformly 
and Fn -)- F by theorem 1. ~ 

With En and E defined in (1.1) the same argument yields 

Criterion 2. Let Fn and F be proper probability distributions. If 
Enev) -)- E(v) for each infinitely differentiable v vanishing at infinity then 
Fn -)- F. 

The basic inequality (3.6) extends by induction to convolutions with 
more than two terms; for ease of reference we record the obvious result in 

Lemma 2. Let U = 61 ... 6n and 5B = <tll ... <tl n where the {Yi and 
<tl; are associated with prchability distributions. Then 

n 

(3.9) IIUu - 5Bull < L lI(Jiu - G};ull· 
;=1 

In particular 

(3.10) 

(For applicatrons see problems 14-15.) 

4. THE CENTRAL LIMIT THEOREM 

The central limit theorem establishes conditions under which sums of 
independent random variables are asymptotically normallY distributed. 
Its role and meaning has been partly explained in 1; X,1 and we have 
applied it on several occasions [last in example VI,II(g)). It occupie..: a 
place of honor in proba.bility theory acquired by its age and by the fruitful 
role which it played in the development of the theory and 'Still plays in 
applications. It is therefore appropriate to use the central limit theorem 
as a test case to compare the scope of the various tools at our disposal. 
For this reason we shall give several proofs. A more systematic treatment 
(ir.eluding necessary and sufficient conditions) will be found in chapters IX, 

9 By this is meant that all derivatives exist and belong to C[ - 00, 00]. 
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XV, and XVI. The present discussion sidetracks us from the development 
of our main theme; its purpose is to illustrate the advantages of the operator 
terminology by a striking and significant example. Also, many readers will 
welcome an easy access to the central limit theorem in its simplest setting. 
At the cost of some repetitions we begin by a special case. 

Theorem 1. (Identical distributions in jP.) Let Xb X2,. •• be mutually 
independent random variables with a common distribution F. Assume 

(4.1) 

As n -)0- 00 the distribution of the normalized sums 

(4.2) S: = (X1+· . ·+Xn)/~n 
tends to the normal distribution 91 with density n(x) = e-!x2/~27T. 

In purely analytical terms: for a distribution F with zero expectation 
and unit variance 

(4.3) Fn *(x~~ ) -)0- 91(x). 

For the proof we require the following 

Lemma. If (J1l is the operator associated with Fn(x) = F(x~~) then for 
each u E C[ - 00, 00] with three bounded derivatives 

(4.4) 

uniformly on the line. 

Proof. Since E(Xi) = 1 we can define a proper probability distribution 

F! by 

(4.5) 

The change of variables ~~ y = s shows that F! tends to the distribution 
concentrated at the origin. In view of (4.1) we have for the difference of 
the two sides in (4.4) 

n[(JnU(X)-U(X)] - iu"(x) = 

(4.6) f]U(X- y) - :~X) + yu'(x) - tu"(x)] F~ {dy}. 

The Taylor development of the numerator shows that for Iyl < E the 
integrand is dominated by if Iyl . II u'" II < E • "u"'", and for all y by "u"". 
Since F# tends to concentrate near the' origin it follows that for n sufficiently 
large th~ quantity is in absolute value less than E( II u" II + II u"'II), and so the 
left side tends uniformly to zero. ~ 
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Proof of theorem 1. Denote by (b and (bn, respectively, the operators 

associated with the normal distributions 91 (x) and 91(x.J~).· Then by the 
basic inequality (3.10) 

(4.7) 
II(J~u - (bull = 11(J~·u - (b~ull < n II(Jnu - (bnull 

< n II(Jn u - ull + n II(bn u - ull. 

By the preceding lemma the right side tends to zero and hence (J~ ~ (b 

by criterion 1 of section 3. ~ 

Example. (a) Central limit theorem with infinite variances. It is of 
-methodological interest to note that the proof of theorem 1 applies without 
change to certain distributions without var~ance, provided appropriate 
norming constants are chosen. For example, if the X k have a density such 
that f(x) = 2 Ix l-3 10g Ixl for Ixl > 1 and f(x) = 0 for Ixl < 1, then 

(Xl + ... +Xr)/(.J2n log n) has a normal limit distribution. (The proof 
requires only obvious changes.) Necessary and sufficient conditions for a 
normal limit are given ir! IX,7 and XVII,S. ~ 

The method of proof is of wide applicability. Problem 16 may serve as 
a good exercise. Here we use the method to prove the central limit theorem 
in more general settings. The following theorem refers formally to two 
dimensions but is valid in !R,r. I 

Theorem 2. (Multivariate case). Let {Xn} stand for a sequence of mutually 
independent. two-dimensional random variables with a common distribution 
F. Suppose that the expectations are zero and that the covariance matrix 
is given by 

(4.8) 

As n ~ 00 the distribution of (Xl + ... + Xn)/.J;; tends to the bivariate 

normal distribution with zero expectation and covariance matrix C. 

Proof. The proof req~ires no essential change if the matrix notation of 
III,S is used. Since subscripts are' already overtaxed we denote the points 
of the plane by rOw vectors x = (XCI), X(2»)~ Then u(x) denotes a function 
of the two variables and we denote its partial derivatives by subscripts. 
Thus u' = (Ub u2) is a row vectoI:' and u" = (u/k) is a symmetric two by 
two matrix. With this notation the Taylor expansion takes on the form 

(4.9) u(x-y) = u(x) - Yl:l'(x) + lyu"(x)yT + ... 
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where yT is the transpose of y, namely the column vector with com
ponents y(l), y(2). In analogy with (4.5) we define a proper probability 
distribution by 

# 2 2 

F n {dy} = nq(y) F{~n dy} where 2q(y) = YI + Y2. 
<T~ <T~ 

As in the last proof F!! tends to the probabiliiy distribution concentrated 
at the origin. To (4.6) there corresponds the identity 

n[(Jnu(x)-U(X)] - im(x) = 
( 4.10) =f' u(x-y)-u(x) + yu'(x) - tyu"(x)yT .; {d } 

3t2 q(y) n Y 

wherelo 

(4.11) m(x) = E(yu"(x)yT) = Ull(x)<T~ + 2U12(X)P<TIP2 + U22(X)<T~. 
(Here E denotes expectations whh respect to F.) In view of (4.9) the 
integrand tends to zero and as in the preceding lemma it is seen that 
n[(Jnu-u]~' m 'uniformly, and the proof of the theorem requires no 
change. ~ 

Example. (b) Random walks in d dimensions. Let Xl> X2, ••• be independ
ent random vectors with a common distribution that may be described as 
follows. The Xk have a random direction in the sense introduced in 
1,10, and the length L is a random variable with E(L2) = 1. For reasons 
of symmetry the covariance matrix C is the diagonal matrix with elements 

<T~ = lId. The distribution of the normalized sum SnlJ;z tends to the 
normal distribution with covariance matrix C. The distribution of the 

squared length of the vector Sn/~~ therefore tends to the distribution of 
the sum of squares of independent normal val"iables. It was shown in 11,3 
that this limit has the density 

, dlli . l' Z 

(4.12) w (r) = . e-~lir r li- I
. 

Ii 211i- I r(ld) 

This result shows the influence of the number of dimensions and applies, 
in particular, .to the random flight example 1,10(e). 

(c) Random dispersal of populations. As an empirical application of the 
foregoing example consider the spread of a population of oak trees in 
prehistoric times. If new plants were due only to seeds dropped by mature 
trees, then seedlings would be located near mature trees and the distance of 
an nth generation tree from its progenitor would be approximately normally 

10 Obviously m(x) is the trace (sum of the diagonal elements) of the product Cu". 
This is true in all dimensions. [In one dimension m(x) = 10'2u" (x).]. 
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distributed. Under these conditions the area covered by the descendants of a 
tree would be roughly proportional to the age of the tree. Observations 
show that the actual . development is inconsistent with this hypothesis. 
Biologists conclude that the actual dispersal was strongly influenced by birds 
carrying the seeds long distances.u ~ 

We turn to a generalization of theorem 1 to variable distributions The 
conditions give the impression that they are introduced artifically with the 
sole purpose of making the same proof wOrk. Actually it turns out that the 
conditions are also necessary for the validity of the central limit theorem 
with the classical norming used in (4.17). (See XV,6.) 

Theorem 3. (Lindeberg).12 Let Xh X2, • •• be mutually independent 
one-dimensional random variables with distributions Fl , F2, ... such that 

(4.13) 

and put 

(4.14) 

Assume that for each t > 0 

( 4.15) S;2~ r y2 Fk{dy} ~ 0 
k=l J ltd ~tsn 

or, what amounts to the same, that 

(4.16) 

Then the distribution of the normalized sum 

(4.17) 

tends to the normal distribution 91 with zero expectation and unit variance. 
The Lindeberg condition (4.15) guarantees that the individual variances 

<1; are small a~ compared to their sum s! in the sense that for given € > 0 

11 J. G. SkeIlam, Biometrika, vol. 38 (1951) pp. 196-218. 
12 J. W. Lindeberg, Math. Zeit., vol. 15 (1922) pp. 211-235. Special cases and variants 

had been known before, but Lindeberg gave the first general form containing theorem 1. 
The necessity of Lindeberg's condition with the classical nonning was proved by FeIler, 
Ibid., vol. 40 (1935). (See XV,6.) 

Lindeberg's method appeared intricate and was in practice replaced by the method of 
characteristic functions developed by P. Levy. That streamlined modem techniques 
permit presenting Lindeberg's method in a simple and intuitive manner was shown by 
H. F. Trotter, Archiv. der Mathematik, vol. 9 (1959) pp. 226-234. Proofs of this section 
utilize Trotter's idea. 



VIII.4 THE CENTRAL LIMIT THEOREM 263 

and all n sufficiently mrge 

(4.18) k = 1, ... , n. 

In fact, obviously (J;/s: is less than t2 plus the left side in (4.15), and 
taking t = IE we see that (4.15) implies (4.18). 

Theorem 3 generalize~ to higher dimensions in the way indicated by 
theorem 2. See also problems 17-20. 

Proof. To each distribution 'Fk we make correspond a normal distri
bution Gk with zero expectation and the same variance (J:. The distribution 
F1c(xsn) of Xk/sn now depends on both k and n, and we denote the 
ass~ciated operator by (Jk.n. Similarly (£k.n is associated with the normal 
distribution Gixsn). By (3.9) it suffices to prove that 

n 

(4.19) 211 (Jk.nU - (£k,nU II ~ 0 
k=l 

for every 'u E C[ - 00, 00] with three bounded derivatives. We proceed as 
in theorem I, but (4.6) is now replaced by the n relations 

. , 

(4.20) 

Splitting the interval of integration into I-yl < E and Iyl > E and using 
'the same estimates as in (4.6) we obtain 

(4.21) 

The Lindeberg condition (4.15) with t = E now guarantees that for n 

sufficiently large 

(4.22) 
n 

2 
k=l 

2 . (Jk " 
~ u.-u--u Ok.n 2 2 

Sn 
~ E(llulIIll + Ilu"I!). 

For our normal distributions Gk the Lindeberg condition (4.15) is satisfied 
as a simple consequence of (4.18), and therefore the inequality (4.22) remains 
valid with (Jk.n replaced by (f)k,n' Adding these two inequalities we obtain 
(4.19), and this concludes the proof. ~ 

Examples. (d) Uniform distributions. Let Xk be uniformly distributed 
[with density 1/(2ak)] between, -ak and ak• Then (J: = la:. It is easily 
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seen that the conditions of the theorem are satisfied if the' ak remain 
bounded and a~ + ... + a! -+ 00; indeed, in this case the sum (4.15) 
vanishes identically for all n sufficiently large. On the other hand, if 
~ a: < 00 then Sn remains bounded and (4.15) cannot hold: in this case 
the central limit theorem does not apply. (Instead we get an example of an 
infinite convolution to be studied in section 5.) 

A less obvious case where the central limit theorem does not hold is 
0': = 2k. Then 3s! = 2n+1 

- 2 < 2a! and obviously the left side of 
(4.15) is > ! if, say, t < '1 J o. These examples show that (4.15) serves to 
insure that the individual X k will be asymptotically negligible: the prob
ability that any term X k will be' of the same order of magnitude as the sum 
Sn must tend to zero . 
. (e) Bounded variables. Assume that the Xk are uniformly bounded, 

that is, that all the distributions Fk are carried by some finite interval 
-a, a. The Lindeberg condition (4.15) is then satisfied iff Sn -+ 00. 

(f) Let F be a probability distribution with zero expectation and unit 
variance. Choose a sequence of positive numbers O'k and put Fn(x) = 
= F(xJO'n) (so that Fk has variance O'~). The Lindeberg condition is satisfied 
iff Sn -+ 00 and O'n/sn -+ O. Indeed, we know that these conditions are 
necessary. On the other hand, the left side in (4.15) reduces to 

S-;;2 i O'~f. x2 F{dx}. 
k=l Ixl <tSfi/Uk 

Under the stated conditions Sn/O'k tends to 00 uniformly in k = 1, ... , n, 
and so for n sufficiently large all the integrals appearing in the sum will be 
<E. This means that the sum is < ES!, and so (4.15) is true.- ~ 

It is of methodological interest to observe that the same method of proof 
works even for certain sequences of random variables without expectations, 
but the norming factors are, of course, different. We shall return to this 
problem in XV,6 where we shall also further analyze the nature of the 
Lindeberg condition. (See problems 19-20.) 

We conclude this excursion by a version of the central limit theorem for 
random sums. The idea is as follows. If in theorem 1 we replace the fixed 
number n of terms by a Poisson variable N with expectation n it is plausible 
that the distribution of SN will still tend to in. Similar situations arise in 
statistics and physics when the number of observations is not fixed in 
advance. 

We consider only sums of the form SN = Xl + ... + X N where the 
X; and N are mutually independent random variables. We suppose that 
the X; have a common distribution F with zero expectation and variance 
1. Using the notation of section 2 we have 
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Theorem 4.13 (Random sums.) Let N1, N2, • •. be positive integral-valued 
random variables such that 

(4.23) n-1N n ~ 1. 

Then tlie distribution of SN /-J~ tends to in. 
" 

The interesting feature is that" SN/v'~ is not normalized to unit variance. In fact, 
the theorem applies to cases with E(Nn ) = 00. and even when expectations exist, (4.23) 
does not imply that n-1E(Nn) -+- 1. Normalization to unit variance may be impossible, 
and when possible it complicates the proof. 

Proof. To avoid double subscrip.ts we write P{Nn = k} = ak with the 
understanding that the ak depend on n. The operator associated with. 
SN is given by the formal power series! ak(Jk. As in the proof of theorem 
"-

llet (In be the operator associated with F(x-Jn).Since F~* ~ in it suffices 
to prove that 

00 

(4.24) I aSj! u - (J~ u ~ 0 
k=1 

uniformly for each u E C[ - 00, 00] with three bounded derivatives. 
Using the obvious factoring and the basic inequality (3.9) itjs seen that 

(4.25) II(J!u - (Y~u!1 < 11~~nlu - ull < Ik - nl' II(Jnu - uil. 
Because of (4.23) the coefficients ak with Ik - nl > €n add to less than € 

provided n is sufficiently large. For such n the norm of the left side in 
(4.24) is 

00 

(4.26) < Iak Ild~U - g:~ull < 2€· lIull + 2€· n lI~nu - u!l. 
k=,1 

We saw in the proof of the lemma the right side is < 2€ lIull + 3€ lIu'lll for 
all n sufficiently large, and so (4.24) holds uniformly. ~ 

*5. INFINITE CONVOI"UTIONS 

The following theot.em is given for its intrinsic interest and because it 
is a good example for the working of our criteria. Stronger versions are 
found in VII,S, IX,9~ and XVH.lO. 
--_._--

13 For generalizations to mutually depend.~~nt Xj sec P. Billingsley, Limit theorems for 
randomly selected partial sums, Ann. Math. St'ltist., vol. 33 (1963) pp. 85-92. When 
(4.23) is dropped one gets limit the.orems of a novel form. See H. E. Robbins, The 
asymptotic distribution of the sum of a random number of random variables, Bull. Amer. 
Math. Soc. vol. 54 (1948) pp. 1151-1161. 

For generalizations of the central limit theorem to other types of dependent variables 
the reader is referred to the book by Loeve. (For exchangeable variables, see problem 21.) 

* This section is not used in the sequel. 
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We denote by Xl' X2 , • '. mutually independent variables with distribu
tions F1 , F2 , • • •• It is assumed that E(Xj) = 0 and 0'; = E(X:) exist. 

Theorem. If 0'2....: 2 c1 < 00 the distributions14 G n of the partial sums 
Xl + ... + Xn tend to a probability distribution G with zero expectation and 
variance 0'2. 

Proof. To establish the existence of a proper limit G it suffices (theorem 
1 . of section 3) to show that for infinitely differentiable u E C[ - 00, 00] 

the sequence of functions tJ1tJ2'" tJnu converges uniformly as n ~ 00. 

Now for n > m by the obvious factorization 

(5.1) IItJ1 ... tJnu - tJ1 ... tJmull < IItYm+1' .. (Ynu - ull. 
Since E(Xk) = 0 we have the identity 

(5.2) t1kU(X) - u(x) = f:: [u(x-y) - u(x) + yu'(x)) F):{dy}. 

By the second-order Taylor expansion the integrand is in absolute value 
:s: IId'\\ . y2 and therefore lI~kU - ull < 0': . lIu"lI. By the oasic inequality 
(3.9) the quantity (5.1) is therefore ~ (0'~+1 + ... + O'~) . lIu" II and thus 
there exists a proper distribution G such that Gn ~ G. Since Gn has 
variance O'~ + ... + O'! the second moment of G exists and is_ :::;; 0'2. 

By the criterion of'example 1 (e) this implies. thatG has zero expectation. 
Finally, G is the convolution of G n and the limit distribution of 
Xn+l + ... + Xn+k , and hence the variance of G cannot be smaller than 
that of Gn • This concludes the proof. ~ 

Examples. (a) In example I,ll(c) a random choice .of a point between 
o and 1 is effected by a succession of coin #. )~~ings. In the present terminology 
this means representing the uniform distribution as an infinite convolution. 
Example I,ll (d). shows that the infinite convolution of the corresponding 
even-numbered terms is a singular distribution. (See XVII,lO.) 

(b) Let the Yk be independ~nt with E(Yk):=; 0 and E(Y:)':"- 1. Then 
the distrib~tions of the partial 'sums of :2 bk Yk converge if '2 b: < 00. 

This f~ct was exploited in the discussJon of normal stochastic processes in 
III,7. 

(c) Applicatio~ to birth processes. Let Xfl be a positive variable with 
- density Ane-Atat. Then E(Xn) = .JVar (X,) = A.~1 and in ca~e m = 
. I A.~1 < 00 our theorem applies to the' centered variables Xn - A~l. 
This observation. leads to a probabilistic interpretation o.f the divergent pure 
birth process described in 1; XVII,3-4. A "particle" mov~s by successive 

. 14 It was shown in vn,8 that the random variables s,. themselves converge to a:limit. 
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jumps, the sojourn times Xl' X2 , • •• being independent exponentially 
distributed ~ariables .. Here Sn = Xl +' ... + Xn represents the epoch of 
the nth jump. If lim E(Sn) = m < 00, the distribution of Sn tends ,to a 
proper limit G. Then G(t) is the probability that infinitely many jumps will 
occur before epoch t. 

(d) For applications to shot noise,trunking' problems, etc., see problem 
22. ~ 

6. SELECTION THEOREMS 
, . 

A standard m~thod of proving the convergence of a num~rical sequence 
consists in proving first the existence of at least one point of accumulation 
and" then its uniqueness. A similar procedure is applicable to distributions, 
the analogue to,a point of accumulation.being provided by the following im
portant theorem usually ascribed to Helly. As for all theorems of this section, 
it is independent of the number of dimensions . .<A special case was used in 1; 
XI,6.)· ..'-

Theorem 1. (i) Every sequence {Fk }' of probability distributions in :R,f' 

possesses 'a subsequence Fnl , FYl1 , ~ •• that conve.rges (properly or,improperly) 
to 'a limit F. " '. 

(ii) In order that all such 'limits be proper- it is necessary a11:d sufficient 
that {Fn} ,be stochastically bounded. (See definition 2 of section 2.) 

(iii) In order that Fn ~ F it is necessary and sufficient that the limit of 
every convergent subsequence equa~s . F. 

The proof is based on' the following 

Lemma. Let ah a2, ... be an arbitrary sequence of points. Every sequence 
{un} of numerical fun ctions contains a subsequence un1' un., ... that converges 
at all points aj (possibly to ± (0). ~ -. 

Proof. We use G. Cantor's' "diagonal method." It is possible to find a 
sequence VI' V2, ••• such that the sequence of values uy,,(al ) ·converges. To 
avoid mu~tiple Indices we put ukl ) = uy " so that {ukl )} is a subsequence of 
{un} and converges at the particular point ale 0'1t of this subsequence we 
extract a further subsequence Ui2), U~2), ••• ihat converges at the point a2' 
Proceeding by induction we construct for each ~ a sequente uin), u~n), ... 
converging at an and contained in the preceding sequence. Consider now 
the diagonal seque~ce uil ), U~2), U~3), • • •• Except for its first n - 1 terms 
this sequence is contained in the nth sequence u~n); u~n), . .. and hence it 
converges at an' This befng true for each n, the diagonal sequ~nce {u~n)} 
converges at all points ai' a2' . .. and the lemma is proved. ~ 

Proof of theorem 1. (i) Choose for raj} a sequence "that is everywhere 
dense, and choose a subsequence {Fn) that converges at each point aj. 
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Denote the limits by G(aj ). For any point x not belonging to the set {aj} 
we define G(x) as the greatest lower ~ound of all G(aj) with aj > x. The 
function G thus defined increases from 0 to 1, but it need not be right
continuous: we can only assert that G(x) lies between the limits G(x+) 
and G(x-). However, it is possible to redefine G at the points of dis
continuity so as tC' obtain a right-continuous function F which agrees with 
G at all points of continuity. Let x be such a point. There exist two points 
ai, < x < aj such that 

(6.1) . G(aj) - G(ai ) < € ' G(ai ) < F(x) < G(aj). 

The Fn being monotone we have FnJai ) < Fn/x) < Fnk(aj). Letting 
k, -- 00 we see from (6.1) that no limit point of the sequence {Fnk(x)} can 
'differ from F(x) by more than €, and so Fnk(X) -- F(x) at all points of 
continuity. ' 

,( 

(ii) Next we recall that a convergent sequence of distributions converges 
properly iff it is s~ochastically bounded.' Given (i) the remaining assertions 
are therefore almost tautological. ~ 

, . 
The selection theorem is exttemelyimportant., The following famous 

theorem in number theory may give an idea of its amazing power and 
may also serve as a reminder that our probabilistic terminology must not 
be allowed to obscure the much wider scope of the theory developed. 

Examples. (a) An equidistribution theorem in number theory.l5 Let cx be 
an irra1/onal number and CXn the fractional part of ncx. Denote by Nn(x) 
the 1(lumb'er of terms among cxl , cx 2 , ••• 'CXn that are < x. Then n-1N n(x) -- x 
for ail 0 < x < l. . 

Proof. We consider distributions and functions on the circle of unit 
length; in other words, additions of coordinates are reduced modulo 1. 
(The idea was expla~ned in 11,8. The convenient tool of distribution functions 
becomes meaningless on, the circle, but distributions in the sense of measures 
are meaningful.) Let Fn , be the atomic distribution concentrated on the n 
points OC, ,2cx, ... ,ncx· and assigning probability 1 In to each. By the 
selection theorem there exists a sequence n1, n2, • •• such that Fnk ~ F, 
where F is a proper probability distribution (the circle being bounded). 
Taking convolutions with an arbitrary continuous function u we get 

(6.2) 
/ 

1. [u(i-cx) + u(x-2cx) + , ... + u(x-nkcx)] ~ vex). 
n1c. " 

,,15 Usually attributccl t~ H. Weyl although discovered independently by Bohl and by 
Sierpinski. See G. H. Hardy and E. M. Wright, Theory of numbers, Oxford, 1945, pp. 
378-381, to appreciate the difficulties of the proof when the theorem is considered in a 
non-probabilistic setting. 
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~ Now it is obvious that replacing x by x-.x does not affect the asymptotic 
behavior of the left side, and hence v(x) = v(x-.x) for all x. This in turn 
implies vex) = v(x-k.x) for k = 1,2, . . .. By the corollary to lemma 2 
in V,4 the points .x, 2.x, ... lie everywhere dense, and hence v = const. 
We have thus shown that for each continuous u -the convolution F* u 
is a constant. 'It follows that F must attribute the same value to intervals of 
equal length, and S9 F{/} equals the length of the interval /. The impos
sibility of other limits proves that the whole sequence {Fn} converges to this 
distribution, and this proves the theorem. We ca,lI F the uniform distribution 
on the circle. 

(b) Convergence of moments. Let Fn and F be probability distributions 
with finite moments of all orders, which we denote by 14~) and #k' 
respectively. We know from VII,3 that different distribution functions can 
have. the same ~oment sequence and it is therefore not always possible from 
the behavior of #k n) to conclude that Fn -+ F. However, if F is the only 
distribution with the moments #1' #2, ... and if. #kn) -+ Pk for k = 1,2, ... 
then Fn -+ F. In fact, the result of example 1 (e) shows that every converg;ent 
subsequence of {Fn} converges to F. ' 

(c) Separability. For brevity call a distribution rational if it is concentrated 
at finitely many rational points and. attributes a rational weight to each. An 
arbitrary distribution F is the limit of a sequence {Fn} of rational distri
butions, and we may choose Fn with zero expectation since this can be 
achieved by the addition of an atom and adjustment of the weights by 
arbitrarily small amounts. But there are only denumerably many rational 
distributions and they may be ordered into a simple sequence Gb G2 , •••• 

Thus there 'exists a sequence {Gn } of distributions with zero expectations and 
finite variances such that every distribution F is the limit of some subsequence 
{Gnk}· ~ 

Theorem 1 was formulated in the form most useful for probability but is 
unnecess~riIy restrictive. The, proof depended on the fact that a sequence 
{Fn} of monotone functions with Fn(-oo)::,: 0, Fn(oo) = 1 contains a 
convergent subsequence. Now this remains true also when the condition 
Fn( (0) = 1 is replaced by the less stringent requirement that the numerical 
sequence {Fn(x)} he bounded for each fixed x. The limit F will then be finite 

---I 

but possiblyunbounded; the induced measure will be finite on intervals - 00, x, 

but-possibly infinite for - 00, 00. A similar relaxation is possible for - 00 

and we are led to the following generalization of theorem 1, in which the 
symbol #n -+ # is used in the obvious sense that the relation holds in 
finite intervals. 
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Theorem 2. Let {,un} be a sequence of measures such that the numerical· 

sequence ,un { -x, x} is bounded for each x. There exists a measure ,u 
and a $l!quence nh n2, . .. such that ,un" -+ ft. 

Variants of the selection theorem hord for many classes of functions 
Particularly useful is the following theorem, usually called after either 
Ascoli or Arzehl. 

Theorem 3. Let {un} be an equicontinu.ousl6 sequence of functions 
\un\ < I..There exists a subsequence {un,,} cOtlverging to a continuous limit 
u. The convergence is uniform in every finite interval . 

. Proof. Choose again a dense sequence of points ar and a subsequence 
{un,,} converging at each aj ; denote the limit by u(a;). Then 

) 

(6.3) lunr(x)-nn,(x) \ < \unr(x)-unr(a;)\ + \un,(~)-Un,(ai)\ 
+ \unr(a;)-un,(a;)I. 

By assumption the last term tends to O. Because of the assumed equicontinuity 
there exists for each x a point a j such that 

(6.4) 

for all n, and finitely many such aj suffice for any finite interval I. It 
follows that the right side in (6.3) will be <3£ for all rand s sufficiently 
large uniformly in 1. Thus u(x) . lim unr(x) exists, and because of (6.4) 
we have\u(x) - u(a;) \ < £ which implies the continuity of u. .. 

*7. ERGODIC THEOREMS FOR MARKOV CHAINS 

Let K be a stochastic kernel concentrated on a finite or infinite interval 
Q. (By definition 1 of Vl,lI this means: K is a function of two variables, 
a point x and a set r, 'which for fixed r reduces to a Baire function of 
x and for . fixed x En a probability distribution concentrated on n.) In 
higher dimensions the inte~valQ may be replaced by more general regions 
and the theory requires no change. 

It was shown in VI,ll that there exist Markov chains (Xo, Xl' ... ) with 
transition probabilities K. The distribution Yo of the initial variable Xc 
may be chosen arbitrarily and the distributions of Xl' x2 , • •• are then 

16 That is, to each £ > 0 there corresponds ad> 0 such that Ix' - x"l <d implies 
I '4& (x') - un(xll')1 < £ for all n. 

• This material is treated because of its importance and as a striking example for the 
use of the selection theorems. It is not used explicitly in the sequel. 
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given recursively by 

(7.1) 

In particular, if Yo is concentrated at a point Xo then Yn(r) = K(n,(xo, r) 
coincides with the transition probability from Xo to r. 

Definition 1. A measure ex is strictly positive in Q if ex{I} > 0 for each 
open interval Ie Q. The kern(!l K is strictly positive if K(x, I) > 0 for 
each x and each open interval in Q. 

Definition 2. The kernel is ergodic if there exists a strictly positive prob
ability distribution ex such that' 'Y n ~ ex independently of the initial probability 
distribution Yo. 

This amounts to saying that 

(7.2) K(n)(x, J) ~ ex(I) > 0 

for each interval of continuity for ex. The definiti(·J is the same 'as in the 
discrete case (1; 'XV); its meaning has been discussed and clarified by 
examples in VI,I1. 

The most general stochastic kernels are ,subject to various pathologies, 
and we wish to restrict the theory to kernels depending in a continuous 
manner on x. The simplest way of expressing this is by considering the 
transformations on continuous functions induced by K. Given a function 
u which is bounded and continuous in the underlying interval n we define 
Uo = u and, by induction, 

(7.3) un(x) = fnK(X, dy) un-ley). 

This transformation on functions is dual to the transformation (7.1) on 
measures. Note that in both cases throughout this section indices serve to 
indicate the effect of a transformation induced by K. 

The regularity property that we wish to impose on K is, roughly speaking, 
that UI should not be worse than uo. The following definition expresses 
exactly our needs but looks formal. The examples will show that it is 
triviaI!y satisfied in typical situations. 

Definition 3. The kernel K is regular if the family of transforms Uk is 
equicontinuous l7 whenever Uo is uniformly continuous in Q. 

17 See footnoteI6• Our "regUlarity" in analogous to "complete continuity" as used in 
Hilbert space theory. 
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Examples. (0) Convolutions. If F is' a probability distribution the 
convolutions 

Unex) . f:~Un-l(X-Y)F{dY} 
represent a special case of the transformation (7.3). (With self-explanatory 
notations in this case K(x, I) = F{I-x}. This transformation is regular 
because, Uo being uniformly continuous, there exists a 0 such that 
lx' - x"l < 0 implies Iuo(x') - uo(x")l < £ and by induction this entails 
lun(x') - un (x") I <: £ for alI n. 

(b) Let n be the unit interval and let K' be defined by a density k which 
is continuous in the closed unit square. Then K is regular. Indeed 

(7.4) lun(x') - un(x") I < f.l1k(X', y) - k(x", y)/. lun-l(y)1 dy. 

By induction it is seen that if IUol < M also lu~1 < M for all n. Because 
of the uniform c,ontinuity of k there exists a: 0 such that 

Ik(x', y) - k(x", y)1 < elM whenever 'Ix' - x"( < 0, 

and then lun(x') - un(x") I < e independently of n. 

The condition of strict positivity in the following theorems is unnecessarily 
restrictive. Its main function is to eliminate the nuisance of decomposable 
and periodic chains with which we had to cope in 1; XV. 

Theorem 1. Every strictly positive regular kernel K on 0 bounded closed 
interval Q is ergodic. .. 

This theorem fails when n is unbounded, for the limit in (7.2) can be 
identically zero. A universal criterion may be formulated in terms of 
stationary measures. We recall that a measure cx is called stationary for 
K if CXI = ,x2 = ... = cx, that is, if all its transforms (7.1) are identical. 

Theorem 2. A strictly positive regular kernel K is ergodic iff it possesses 
a strictly positive stationary probability distribution cx. 

Proof of theorem 1. Let Vo be a continuous function and VI its transform 
(7.3). The proof depends on t~e obvious fact that for a strictly positive 
kernel K the maximum of the transform VI is strictly less than the maximum 
of Vo except if Vo is a constant. 

Consider now the sequence of transforms Un of a continuous function 
uo. Since n is closed, Uo is uniformly continuous on Q and hence the 
sequence {un} is equicontinuous. By theorem 3 of section' 6 there exists 
therefore a subsequence {un) converging uniformly to a continuous 
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function vo. Then Un +1 converges to the transform VI of VO. Now the 
k . 

numerical sequence of the maxima mn of Un is monotone, and hence mn 
converges to a limit m. Because of the uniform convergence both Vo and VI 
have the maximual m, and hence vo(x) = m for all x. This limit being 
independent of the subsequence {un) we conclude that un ---+ m uniformly. 

Let Yo bt: an arbitrary probability distribution on n and denote by En 
expectations with respect to its transform Yn defined in (7.1). A comparison 
of (7.1) and (7.3) shows that . 

En(uo) = Eo(un ) -- Eo(m) = m. 

The convergence of En(uo) for arbitrary continuous Uo implies the existence 
of a probability measure ex such that Y n -- ex. (See theorem 2 of section 
1; the convergence is proper since the distributions l'n are concentrated on 
a finite interval.) From (7.1) it follows that ex is stationary for K. The strict 
positivity of ex is an immediate consequence of the strict positivity of K. ~ 

Proof of theorem 2. Denote by E expectations with respect to the given 
stationary distribution ex. For an arbitrary Uo E C[ - 00, co], and its 
transforms Uk we have on account of the stationarity E(uo) = E(uI ) = .... 
Furthermore, E(lu"D decreases with k and so lim E(luki) = m exists. 

As in the preceding proof we choose a subsequence such that unk -- vo. 
Then Unk+1 -- VI' where VI is the transform of vo. By bounded convergence 
this entails E(unk) -- E(vo) and E(luTtkl) -~ E(lvoD. Thus 

E(v1) = E(vo) = E(uo) and E(lVID = E(lvoD = m, 

In view of the strict positivity of K the last equality implies that the con
tinuous function vocannot change signs. When E(uQ) = 0 we have 
therefore vo(x) = 0 identically. It foIlo\.vs that for arbitrary initial Uo we 
have vo(x) = E(uo) for all x. This proves that Un (:l.7) -~ E(uo) which is the 
same as K(n)(x, r) -- ex(r) at all intervals. of continuity. ... 

We now apply this theory to convolutions on the circle of cin::uIT".Jerencc 1, 
that is, to transformations of the form 

(7.5) 

where F is a probability distribution an the cirde and addition is module 
l. [See U,8 and example 6(0).] This transformation faay be written in the 

f---j 

form (7.3) with .Q = 0, 1 and K(n)(x; f') = Fn*tx - r}. Theorem 1 
applies directly if F is strictly positive, but we prove the following more 
general analogue to the central limit theorem. 
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Theorem 3.18 Let F be a probability distribution on the circle and suppose 
that it is not concentrated on the vertices of a regular polygon. ,Then Fn* 
tends to the distribution with constant density. 

Proof. It suffices to show that for an arbitrary continuous function Uo 
the transforms Un tend to a constant m (depending on uo). Indeed, as 
the second part of the proof of theorem 1 shows, this implies that Fn * 
converges to a probability distribution ex on the circle, and since ex * Uo 
is constant for every continuous function Uo it follows that ex coincides 
with the uniform distribution. 

To show that Un ~ m \ye use the first part of the p~oof of theorem 1 
except that we require a new proof for the proposition that'the maximum 
of the transform VI of a continuous function Vo is strictly less than the 
maximum of Vo except if Vo is a constant. To prove the theorem it suffices 
therefore to establish the following proposition. If Vo is a continuous function 
such that Vo S m and vo(x) < m for all x of an internal I of length 
;. > 0, then there exists an r such that vr(x) < m for all x. _ 

Since rotations do not affect the maxima there is no loss of generality 
in assuming that 0 is a point of increase of F. If b is another point of 
increase then 0, b, 2b, ... ,rb are points of increase of Fr*, and it is 
possible to choose band r such that every interval of length ;. contains 
at least one ampng these points (see lemma 1 and the corollary' in V,4a). 
By definition 

(7.6) 

To every point x it is possible to find a point y of increase of F r * such 
that x - y is contained in I. Then vo(x-y) < m, and hence vr(x) < m. 
Since x is arbitrary this proves the assertion. ~ 

, Note. The proof is easily adapted to show that if F is concentrated on 
the vertices of a. regular polygon with one vertex at 0, then Fn * tends to an 
atomic distribution with atoms of equal weight. Convergence need not take 
place if 0 is not among the atoms. 

Example. (c) Let F be concentrated on the two irrational points a 
and a + i. Then Fn * is concentrated on the two points na and na + i, 
and convergence is impossible. ~ 

18 For the analogue on the open line see problems 23 and 24. For generalizations to 
variable distributions see P. Levy, Bull. Soc. Math. France, vol. 67 (1939) pp. 1-41; 
A. Dvoretzky and J. Wolfowitz, Duke Math. J., vol. 18 (1951) pp. 501-507. 
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8. REGULAR VARIATION 

The notion of regular variation (introduced by J. Karamata in 1930) 
proved fruitful in many connections, and finds an ever increasing number of 
applications in probability theory. The reason for this is partly explained 
in the next lemma, which is basic despite its simplicity. The examples of 
this section contain interesting probabilistic results, and problem 29-30 
contains a basic result concerning stahle distributions which follow from the 
lemma in an elementary way. (See also problem 31.) 

We have frequently to deal with monotone functions U obtained from 

a probability distribution F by integrating yP F{dy} over 0, x or x, 00. 

[See, for example, (4.5), (4.15), (4.16).] The usual changes of parameters 
lead from such a function U to the family of functions of the fOrIn at U(tx), 
and we have to investigate their asymptotic behavior as" t -+ 00. If a limit 
lp(x) exists, it suffices-to consider norming factors of the form at = 1p(1)/U(t) 
provided _ 11'(1) > O. The next lemma is therefore wider in scope than 
appears at first sight. It shows that the class of possible limits is surprisingly 
restricted. 

Lemma 1. Let U· be a positive mono tune function on 0, 00 such that 

(8.1) U(tx) .,,{) ./ 
-- -+ 't'\X ..::::. 00 
U(t) 

t -+ 00 

at a dense set A of points. Then 

(8.2) 1p{x) = xP 
where - 00 5: p 5: 00. 

The senseles~ symbol xoo "is introduced only to avoid exceptions. It is, of 
course, to be interpreted as 00 for x > 1 and as 0 for x < 1. Similarly 
x- oo is 00 orO according as x < 1 or x > 1. (See problem 25.) 

Proof. The identity 

(8.3) 
U(tx1X.,) _ U(tX1X 2) • U(tx2) 

U(t) U(tx2) U(t) 

shows that if in (8. I) a finite positive limit exists for 
then also for x = X l X 2' and 

(8.4) 1p(X1X2) = -rp(Xl) 1p(X2). 

Suppose first that 1p(x1) = 00 for some point Xl' Then by induction 
V'(x:) = 00 and 'P(x~ n) = 0 for all n. Since V' is monotone this implies 
that either lp(x) = xoo or lp(x) = x-oo. It remains to prove the lemma for 
finite valued" 'P. (See problem 25.) Because of the assumed monotonicity 
we may define 'Peverywhere by right-continuity, in which case (8.4) holds at 
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all points X h x 2• Now (8.4) differs only notationaIly from the equation which 
we have used repeatedly to characterize the exponential distribution. In fact, 
Jetting x = e~ and 1p(e~) = u(~) the relation (8.4) is transformed into 
u( ~1 + ~2) = u( ~1) u( ~2)' We know from 1; XVII,6 that all solutions that are 
bounded in finite intervals are of the form u(~) = ePs• This, however, is 
the same as 1p(x) = xp

• .. 

A fu~ction U satisfying the conditions of lemma 1 with a finite p will 
be said to vary regularly at infinity, and this definition will be extended to 
non-monotone fuqctions. If we put 

(8.5) U(x) = xP L(x) 

the ratio U(ttl:)/U(t) wili approach xP iff 

(8.6) L(tz) -+ 1 
L(t) . , t -+ 00, 

for every x > O. Functions with this property are said to vary slowly, and 
thus the transformation (3 .. 5) reduces regular variation to slow variation. 
It is convenient to use this fact for a formal definition of. regular variation. 

Definition. A. positive (not necessarily monotone) function L defined on 

0, 00 varies slowly at infinity iff (8.6) is true. 
A function U varies regularly with exponent p (-;- 00 < p < 00) iff it is 

of the form (8.5) with L slowly varying. 
This definition extends to regular variation at the origin: U varies 

regularly at 0 iff U(;rl) varies regularly at 00. Thus· no new theory is 
required for this notion. 
Th~ property of regular variation depends only on the behavior at infinity 

and it is therefore not necessa~y that L(x) be positive, or even defined, for 
all x> O. 

Example. (a) All powers of Ilog xl vary slowly both at 0 and at 00. 

Similarly, a function approaching a positive limit varies slowly. 
The function (1 + x2)P varies regularly at 00 with exponent 2p. 
ez does not vary regularly at infinity, but it satisfies the conditions of 

lemma I with p = 00. Finally, 2 + sin x does not satisfy (8.1). ~ 

For ease of reference we rephrase lemma 1 in the form of a 

Theorem. A monotone function U varies regularly at infinity iff (8.1) holds . 
on a dense set and the limii 1JJ is finite and positive in some interval. 19 

19 The notion of regular variation may be generalized as follows: Instead of postulating . 
the existence of a limit in (8.1) we require only that every sequence {t,J tending to infinity 
contains a subsequence such that U(tnkx)/ U(tn,) tends to finite positive limit.· We say 
then that U varies dominated/yo See the end of the problem section 10. 
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This theorem carries over to non-nronotot:Ie functions except that it must 
be assumed that convergence takes place at all points. ' 

The following lemma should serve to develop a feeling for regular 
variation. It is an immediate consequence of the general form (9.9) of slowing., 
,varying functions. 

Lemma 2. If L varies slowly at infinity then 

(8.7) 

for any fixed € > 0 and all x sufficiently large. 
The passage to the limit in (8.6) is uniform in finite in,tervals 0 < a < x < b. 

We conclude this survey by a frequently used ctiterion. 

Lemma 3. Suppose that 

An+l 
-- -+ 1 and an -+ 00. 
A ' n 

If U is a monotone function such that 

(8.8) lim An ([(anx) = x(x) 5: 00 

exists on a dense set, and X is finite and positive in some interval, then U 
varies regularly 'and X(x) = CXP where - 00 < p < 00. -

Proof. We may assume that x(I) = 1 and that (8.8) is true for x = 1 
(because this can be achieved by a trivial ~hange of scale). For given t· 

define n as the smallest integer such that an+l > t. Then an 5: t < an+l 
and for a non-decreas~ng U 

U(anx) U(tx) U(an+lx) , < < ; 
U(an+l) - U(t) -, U(an) 

(8.9) 

for a non-increasing U the 'reversed inequalities hold. Since An U(an) -+ 1 
the extreme members tend to X(x) at each point where (8.8) holds. The 
assertion is therefore contained in the last theorem. ~ 

To illustrate typical applications we derive first a limit theor~m due to 
R. A. Fisher 'and B. V. Gnedenko, and next a new result. 

~xaInple. (b) Distribution of maxima. Let the variables X k be Clutually 
independent and have a common distribution F. Put 

X! = max [Xl' ... , Xnl· 
We ask whether there exist scale factors an such that the variables 'X:/an 

have a limit distribution G. We exclude two cases on account of their 
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triviality. If F has a largest point of increase ~ then the distribution of 
X: trivially tends to the distribution concentrated at E. On the o~er h~nd, 
it is alw~ys possible to choose scale factors a" increasing so rapidly that 
X:/a" tends to 0 in probability. The remaining cases are covered' by the 
following proposition. ~ 

Let F(x) < I for all x. In order that with appropriate scale factors an 
the distributions G" of X:/a" tend to a distribution G not concentrated at 0 
it is necessary and sufficient that 1 - F varies ·regularly with an exponent 
p < O. In this case, 

(8.10) G(x) = e-c:r:P 

for x > 0 and G(x) = 0 for x < O. (Clearly c:> 0.) 

r Proof. If a limit distribution G exists we have 

(8.11) F"(a"x) ~ G(x) 

at all points of continuity. Passing to logarithms and remembering that 
log (l-z) -." -z as z ~ 0 we get 

(8.12) n[I-.;F(a"x)] ~ -log G(x). 

Since· 0 < G(x) < 1 in some inierval the I~st lemma guarantees.the regular 
variation of I-F. Conversely, if I - F varies regularly it is possible 
to determine a" such that n[I-F(a,,)] ~ I, and in this case the left side in 
(8.12) tends to xp

• ~See problem 26.) . ~ 

Example. (ci Convolutions . . From the definition (8~6) it is obvious that the 
·sum of two slowly varying functions is again slowly varying. We now prove 
the following ~ 

Proposition. If Fl and F2 are. two distribution functions such that Os 
x-+ 00 

(8.13) 

with L i · slowly tJarying, then the convolution G = Fl. F2 has a regularly 
varying tail such that 

(8.14) 

Proof. Let Xl and X. be independent random variables with distributions 
Fi and F2. Put t' = (l + «5)t > t . . The event Xl + X2 > t occurs 
whenever one of the variables is >t' and the other > -«5t. As t -+ 00 the 
probability of the latter contingency tends to I, and hence for any e > 0 
and t sufficiently large . 

(8.15) I - G(t) ~ [(I-Fl {1'» + (I-F.{1'»)](1 - e). 



VIII.9 ASYMPTOTIC PROPERTIES OF REGULARL Y VARYING FUNCTIONS 279 

On the other hand, if we put til = (I -b)t with 0 < b <! then the 
event Xl + X2 > t cannot occur unless either one of the variables exceeds 
t", or else both are > bt. In view of (8.13) it is clear that the probability of 
the latter contingency is asymptotically negligible compared with the prob
ability that Xi > til, and this implies that for t sufficiently large 

(8.16) 

Since band E can be chosen arbitarily small the two inequalities (8.15) 
and (8.16) together en,tail the assertion (8.14). ~ 

By induction on r one gets the interesting 

Corollary. If 1 - F(x) ~ x-PL(x) then 1 - Fr*(x) r-...J rx-PL(x). 

When applicable, this theorem20 suppJements the central limit theorem 
by providing information concerning the tails. (For applications to stable 
distributions see problems 29 and 30. For a related theorem concerning 
the compound Poisson distribution see problem 31.) 

*9. ASYMPTOTIC PROPERTIES OF REGULARLY 
Y.' 1?YING FUNCTIONS 

The purpose of this section is to investigate the relations between the 
tails and the truncated moments of distributions ~ith regularly varying 
tails. The main result is that if 1 - F(x) and F( -x) vary regularly so do 
all the truncated moments. This is asserted by theorem 2, which contains 
more than what we shall need for the theory of stable distributions. It 
could be proved directly ,but it may also be considered a corollary to theorem 
1 which embodies Karamata's21 striking characterization of regular variation. 
It seems therefore best to give a complete exposition of the theory in par
ticular since the arguments can now be significantly simplified.22 

We introduce the formal abbreviations 

(9.1) 
I"z 

Zix) = Jo yP Z(y) dy, 

* This section is used only for the theory of stable distributions, but the use of theorem 2 
would simplify many lengthy calculations in the literature. 

20 Special cases were noticed by S. Port. 
21 J. Karamata, Sur un mode de croissance reguliere, Mathematica (Cluj), vol. 4 (1930) 

pp.38-53. Despite frequent references to this paper, no newer exposition seems to exist. 
For recent generalizations and applications to Tauberian theorems see W. Feller, One-sided 
analogues of Karamata's regulur variation, in the Karamata memorial volume (1968) of 
L'Enseignement Mathematique. 

22 Although new, our proof of theorem 1 uses Karamata's ideas. 
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It will now be shown that in the case of a regularly varying Z these functions 
are asymptotically related to Z just as in the simple case Z(x) = x tJ

• 

The asymptotic behavior of Zp at infinity is not affected by the behavior 
of Z near the origin. Without loss of generality we may therefore assume 
that Z vanishes identically in some neighborhood of 0 and so the integral 
defining Zp will be meaningful for all p. 

Lemma. Let Z > 0 vary slowly. The integrals in (9.1) converge at 00 

for p < -1, diverge for p> -1. 
If P :;:: -1 then Zp varies regularly with exponent p + 1. If P < -1 

then Z: varies regularly with exponent p + 1, and this remains true for 
p + 1 = 0 if Z!l exists. 

Proof. Forgiven positive x and€ choose 'Y) such that for y ~ 1] 

(9.2) (I -€) Z(y) < Z(xy) < (1 +€) Z(y). 

Assume that the integrals in (9.1) converge. From 

(9.3) Z:(tx) = XP+l J,oo y' Z(xy) dy 

it follows for· t > 1] that 

(l_€)x1>+l Z:(t) s Z:(tx) < (l+€)x1>+l Z:(t). 

Since € js arbitrary we conclude that as t -+ 00 

Z:(tx) 1>+1 
-+x 

Z:(t) 
\.9.4) 

This proves the regular variation of Z:. Furthermore, ,since Z: is a 
decreasing function it follows that p ;:: 1 <0. Thus the integrals in (9.1) 
cannot converge unless p < -1. 

Assume then that these integrals diverge. Then for t > 1] 

and hence 

Z.(tx) = Z.(1]x) + xO+1J.'y, Z(xy) dy 

.. 
On dividing by Zp(t) and letting t -+ 00 ~e conclude as above that 
Zp(tx)/Z1)(t) tends to x P+1• In case 0f divergence therefore Zp varies 
regularly, and divergence is possible only when p ~ -1. ~ 

The next theorem shows that regular variation of Z ensures that of Zp 
and Z:; the converse is also true except if Z1) or Z: vary slowly. Further
more we get a useful criterion for the regular variation of these functions. 
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Parts (a) and (b) of the theorem treat the functions Z: and Zp, respectively. 
They are parallel in all respects, but only part (a) is used extensively in prob
ability theory. 

Theorem 1. (a) If Z varies regularly with exponent I' and Z: exists, then 

(9.5) 

where A. = -(P+I'+l) ~ O. 
Conversely, if (9.5) holds with A. > 0, the!' Z and Z: vary regularly with 

exponents .1' = -A. - P - I and -A., respectively. If (9.5) holds with 
A. = 0 then Z: varies slowly (but nothing can be said about Z) . 

. (b) If Z varies regularly with exponent I' and if p > - I' -1 then 

(9.6) tSl+1 Z(t) -+ A. 
Zp(t) 

with A. = P + I' + 1. 
Conversely, if (~.6) holds with A. > 0 then Z and Zp vary regularly with 

exponents A - P - I and A., respectively. If (9.6) holds with A. = 0 then 
Zp varies slowly. 

Proof. The proofs are identical for both parts, and we conduct it for 
part (a). Put 

(9.7) 
yP Z(y) = r;(y) 

Z:(y) y 

The numerator on the left is the negative derivative of the denominator, and 
hence we get for :c > I 

(9.8) I Z:(1) I.t2: (') dy (t)5,2: r;(ts) ds og = r; y - = r; - - . 
Z:(tx) t y 1 r;(t) s 

Suppose now that Z varies regularly with exponent 1'. By the preceding 
lemma Z: varies regularly with exponent A = I' + P + I and so the two 
sides in (9.7) vary regularly with exponent -1. Thus r; is a slowly varying 
function. As t -+ co the last integrand in (9.8) therefore tends to S-l. 

Unfortunately we do not know that r; is bounded, and so we can only 
assert that the lower limit of the integral is ~log x by virtue of Fatou's 
theorem [see IV,(2.9)]. But because of the regular variation of Z: the left 
side tends to it log x, and so 

lim sup rl(l) < A. 

But this implies the boundedness of r;; and hence we may choose a sequeQCe 
tn -- co such that r;(trJ -+ c < 00. Because of the slow variation this 
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implies that 'Yj(tlls) -+ c for all s, and the convergence is bounded. Thus 
the right side in (9.8) approaches c log x, and hence c = A. It follows that 
the limit c is independent of the sequence {In}, and so 'Yj(/) -+ A. This 
proves that (9.5) is true. 

The converse is easier. Suppose 'Yj(t) -+ A >0. The two sides in (9.8) 
then approach A log x, and hence the ratio Z!(t)jZ:(tx) approaches x), 
as asserted. If A > 0 this together with (9.5) proves that Z varies regularly 
with exponent -A - P - 1. ~ 

Although we shall not use it we mention the following interesting 

Corollary. A function Z varies slowly iff it is of the form 

(9.9) L(x) = a(x) exp(f £~) dy) 
where €(x) -+ 0 and a(x) -+ c < 00 as x -+ 00. 

Proof. It is easily verified that the right side represents a slowly varying 
function. Conversely, assume that Z varies slowly. Using (9.6) with 
p = y = 0 we get 

2(/) I ~ E(/) 

Zo(t) = t 

with E(t) -+ O. On the left the numerator is the derivative of the denominator, 
and by integration we get 

Z.(x) = Z.(I)· x exp(f £~) dt) . 
which is equivalent to (9.9) because Z(x) ~ Zo(x)x-1 by (9.6). 

We proceed to apply theorem 1 to the truncated moment functions of a 
probability distribution F. We can consider each tail separately or else 
combine them by considering F(x) - F( -x) instead of F. It suffices 

I I 

therefore to study dictributions F concentrated on 0, 00. For such a 
distribution we define the truncated moment functions U, and V" by 

(9.10) 

It wil1 be understood th?+ the second integral converges while the first integral 
tends to 00 as x -+ 00. This requires that ,> 0 and - 00 < 'Yj < {. 
In particular, Vo = 1 - F is the tail of the distribution F. 

We prove a generalization of part (a) of t!1eorem 1; part (b) generalizes 
in like manner. 
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Theorem 2.23. Suppose that U,(oo) = 00. 

(i) If either U, or V" varies regularly then there exists a limit 

(9.11) 
. r-"V,,(t) 

lIm = c, 
z-oo U,(t) 

o ~ c < 00. 

We write this limit uniquely in the form 

(9.12) '-ex 
c=~-, 

ex-'Y] 

w~th ex = 1] if c == 00. 

(ii) Conversely, if (9.11) is true with 0 < c < '00 then automatically 
ex >0 and there exists a slowly varying function L such that 

(9.13) 

where the sign '"" indicates that the ratio of the two sides tends to 1. 
. (iii) The statement remains true when c = 0 or c = 00, provided the sign 
"" is interpreted in the obvious manner. 

For example, if (9.11) holds with c = 0 then ex =, and U, varies 
slowly, but about V" we know only that V,,(x) = o(x"-'L(x)). In this case 
V" need not vary regularly (see problem 31). However, slow variation is the 
only case in which regular variation of one of the functions U, or V" does 
not imply regular variation of the others. 

Proof. (i) We write V'1 in the form 

(9.14) V.(x) = r y'-' U,(dy). 

Integrating by parts between x and t > x we get 

V.(x) - V.(t) = -.tr' U,(x) + rH U,(t) + (~-1/) fy.-c-, U,(y) dy. 

The last two terms on the right are positive and therefore the integral must 
converge as t -+ 00. Because of the monotonicity of U, this implies that 
y"-' U,(t) -+ 0 and hence' . 

(9.15) V.(x) = -x.-c UC<x) + (~-'1) f.'" y.-<-l U,(Y) dy 

or 

(9.16) 

23 For a generalization see problems 34 and 35. . 
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Assume now that U, varies regularly. Since V,( (0) = 00 the exponent 
is necessarily <, and we denote it by ,- 0:. (Since the integral in (9.16) 
converges we have necessarily 0: ~ 'Y).) The relation (9.5) with Z = U, 
and p = 'Y) '- , - 1 asserts that the right side in (9.16) tends to 

-1 + C'-'Y)/(O:-'Y) = a-o:)/(o:-'Y)) 

if A¥-O and to if:) if A = O. We have thus shown that if V, varies 
regularly with exponent ,- 0:, then (9.11) holds with c given by (9.12) 
and >0. 

Assume then that· V" varies regularly. Its exponent is < 'Y) and we 
denote it by 'Y) - 0:. We use the same argument except that (9.15) is replaced 
by the analogous relation 

(9.17) U,(x) = -x~-" V,,(x) + a-'Y) J.zy'-"-l V,,(y) dy. 

An applicat;,c,n of (9.6) with Z = V" and p = , - 'Y) - I now shows that 
(9.11) holds with c given by (9.12) where 0: ~ O. 

(ii) To prove the converse, assume (9.11) and write c in the form (9.12). 
Suppose first that 0 < c < 00. From (9.16) we see then that 

x"-' U,(x) { - 'Y) 
-+ = 0: - 'Y). 

fxoo y,,-r.-1 U,(y) dy c + 1 
(9.18) 

From theorem 1 (a) it follows directly that U, varies regularly with exponent 
, - 0: > 0, and (9.11) then implies that V" varies regularly with exponent 
'Y) --0:. It follows that U, and V" can be written in the form (9.13) where 
0: ~ O. 

If c = 0 the same argument shows that V, varies slowly, but (9.11) does 
not permit the conclusion that V" varies regularly. 

Finally, if (9.11) holds with c = (f) we conclude from (9.18) that 

i'o-" V,,(x) 
---.......:..---+0, 
J.z yC-,,-l V,,(y) dy 

(9.19) 

and by theorem 1 (b) this implies that V" varies slo~ly. 

10. PROBLEMS FOR SOLUTION 

1. Alternative definition of convergence. Let FlI and F be probability dis
tributions. Show that FlI - F (properly) iff for given E > 0, h > 0 and t there 
exists al1 N(E, h,'t) such that for n > N(E, h, t) 

(10.1) F(t - h) - E < FlI (t) < F(t + h) + E. 
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2: Improper convergence. If F is a defective distribution then (10.1) implies 
'that Fn - F improperly. The converse is not true. Show that proper convergence 
may be defined by requiring that (10.1) holds for n ~ l'!(e, h), independently 
of I. ' 

3. Let {Fn} converge pr~perly to a limit that is not concentrated at one point. 
The sequence {Fn(anx +bn)} converges to the distribution concentrated at the 
OrigHl iff an :- 00, bn = o(an). ' 

4. Let ,Xv X2 , • •• be independent random variables with a common distribution 
F and Sn = Xl + ... + Xn. Let the variables a;lSn - bn have a proper limit 
distributio~ U not concentrated at one point. If an :>. 0 then 

[Ifint: . Using theorem 2 of section, 3 show that a2n/an approaches a finite limit. 
It suffices to consider symmetric distributions.] (The limit distribution is stable, 
see VI,I.) 

5: Let {un} be a sequence of bounded monotone functions converging pointwise 
to a bounded continuous'limit (which iS'automatically monotone). Prove that the 
convergence is uniform. [Hint: Partition the axis into subintervals within each 
of which u varies by less than e.] 

6. Let Fn be concentrated at n-l and u(x) = sin (x2). Then Fn * u - u 
pointwise, but not uniformly. 

7. (a) If the joint distribution of (Xn , Yn ) converges to that of (X, V), then 
the distribution of Xn + Yn tends to that of X + Y. 

(b) Show that theorem 2 of section 3 is a special case. 
(c) The conclusion does not hold in general if it is only known that the marginal 

distributions for Xn and Y n converge. 
8.Let Fn -F with F defective. If u E Cn( - 00, (0) then Fn * u - F* u 

uniformly.in every finite interval. (Th~s generalizes theorem 1 of section 3.) 
.9-. If Pn - F improperly it is not necessarily true that Fn * Fn -"+ F * F. 
Example. Let Fn have atoms of weight J at the points -n, 0, and n. 
10. In the plane every continuous function vanishing at infinity can be approxi

mated uniformly by finite linear combinations L CkfJJk(x)1J11r.(Y) with, infinitely 
differentiable fJJk and 1J11c. 

[Hint: Use example 3(a) choosing Gk(x, y) = 9lk (X)9lk (y) where 9l is the 
normal density.] 

Metrics. A function p is called a distance function for probability distributions 
if p(F, G) is defined for every pair F, G of probability distributions and has the 
following three properties: p(F, G) ~ 0 and p(F, G) = 0 iff F = G; next 
p(F, G) = p(G, F); and finalJy, p satisfies the triangle inequality 

P(Fl' F2) < P(Fl' G) + P(F2' G). 

11. P. Levy metric. For two proper distributipns F and G define p(F, G) as 
the infimum of all h > 0 such that 

(10.2) F(x - h) - h ~ G(x) < F(x + h) + h 

for all x. Verify that p is a distance function. Show that Fn - F properly iff 
p(Fn. F) -+ O. 
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12. Distance "in variation." Put p(F, G) = sup IItyu - (fju II where u E Co 
and lIu II = 1. Show that p is a distance function.24 If F and G are atomic 
and attribute weights Pk and qk to the point Ok, then 

(10.3) p(F, G) = L Ipk - qkl. 

If F and G have densities f and g 

(10.4) p(F, G) = f-: If(x) ~ g(x)1 dx. 

[Hint: It suffices to prove (10.4) for continuous f and g. The general case follows 
by approximation.] . . 

13. Continuation. , Show that p(F"" G) -- 0 implies proper convergence 
Fn -~ G. . To see that the converse is false consider the normal distribution 
functions 91(nx) and the distributidn Fn concentrated at n-I • 

14. Continuation. If U == FI * ... * Fn and V = GI * ... * Gn show that 

n 
(10.5) p( U, V) ~ L p(Fb Gk ). 

k-I 

This extends the basic inequality (3'.9). [Hint: Use (3.9) and a test function u 
such that IImu - ~u II is close to p( U, V).J 

15. Approximation by the Poisson distribution.25 Let F attribute weight p to 
the point 1 and q == 1 - P to the point O. If G is the Poisson distribution wIth 
expecta.tion. p show that p(F, G) ~ tr, where p is the distance defined in (10.3). 
Conclude: If F is the distribution of the number of successes in n Bernoulli 
trials with probabilities PIt ... , P~ and if G is the Poisson distribution with 
expectation PI + ... + pn then. p(F, G) .~ t(p~ + ... +p!). 

16. The law of large numbe~ of VII,7 states that if ~he Xl: are independent 

and identically distributed, and if E(Xl:Y == 0, then (Xl + ... + Xn)/n ~ 0.· Prove 
this by the method used for theorem 1 in section 4. 

17. The Lindeberg condition (4.15) is satisfied if otl: = E(IX:+cJl) exists for 
some d > 0 and IXt + ... + tXn == o(s:;t') (Liitpunov's condition). 

18. Let Fl: be symmetric .and 1 - Fl:(x) = ix-2-I/l: for x > 1. Show that 
the Lindeberg condition (4.15) is not satisfied. 

19. Let Xl: == ±1 with probability 1(l-1r2) and X-t == ±k with probability 
Ik-2• By simple truncation prove that S.,JVn behaves asymptotically in the same 
way as 'if Xl: = ±1 with probability t. Thus the disfribution of Sn/v;, tends 
to 91 but Var(Sn/Vn) ~ 2. 

20~ Construct vanants of the preceding problem wh~re E(X:) = ex> and yet 
the distribution of S~I vii tends to 91. . 

24 The definition can be extended to differences of arbitrary finite measures and defines 
the "norm topology" for mea MCS. Problem 13 shows that the resulting notion of con

. vergence is not natural for probability theory. 
2[ Suggested by inequalities in L. LeCam. An approximation .theorem for the poisson 

binomial distribution. Pacific J. Math., vol. 10 (1960) pp. 1181-1197. 
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21.26 Central limit theorem for exchangeable variables. For fixed 0 let F8 be a 
distribution with zero expectation and variance 0'2(0). A value 0 is chosen 
according to the probability distribution G and one considers mutually in
dependent variables Xn with the common distribution P8' If a2 is the expectation 
of 0'2 with respect to G show that the distribution of' Sn/(aVn) tends to the 
distribution 

(+00 
)-00 m(ax/(O'(O»G{dO}. 

It is not normal unless G is concentrated at one point. 
22. Shot noise in vacuum tubes, etc. Consider the stochastic process of example 

VI,3(h) with discretized time parameter. Assuming that at epoch kh an arrival 
occurs with probability ah show that the intensity of the current in the discrete 
model is given by an infinite convolution. The passage to the limit h ~ 0 leads to 
Camp!"-ell's theorem VI,(3.4). 

Do the same for the busy-trunkline example VI,3(i). Generalize the model to 
the situation where the after-effect at epoch kh is a random variable assuming 
the values 1,2, ... with probabilities PI' P2, .... 

23. The sequence {pn*} is never stochastically bounded. [Hint: It suffices to 
consider symmetric distributions. Also, one may suppose that P has infinite 
tails, for otherwise pn* - 0 by the central limit theorem. Use V, (5.10).] 

Note. It will be shown in example XV,3(a) that pn* ~ O. 
24. Continuation. It is nevertheless possible that for every x 

lim sup pn*(x) = 1, lim inf pn*(x) = o. 
n-+ OO n-+ OO 

In fact, it is possible to choose two extremely rapidly increasing sequences of 
integers ak and nk such that 

{_1)k 2:akSnk~ 1. 

[Hint: Consider the distribution P{X = (_1)kak} = Pk' With an appropriate 
choice of the constants there is an overwhelming probability that about 2k among 
the terms Xl"'" Xnk will equal (-1)kak and none will exceed ak in absolute 
value. Then for k even Snk > ak - nkak_I' Show that' 

nk = (2k)!, 
1 

Pk -- (2k - 1)! ' 

will do.] 
25. In the ·proof of lemma 1 of section 8 it suffices to assume that the set A is 

dense in some open interval. 
26. Distribution of maxima. Let Xl"" , Xn be independent with the common 

distribution P and X: = max (Xl' ... , Xn). Let Gn be the distribution of 
a-IX* 

n n' 

26 J. R. Blum, H. Chernoff, M. Rosenblatt, and H. Teicher, Central limit theorems for 
interchangeable processes, Canadian J. Math., vol. 10 (1958) pp. 222-229. 
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(a) If F(x) = 1 - e-Z and an = n then Gn tends to the distribution concen
trated at the point O. Show directly that no choice of an leads to more discrim-
inating results. 1 

(b) If F .is the Cauchy distribution with density 2 and an = nj7T, 
the:} Gn(x) -+ e-z - l for x > o. 7T(l + X ) 

27. If X and Y have a common distribution F such that 1 - F(x) -- x-pL{x) 
with L slowly varying, then P{X > I I X + Y > t} -- i as I -+ aJ. Roughly 
speaking, a large value for the sum is likely to be due to the contribution of one of 
the two variables.27 

28. Let v > 0 and a > 0 on 0, 00 and suppose that 

lim [a(t)v(tx) + b(t)x) = z(x) 
t-+ 00 

. d d d . I F fi v(xoX) vex) eXIsts an epen s contmuous y on x. or xed Xo > 0 prove that -- - -

. ' xox x 
varies regularly. Conclude that either z(x) = CX:l or z(x) = ex + c1x log x, 
provided only that v itself does not vary regularly [in which case z(x) = cxa. + c1x). 

29. Let G be a symmetric stable distribution, that is, Gr*(c,.x) = G(x) (see 
VI,I). From the last corollary in section 8 conclude that 1 - G(x),....., x-aL{x) 
with !X < 2 ul'liess r[l -G(c"x)] t-+ 0 in which case G is the normal distribution. 

[Hint: The sequence r[l-G(cr't») remains bounded by the symmetrization 
inequality V,(5.13). The remainder is easy.] 

30. Generalize to un symmetric st.able distributions. 
31. Let {Xn} be a sequence of mutually independent positive random variables 

with a common distribution F concentrated on 0, 00. Let N be a Poisson -variable. The random sum SN = Xl + . . . + XN has the compound Poisson 
distri bution 

Let L vary slowly at infinity. Prove that 

if 1 - F(x) -- x- fJ L(x) then 1 - U(x) ,...... cx- fJ L(x). 

[Hint: Obviously P{SN > x} exceeds the probability that exactly one among 
the components Xj > x, that is 

1 - U(x) ~ c[1 - F{I )]e-c[l-F( t)]. 

On the other haed, for sufficiently large x the event SN > x cannot occur unless 
either one among the components X; > (1 - £)x, or at least two exceed xl, 
or finally N > xt: The probability of the second contingency is 0(1 - F(x», 
while the probability of N > log x tends to 0 more rapidly than any power of x.] 

32. Let F be atomic with weight proportional to n-12-2n at the point 2n. 

Show that U2 , as defined in (9.10), is slowly varying and U2( 00) = 00, but that 
1 - F does not vary regularly. 

[Hint: For the last statement it suffices to consider the magnitude of the jumps.] 

27 T~e phenomenon as such seems to have been noticed first by B. Mandelbrot. 
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Note. The remaining problems refer to a generalization of the notion of regular 
variation.28 A convenient starting point is provided by the following 

Definition. A monotone function u varies dominatedly at infinity if·the ratios 
u(2x)/u(x) remain bounded away from 0 and co. 

33. Show that a non-decreasing function It varies dominatedly iff there exist 
constants A, p, and to such that . 

(10.5) u(tx) < AxP 
Il( t) , t > to, x > 1. 

For non-increasing u the same criterion applies with ;c > I replaced by x < 1. 
. 34. (Generalization of theorem 2 in section 9.) Define U~ and V" as in (9.10) 

(which requires that - co .< 'Y) < O. Put R(t) = t~-" V,,(t)/ U~ (t). 
Show that U~ varies dominatedly iff lim sup R(t) < co. Similarly V" varies 

dominatedly iff lim inf R(t) > o. 
35. (Continuation.) More precisely: If R(t) ~ M for t > to, then 

(10.6) U~(tx) < (M + l)xp 

U~(t) - , x > 1, t > to 

with P = a - 'Y)M/(M + 1). Ccnversely, (10.6) with p < , - 'Y) implies 

(10.7) R(t) ~ Ma - 'Y) + P 
. ,- 'Y)-p 

These statements remain true if R is replaced hy its reciprocal R-l and at 
the same time the ratio U~(tx)/U~(t) is replaced by V,,(t)/V,,(tx). 

36. Prove the following criterion: If there exists a number s > 1 such that 
Jim inf U~(st)/U~(t) > 1 then V" varies dominatedly. Similarly, if lim inf V,,(t/s)/ 
V,,(t) > lthen U~ varies dominatedly. 

28 For further results and details see W. Feller, One-sidt:d analogues of Karamata's 
regular variation, in the Karamata Memorial volume of l'Enseignement Mathematique, 
vol. 15 (1969), pp. 107-121. See also W. Feller, On regular variatioll and locallimittheorems, 
Proc. Fifth Berkeley Symposium Math. Statistics and Probability, vol. 2, part 1, pp. 
373-388 (1 J65-66). 



CHAPTER IX 

Infinitely Divisible 

Distributions and Semi-Groups 

The purpose of this chapter is to show that the basic theorems concerning 
infinitely divisible distributions, processes with independent increments, and 
stable distributions and their domains of attraction can be derived by a 
natural extension of the argument used to prove the central limit theorem. 
The theory will be developed anew and amplified by methods of Fourier analysis, 
and for this reason the present outline is limited to the basic facts. The 
interest in the chapter is largely methodological, to tie the present topics to 
the general theory of Markov processes; when applicable, the methods of 
Fourier analysis lead to sharper results. To provide easy access to important 
facts some theorems are proved twice. Thus the general structure theorem is 
first proved for semi-groups of distributions with variances. In this way 
sections 1-4 present a self-contained exposition of basic facts. 

The semi-group operators in this chapter are convolutions. Other semi
groups \\1il1 be considered independently in the next chapter. by new methods. 

1. ORIENTATION 

The limit theorems of this chapter are a natural extension of the central 
limit theorem,\ and the infinitely divisible distributions are closely related 
to the normal distribution. 10 see this it is worthwhile to repeat the proof 
of theorem I in VII!,4 in a slightly different setting. 

Vv'e consider this time an arbitrary triangular array {Xk •n } where for 
each n the n variables1 X1 •n , ••• , X n •n are independent and have a 
-------

1 Tciaclgular arrays were defined in VI,3. It should be borne in mind that we are really 
dealing with disLri.bution functions Fk.~; the random variables Xk •n sef\' .. ~ merely to 
simplify notations. Accordingly,. the variables of different rows need not be related in 
any way (and need not be defined on the same probabIlity space). 

290 
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common distribution Fn- For the row sums we write Sn = Xl + ... + X . ,n n.n 
In chapter VIII we dealt with the special case where Xk,n = Xka;l and 
Fn{x) = F{anx). There the row sums were denoted by S:. 

Throughout this chapter we use the operational notatiorf of VIII,3. Thus 
{Yn is the operator associated with Fn and {Y: is associated with the 
distribution of Sn. lFinally, Ilull denotes the upper bound of the continuous 
function lui. . 

Example. (a) Central limit theorem. Suppose that there exist numbers 
€n ~ 0 such that 

(1.I) 

For a function u with three bounded derivatives we have the identity 

if" u{x-y) - u(x) + y u'{x) 
(1.2) n[{Ynu{x)-u(x)] = 2 • ny2 Fn{dy}. 

--€1I y 

The finite measure ny2 Fn{dy} converges by assumption to the probability 
distribution concentrated at the origin. The fraction under the integral is a 
continuous function of y and differs from tu"{x) by less than €n \lu"lli. 
Thus 

(1.3) 

uniformly in x. 
Suppose now that {G>n} is a second sequence of operators such that 

n(G>nu-u] tends uniformly to iu". Then 

(I.4) n{{Ynu- G>nu) -+ 0 

uniformly. By the basic inequality VIII ,(3.1 0) (which wil1 be used constantly 
in the sequel) 

(l.5) 

and the right side tends to zero in consequence of (IA). As we have seen 
in the proof of theor~m I in VIII,4, we may choose for G>n the operator 
associated with the symmetric normal distribution with variance lin. Then 
G>: = G>l and hence {Y: -+ G>l' We have thus proved that the distribution 
of Sl1 tends to the normal distribution 91. ~ 

In scrutinizing the structure of this proof it is seen. that the form of the 
right side in (I.3) played no role. Suppose we had an array such that 
(uniformly) 

(1.6) 

where m is an arbitrary, but fixed, operator. Our argument permits us 
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to compare any two arrays satisfying (1.6) and to conclude that their row 
sums behave asymptotica1Jy in the same way. If for one such array the 
distributions of Sn tend to a limit G then the same wiJ) be true for all our 
arrays. We shall prove that this is always the case. 

Example. (b) ]- lisson distribution. Suppose X1,n equals 1 with prob
ability Pn' and 0 with probability I - Pn' If npn -+ (X 

(1.7) n[(gnu(x)-u(x)] = nprJu(x- l)-u(x)] ~ (X[u(x-l)-u(x)]. 

This time we take for (fjn the operator associated with the Poisson distribution 
with expectation (X/n. An easy calculation shows that also n [G5 nu-u] tends 
to the right side in (I.7) and we conclude as before that (j~u -+ (f)l' Thus the 
distribution of Sn tends to the Poisson distribution with expectation (x. 

[The right side in (1.7) illustrates one possible form for the operator m: in 
(1.6). For another example of a simple triangular array see problem 2.] ~ 

In our two examples we were fortunate in knowing the limit distribution 
in advance. In general the triangular array as such will serve to define the 
limit and in this way We shall derive new distrib~tion functions. This 
procedure was used in 1; VI to define the Poisson distribution as a limit of 
binomial distributions. 

We recall from VI,3 that the limit distributions of the SUITiS Sn are called 
infinitely divisible. We shall show that such a limi~ distribution exists when
'ever a relation of the form (1.6) holds, and that this condition is also necessary. 
Another approach to the problem depends on the study of the measures 
ny2 Fn{dy}. In both examples a limit measure existed; in example (a) it was 
concentrated at the origin, in (b) at the point 1. In general, the relation (1.6) 
is intimately connected with· the existence of a measure' n such that 
ny2 Fn{dy} -+ n{dy}, and ,infinitely divisible distributions will be characterized 
either by the operator ~ or the measure n (which may be unbounded)o 

A th'ird approach to the problem start~ from the solution of the con
volution equation 

(1.8) 

in which Qt isla probability distribution depending on the parameter t > O. 

Example. (c) The normal and the Poisson distributions satisfy (I.8) with 
t proportional to the variance. The gamma distributions of IJ,(2.2) have 
the convolution property II ,(2.3), which is a special case of (1.8). The same 
is true of the analogous convolution properties derived for the Cauchy 
distribution II,(4.5) and the one-sided stable distribution of II,(4.7). 

For a triangular array with Fn = Ql/n the relation (I .6) states that as t 

runs through i,!-,.... One should expect that (I.6) wiJI hold for an 
arbitrary approach t -+ 0+. 
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Now (I.8) is the basic equation for processes with stationary independent 
increments (VI,4) and is closely connected with semi-group theory. In this 
context 'l( appears as a "generator.' , It turns out that this theory provides the 
easiest access to limit theorems and to infinitely divisible distribution.;;, and 
hence we begin with it. 

2. CONVOLUTION SEMI-GROUPS 

For t > 0 'let Qt be a probability distribution in :1P satisfying (1.8) and 
.Q(t) the associated operator, that is, 

(2.1) .Q(t) u(x) = f_+CX)CX) u(x-y) Q,{dy}. 

Then (1.8) is equivalent ~o 

(2.2) .Q(s+t) = .Q(s) .Q(t) .. 

A family of operators satisfying (2.2) is caIIed a semi-group. [It fails to be a 
group because in general .Q(t) ha~ no inverse.] The operators of a semi
group may b.e of an arbitrary nature and it is convenient to have a word to 
indicate our requirement that .Q(t) be associated with a probability 
distribution. . 

Definition 1. A convolution semi-group {.Q(t)} (where t > 0) is a family 
of operators associated with probability distributions and satisfying (2.2). 

We take 90[-00, 00] as domain of definition. The operators' .Q(t) are 
transition operators, that is, 0 < u ~ 1 implies 0 < ,Q(t)u < 1 and we 
have .Q(t)l = 1. . , 

We shall have to deal with operators [such as d2/dx2 in (1.3)] which are 
not defined for all continuous functions. For our present purposes it is 
fortunately possible to avoid tedious discussions of the precise domain of 
definition of such operators since we need consider only the class of functions 
u such that u E C[ - 00, 00] and ~. has derivatives of all orders belonging tc? 
C[ - 00, 00]. Such functions are called infinitely differentiable, 2 and their 
class is denoted by CCX). For the present we consider only operators m 
defined for all u E COC) and such that mu E CCX), and so all occurring operators 
may be taken as operators from CCX) to COC). For operators associated with 
probability distributions we saw in VIII,3 that ~n - ~ iff ~nu - ~u for 
U E CCX). W,e now extend this definition of convergence consistently to ar-bitrary 
operators. 

2 The class CCX) is introduced only to avoid a new term. It could be replaced by the 
class of functions with (say) four bounded derivatives, or (simpler still) by the class of 
all linear combinations of normal distribution functions with arbitrary expectations and 
variances. ' 
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Definition 2. Let ~n and ~ be operators frem C«>: to C«>. We say that 
mn converges to ,~r, in symbols ~rn -+- 21, if. 
(2.3) 

for each u E Ca::J 

Now (2.3). states that mnu -+ mu uniformly. Conversely, if for each 
U E Coo the sequence {mnu} converges uniformly to a limit v E CCXJ an 
operator 21 is defined by mu == v, and clearly ~n -+-~. 

Definition 3. The convolution semi-group (OCt)} is continuous if 
(2.4) .a(h) -+- 1. h -+- 0+ 

where 1 is the identity operator. In this case we put .0(0) = 1. , 

Since ll.Q(t)ull < llull we get from the definition (2.2) for h> 0 

(2.5) 1I.Q(t+h)u - .Q(t)ull ~ 1I.Q(h)u - ull. 
For h sufficiently small the ,left side will be < E independentlY,of t, and in 
this sense a continuous convolution semi-group'is uniformly continuous. 

Definition 4. An operator 21 from' c«> to Ca::J is said to generate the 
convolution semi-grtHJ.jl;,,{.Q(t)} if as h ~ 0+ 

(2.6) h-l[.Q(h) ...;, fJ -+- ~. 

~e say, equivalently, that 21 is the generator. 3 , 

More explicitly, whenever the lim~t exists the operator ~ ~s defined by 

(2.7) , t-1J_:[U(X~Y) - u(x)] Q1{dy} -+- ~u(x). 

Obviously a semi-group with a generator is automatically continuous. 
It will be shown that all continuous convolution semi-groups possess ~ener
ators, but this is by no means obvious. 

Formally (2~6) defines \ 21 as derivative of .a(t) 'at t = O. Its existence 
implies differentiability at t > 0 since 

(2.8) .Q(t+h) - .o(t) = .Q(h) - 1 .oCt) -+- met) 
h h 

as h -+ 0+ and similarly for h -+- 0-. 
The following examples will be used in the sequel. 

3 Since we restrict the domain of definition of ~ to Ca::J our terminology departs 
slightly froin canonical usage as developed in E. Hille and R. S. Phillips (1957). 
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Examples. (a) Compound Poisson semi-groups. Let 

(2.9) Qt = e-rzt I «(X,t)k Fk* 
k=O k! 

be a compound Poisson distribution. Here 

(2.10) O(h)u - u = (e-"-l)u + othe--[ lYu+ ~~ lY'u+" " J 
Di viding by h we see that (2.6) holds with 21 = (X,(~ -1). Thus the compound 
Poisson semi-group (2.9) is generated by (X,(~-1) and we shall indicate its 
elements b.y the abbreviation .Q(t) = e«(~-1lt . 

. (b) Translations. Denote by T« the distribution concentrated at a and 
by X(a) the associated operator. For fixed {3 > 0 the s~mi-group property 
Tp3 * Tpt = Tp(t+s) holds and X(fJt) u(x) = u(x-fJt). The graph of 
X(fJt)u is .obtained . by a translation from that of u and we speak of a 

d 
translation semi-group. The generator is given by -fJ dx. Note that this 

generator is the limit as h ~ 0 of the generator (X,(~-1) when (X, = fJ/h 
and F is concentrated at h. Now (X,(~-1) is a difference operator, and the 
passage .to the limit was studied.in VII ,5. It is suggestive to indicate this 

semi-group by ~(t) = exp ( - Pt !). 
(c) Addition of generators. Let 211 and 212 generate the convolution 

semi-groups {.Ql(t)} and {~(t)}. Then 211 + 212 generates the convolution 
semi-group of operators .Q(t) = .Q~(t) ~(t). [Such .Q(t) is associated with 
the convolution of the distributions associated with .01(1) and ~(t); see 
theorem 2 ofVIU~3.] The assertion is obvious from the simple rearrangement 

(2.11) 

(d) Translated semi-groups. As a special case we get the rule: if 21 
generates the semi-group of operators .Q(t) associated with the distributions 
Qt, then ~ - P d/dx generates a semi-group {.Q#(t)} such that 
-Q/,(x) = Qt(x-Pt). 

(e) Normal semi-groups. Let Qt stand for the normal distribution with 
zero expectation and variance ct. As already mentioned, these Qt deter
mine a semi-group, and we seek its generator as defined by (2.7). By Taylor's 
formula 

(2.12) u(x - y) -- u(x) = -y u'{x) + iy2 u"(x) - t!f u'''(x - ()y). 
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The third 'absolute moment of Qt is proportional to ti, and we see thus 
that for functions with three bounded derivatives the limit in (2.7) exists and 
equals 1cu"(x). We express'this by saying that ~ = !cd2Idx2• ~ 

(For further examples see problems 3-5.) 

Note on the Fokker-Planck equation. Consider the family of functions defined by 
vet, x) = D.(t)[(x). The relation (2.8) states that for smooth f 

(2.13) 
ov 
at = ~v. 

This is the Fokker-Planck equation of the process, and v is its unique solution satisfying 
the initial condition v(O,x) = [(x). Equation (2: 13) describes the process, and unnecessary 
complications are introduced by the traditional attempts to replace (2.13) by an equation 
for the transition ,probabilities Q t themselves. Consider, for example, a translated com-

pound Poisson semi-group generated by ~ = cx(~-1) - f3~. The Fokker-Planck 
" .. 

equation (2.13) holds whenever the initial function [(x) = v(O,x) has a continuous 
derivative. Its formal analogue for the transition probabilities is given by 

aQ, aQ, 
- = - f3 - - cxQt + cxF* Qt at ox (2.14) 

This equation makes sense only if Q has a density and is therefore not applicable to dis
crete processes. The usual reliance on (2.14) instead of (2.13) only causes complications. 

3. PREPARATORY LE~S 

In this section we collect a few simple lemmas on which the whole theory 
depends. Despite its simplicity the following inequality is bas,ic. 

Lemma~1. If ~ and ~# generate the convolution semi-groups {.Q(t)} and 
{.Q#(t)}, respectively, then/or all t > 0 

(3.1) 

Proof. From the semi-group property and the basic inequality. (1.5) 
we get for r 9 1, 2, ... 

(3.2) 
.Q(t/r) - 1 .0 #(tlr) - 1 

=t u- u 
tlr t/r 

As r -+ 00 the righrside tends to the right side in (3.1) and so this inequality 
is true. ~ 

Corollary. Distinct convolution semi-groups cannot have the same generator. 
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Lemma 2. -(Convergence.) For each n let mn generate the convolution 
semi-group {.Qn(t)}. ' 

If mn -+-~, then ~ generates a convolution semi-group {.Q(t)}, and 
.Qn(t) ~ .Q(t) for--each t > o. 

Proof. For each t > 0 the sequence {.on (t)u} converges uniformly, 
since by (3.1) 

(3.3) 

By criterion 1 of VIII,3 there exists therefore an operator .Q(t) associated 
with a probability distribution such that .Qn(t) ~ .Q(t). Then 

(3.4) 

(by theorem 2 of VIII,3) and so {.Q(t)} is a 'convolution semi-group. To 
show that it is generated by m note that 

_.0.-'-( t_) _-_1 u _ ~{u 
t 

< .Qn(t) - 1.u _ mu + 1I.Q(t)u - .Qn(t)ul/ . 
t t 

The first term on the right tends to IImnu -:- mull as t -- O. Letting m -- 00 

in (3.3) we see that the second term is < IImu - mnull. For fixed n the 
upper limifof the left side is therefore <2 IImu - mnull which can be made 
arbitrari Iy small by choosing n sufficiently large. ~ 

The next lemma makes it at least plausible that every continuous con
volution semi-group has a generator~ 

Lemma 3. Let {.Q(t)} be a continuous convolution semi-group. If for 
some sequence t1 , t2 , ••• , -- 0 . 

(3.5) 

then m generates the semi-group. 

Proof. Call the left side mk • As was shown in example 2( a) this mk 

generates a compound Poisson semi-group and by the last lemma there 
exists a se~i-group {.Q#(t)} generated by m. To show that .Q#(t) = .Q(t) 
we proceed as in (3.2) to obtain 

(3.6) IIO(rtk)u - .Q"(rtk)uII S rtk mku - .Q#(tk) - 1 u 
tk 

Let k -+ 00 and r -- 00 so that rtk -- t. The right side tends to 0 and the 
left to 1I.Q(t)u - .Q#(t)ull by virtue of (2.5). .. 
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These are the lemmas that will be of immediate use. The next is recorded 
here because it is merely a variant of lemma 2 and the proof is nearly the same. 
We shall use only the special case 'JIn = n andt = 1, which will serve as the 
connecting link between triangular arrays and convolution semi-groups. 

Lemma 4. For each n let ~n be the operator associated with the probability 
distribution Fn· If 
(~.7) 

then 
then 

(3.8) 

n(~n-1)--m, 
'JIn m generates a convolution semi-group {.Q(t)}. If n -- 00 and - -- t 
n 

~~ .. -- .Q(t). 

In particular, ~: -- .0(1). The lemma remains true if ,n is restricted to a 
sequence nI , n2 , •••• 

Proof. The left side in (3.7) generates a compound Poisson semi-group 
[example 2(a)] and so m is a generator by lemma 2. By the basic inequality 
(1.5) 

(3.9) "~~"u-.Q('JIn/n)u" < 'JI,,jn "n[~nu-ul - n[.Q(l/n)u-ul!j 

and for u E COCJ each of the terms within the norm signs tends uniform'y 
to mu. .. 

4. FINITE VARIANCES 

Semi-groups of distributions with finite variances are of special importance 
and their theory is so simple thAt it deserves a special treatment. Many 
readers will not be interested in the more complicated general semi-groups, 
and for others this section may provide an interesting introductory example. 

We consider a convolution semi-group {.Q(t)} and denote the associated 
probability distributions by Qt. Suppose that Qt has a finite variance 
O'2(t). Because of the semi-group property O'2(s+t) = O'2(s) + O'2(t) and 
the only positive solution of this equation4 is of the form O'2(t) = ct. 

Suppose that Q t is centered to zero expectation. The second moment 
then induces a probability distribution Ot defined by 

(4.1) Ot{dy} = 1- y2 Qt{dy}. 
ct 

4 The equation cp(s+t) = cp(s) + cp(t) is called the Hamel equation. Puttillg u(t) = etPlI~ 
one gets u(s+t) = u(s) u(t) in which form the equation was encountered several times 
and is treated in 1; XVII.6. The expectation of Qt is also a ~olution of the Hamel equation; 
it is therefore either of the form mt or exceedingly weird. See section Sa. 
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By the selection theorem there exists a sequence {tn } tending to 0 such that 
as t runs through it Qt tends to a possibly defective distribution Q. 

Since Qt is centered to zero expectation we have the identity 

(4.2) .0(1)- 1 u(x) = cf+<Xl u(x-y) - u~) + Y u'(x) Qt{dy} 
t -<Xl Y 

the integrand ~eing (for fixed x) a continuous function of y assuming at 
the origin the value !u"(x). At infinity the integrand and its derivative 
vanish. This implies that ·as t runs through. {tn }, and consequently 
Qt -- Q, the integral in (4.2) tends uniformly to the analogous integral with 
respect to the limit distribution Q. According to lemma 3 of section 3 this 
means that our semi-group has a generator ~ given by 

(4.3) mu(x) = cf+<Xl u(x-y) - u(:) ~ y u'(x) Q{dy}. 
-<Xl Y 

This representation of ~ is unique because for functions of the form 

(4.4) 

one gets 

(4.5) 

x2 

u(x) = 1 + fe-x) 
1 + x2 

~u(o) = cl+<Xl f(y) 2 Q{dy}. 
-<Xl 1 + y 

The knowledge of ~u for all u E C<Xl therefore uniquely determines the 
measure (I +y2)-1 Q{dy} and hence Q itself. 

In consequence of this uniqueness the limit distribution Q is independent 
of the sequence {tk } and hence Qt{dy} -- Q{dy} for any approach t -- O. 

We shall show that Q' is a proper probability distribution and that every 
operator of the form (4.3) is a generator. The proof depends on two special 
cas~s contained in the following 

Examples. (0) Normal semi-groups. When Q is the probability distri
bution concentrated at the origin (4.3) reduces to ~u(x) = !cu"(x). We saw 
in example 2(e) that this ~ generates a semi-group of normal distributions 
with zero expectations and variances ct. It is easy to verify directly that the 
distributions Dt tend to the probability dist~ibution concentrated at the 
origin. 

(b) Compound Poisson semi-groups. Let F be a probability distribution 
concentrated on the intervals Ixl > 'Y) having expectation m1 and variance 
m2 • The distributions Qt of the 'compound Poisson semi-group of example 
2(a) have expectations amlt and variances am2t. The semi-group is gener
ated by a(~ - 1). In accordance with example 2(d) the same Q t but 
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centered to zero expectations form a semi-group generated by 

cx[ty-1-m1djdx) 
that is 

(4.6) 2Iu(x) = r [u(x-y) - '!(x) - y u'(x)] F{dy}. 
. J/vl>" . 

IX.S 

With the change of notations n{dy} = y2 F{dy}/m2 and cxm2 = c this 
reauces to (4.3). Conversely, if. n is a probability distribution concentrated 
on Ixl > 0, then (4.3) may be rewritten in the I'nrm (4.6) and hence such ~{ 
generates a compound. Poisson distribution whose distributions Q t have 
zero expectatIon arid v~riances m2t = ct~ 
. We are now in a position to formulate the basic 

Theorem. Let Q t have zero expectation and variance ct. The conL'olution 
semi-group {.Q(t)} then has a ger.erator ~ of the form \4.3) where n is a 
proper probability distribution. The representation (4.3) is unique. Con
versely, every operator of this form' generates a convolution semi-group oj 
distributions with zero expectation and variance ct. 

Proof. We have shown the exi~tence of a generator of the form (4.3) 
but have proved only that n has a total mass w < 1. It remains to prove 
that if n has a mass w then the operator . ~ of (4.3) generates a ~emi-group 
such that Qt has zero expectation and a variance < cwt. 

Let ~" be the operator obtained from (4.3) ·by deleting the intervals 
o < \yl < 'Y) from the domain of integration. Denote the masses attributed 
by n to the origin and to Iyl > 'Y) respectively by m and w". It follows from 
the preceding examples that~" is the sum of two operators, of which the 
first generates a normal· semi-group with variances· cmt, and the 'second 
generates a compound Poisson semi-group with variances ew"t. By the 
addition rule of example 2(e) the operator ~" itself. generates a semi-group 
with variances"" ·c(m +w,,)t. Being the limit of ~" as 'Y) -- 0 the operator 
~ itself is the generator of a semi-group. The variances of.the associated 
distributions 'lie between' the variances e(m+w,j)t corresponding to ~", 
and theirlimit ewt. This proves that 2! indeed generates a semi-group' with 
variances ewt. ~ 

S. THE MAIN THEOREMS 

In this section {.Q(O} stands for an arbitrary continuous convolution 
semi-group, and the associated distribution functions are again denoted by 
Qt. By analogy with (4.1) we define a new measure nt by 

(5.1) nt{dy} = t-1y2 Qt{dy}. 

The novel feature is that, ·in the absence of a second moment of Qt,· the 
measure nt need not be finite on the whole line. However, nt{l} is finite 
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for every finite interval I. Furthermore, since Qt{dy} = ty-2 0 t{dy} it 
follows that y-2 is integrable wiih respect to Ot over any domain excluding 
a neighborhood of the origin. We shall see that as t -- 0 the measures Ot 
will converge to a measure 0 with similar properties and this n will deter
mine the generator of the semi-group. It is therefore convenient to introduce 
the 

Definition. A measure 0 on the real line will be called canonical if 
Q{I} < 00 for finite intervals I and if the integrals 

(5.2) ,/,+(x) = r y-2 Q{dy}, 'In -x) = r:y- 2 Q{dy} 

converge for each x > O. 

(For definiteness we take the intervals of integration closed.) 
We proceed to show that the theory of the preceding section carries over 

. except that we have to deal with canonical measures rather than with prob
ability distriautions and that in the absence of expectations we must resort 
to an artificial centering. We define the truncation function 13 as the con
tin'uous monotone junction such that 

(5.3) lix) = x when Ixl < s, Ilx) = ±s when Ixl > s 

where s > 0 is arbitrary, but fixed. 
In analogy with (4.2) we now have the identity 

(5.4) .o(t) -1 u(x) = 1+ <Xl u(x-y) - u(x~ - Ts(Y) ll'(X) nt{dy} +b
t 

u'(x) 
t -<Xl Y 

where 

(5.5) bt = f:: liy)y-2 Ot{dy} = t-1f::ls(y) Qt{dy}. 

The integrand in (5.4) is again (for fixed x) a bounded continuous function 
assuming at the origin the value iu"(x). It will be noted that the special 
choice (5.3) for the truncation' function is not important: we could choose 
for I any bounded continuous function provided it is near the origin twice 
continuously differentiable with ,(0) = 1"(0) = 0 and ,'(0) = 1. 

\Ve have now a setup similar to the one in the preceding section, and we 
derive a similar theorem. The integral in (5.4) makes sense with Ot replaced 
by any canonical measure, and we define an operator ~«r) by 

(5.6) ~(r)ll(X) =1+00 u(x-y) - li(X! - liy) u'(x) Q{dy}. 
-ex) Y 

The superscript I serves to indicate the dependence on the truncation 
function I. A change of 's [or of the point s in the definition (5.3)] 
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amounts to adding a term bdldx to ~(rJ, and so the family of operatort; 

(5.7) ~ = ~(r) + bd/dx 

is independent of the choice of ~S' 

Theorem 1. A continuous conrolutioh semi-group {n(t)} !las a generator 
21, and ~ is of the fONtz determined by (5.6)-(5.7) where .Q is a canonical 
measure . 

. Conversely, every operator 2I of this form generates a continuous convolution 
semi-group {n(t)}. "Thp'mepsu're 0 is unique, 7 ,7d as t ~ 0 

(5.8) !It{I} ~ O{I} 

for infinite intervals5 1 and 

(S.9) 

for x> O. 

Proof. We return for the moment to the notations of section 1. For each 
n we consider th~ sum Sn = Xl. n + ... + Xn.n of n mutually independent 
variables with the common distribution Ql/n' Then Sn has the distribution 
Ql, and lienee Sn remains stochastically bounded (definition 2 of VIII,2). 
We now anticipate lemma I' of section 7 according to which this i~plies 
that (or each finite interval 1 the measures n1/n{I} remain bounded, and 
that to each E > 0 )there corresponds a number a.> 0 such that 

(S.10) 

for all n. (The lemma is quite simple, but its proof is postponed in order 
not to interrupt the argument.) 

By the selection theorem there exists a measure n and a sequence of 
integers. nk such that as c 1 runs through it, . Ot{I} ~.n{I} for finite 
intervals. The contribution of I to the integral in (5A) then converges to the 
corresponding contribution 91 I to the integral (S.6) defining ~(Tl. Re
membering that y-2 0t{dy} = Qt{dy} it is seen from (S.lO) that the contri
bution of lyl > a to these integrals is uniformly small if a is c~osen large 
enough. \V~ conclude that 0 is a canonical measure and that as t~1 runs 
through {n k } the integral in (S.4) converges uniformly to the integral in 
(5.6). Furthermore, under the present conditions the quantity b t of (S.~) 
remains bounded and hence there is no loss of generality in supposing that the 
seq'uence {nk } was picked so that as t-1 runs through it bt converges 
.to a number J;J. Thep as t-1 runs through {n k } 

(S.1l) t-1[(nt)-lJu(x) -- 2Iu(x) 

5 Here and in the sequel it is undemood convergence is required only for intervals and 
pOints of continuity. 
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the convergence being uniform. By lemma 3 of section 3 this means that the 
semi-group {O(i)} is generated by <l{, and so (5.11) holds for any approach 
t~O. 

We have thus shown that a generator ~. exists and can be expressed in the 
form (5.6)-(5.7) in terms of (J. canonical measure n. As in ~he.preceding 
section the uniqueness of n· in this representation follows from the fact 
that for functions of the form (4.4) the value ~u(O) is .given by (4.5) (with 
c now absorbed in n). . 

The uniqueness of n implies that (5.8) holds for an arbitrary approach 
t ~ O. Furtliermore, (5.10) guarantees that the quantities in (5.9) are uni
formly small for x sufficiently large. These quantities were defined by (5.2) 
and the analogous relations with ~n replaced by n,. This shows that (5.9) 
is a consequence of (5.8). 

It remains to show that the measure n can be chosen arbitrarily. The 
proof is the same as in the case of finite variances. As in example 4(b) it is 
seen that if n is concentrated on Iyl > 'Y) > 0 the operator ~ of (5.6)
(5.7) generates a compound Poisson semi-group with modified centering (but 
without .finite expectations). Thus ~ can again be represented as a limit of 
generators and is therefore a generator. ~ 

Example. Cauchy semi-groups. The distributions Qt with density 
1T-1t(t2+x2)-1 form a semi-group. It is easily verified that the limits in (5.9) 
are given by 1p+(x) = 1p-( -x) = 7TX-1 , and 1Tn coincides with the Lebesgue 
measure or ordinary length. ~ 

The following theorem embodies various important characterizations of 
infinitely divisible distributions. The proof of part (v) is postponed to section 
7. (For an alternative direct proof see problem 11.) This part admits of 
further generalizations to triangular arrays with variable distributions. 
(See section 9. The full theory will be developed in chapter XVII.) For the 
history of the theory see VI,3. 

Theorem 2. The following classes of probability distributions are identical: 
(i) Infinitely divisible distributions. 

(ii) Distributions associated with continuous convolution semi-groups (that is, 
distributions o/increments in processes with stationary independent increments). 

(iii) Limits 0/ sequences of compound Poisson distributions. 
(iv) Limits of sequences of infinitely divisible distributions. 
(v) Limit distributions of row sums in triangular arrays {Xk,n} where the 

variables Xk,n 0/ the nth row have a common distribution. 

Proof. Let {net)} be a continuous convolution semi-group. It wa~ 
shown in example 2(a) that for fixed h > 0 the operator ~h = [.Q(h)-l]jh 
generates a compound Poisson semi-group of operators 'oh(t). As h - 0 
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the generators ~{h converge to the generator ~, and hence 'oh(t) ~ D(t) 
by lemma 2 of section 3. Thus Q t is the limit of compound Poisson distri
butions, and so the class (ii) is contained in (iii). The class (iii) is trivia1Jy 
contained in (iv). 

For each n let G(n) be an infinitely divisible distribution. By definition 
G(n) is the distribution of the sum of n independent identically distributed 
random variables, and in this way the sequence {G(n)} gives rise to a 
triangular array as described under (v). Thus the class (iv) is contained in (v). 
IIi section 7 it will be shown that (v) is contained in (ii), and so the classes 
(ii)-(v) are identical. Finally, the class of all infinitely divisible distributions 
is a subclass of (iv) and contains (ii). ~ 

Ac:cording to the last theorem every infinitely divisible distribution F 
appears a~ a distribution Qt of an appropriate convolution semi-group. 
The value of the parameter t can be fixed arbitrarily by an appropriate 
change of scale on the t-axis. However, there exists only one semi-group 
{.a(t)} to which an infinitely divisible distribution F belongs. This amounts 
to sayiQ.g that the representation F = F~· of F as an n-fold convolution is 
unique. This assertion is plausible, but requires proof. As a matter of fact, 
in it!: Fourier theoretic version the uniqueness becomes obvious, whereas in 
the present context the proof would detract from the main topic without 
being iHuminating. For this reason we desist for once from proving the state
ment within both frameworks. 

Application to stochastic processes. Let X(t) be the variable of a stochastic 
process with stationary independent increments (VI,4) and let us interpret 
Qt as the distribution of the increment X(t+s) - Xes). Consider a time 

interval s,s + 1 of unit length and subdivide it by the points s = 
= So < Sl < ... < Sn = S + I· into subintervals of length n-l

• Then 
P{X(s,.) - X(Sk_l) > x} = 1 - Ql.n(x) and so n[l-Ql.n(x)] equals the 

expected nu~ber of intervals Sk-l' Sk with increment >x. As n ~ 00 this 
expected Humber tends to 1p+(X}. For simplicity of discussion suppose 
that the limits X(t+) and X(t-) exist for all 1 and that X(t) lies between 

them. Let Sk-l' Sk be the interval of our partition containing 1. For n 
sufficiently large the increment X(Sk) - X(Sk_l) will be close to the jump 
X(t+) - X(t-) and it is intuitively clear that the limit '1f'+(x) represents the 
expected number of epochs t per unit time at which X(t+) - X(t-) > x. 
The argument may be just.itied rigorously but we shall not enter into details. 
It follows from this result that the expected number of discontinui!ies is 
zero only if '1f'+(x) = 0 and 'Ip-( -x) = 0 for all x > O. In this case Q is 
concentrated at the origin, that is, the increments X(t+s) - Xes) are 
normally distributed. For such a process the paths are continuous with 
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probability one (theorem of P. Levy and N. Wiener) and so the paths are 
continuous H'ith probability 1 iff the process is normal. 

As a second illustration consider the compound Poisson process (2.8). 
The expected number of jumps per unit time is ex, and the probability of a 
jump exceeding x > 0 is 1 - F(x). Thus ex[l-F(x)] is the expected 
number of jumps >x in full agreement with our intuitive argument. 

* 5a. Discontinuous Semi-gro~ps 

It is natural to ask whether there exist discontinuous semi-groups. The question is of 
no practical importance but the answer has some curiousity value: Every convolution 
semi-group {Q(t)} differs merely by centering from a continuous semi-group {Q#(t)}. In 
particular, if the distributions Qt are symmetric the semi-group is necessarily continuous. 
In the general case there exists a function rp such that the distributions Q r defined by 
Qt(x+ rp(t)) are associated with a continuous semi-group. The function rp must obviously 
satisfy 

(5.12) rp(t+s) = rp(t) + rp(s). 

This is the famous Hamel equation whose only continuous solution is of the form ct 
(see footnote 4 to section 4). In fact, the only Baire function satisfying (5.12) is linear. 
The other solutions are weird indeed; for example, a non-linear solution assumes in every 
interval arbitrarily large anJ arbitrarily small values, and it is impossible to represent it 
analytically by limiting processes. In short, it is fair to ask in what precise sense it "exists." 

To return to earth, consider an arbitrary convolution semi-group {Q{t)} and tile 
triangular array {Xk .n} associated with the distributions Ql/n' The row sums Sn have 
the common distribution Q 1 and hence we can lise the last lemma to extract a sequence 
n1 ,n2"" such that as n runsthroughitn[.Q(l/n)-l] -.m# where m# is the generator 
of a continllous semi-group {.Q # (t)}. We may choose the nk of the form 2'1'. The 
inequality (3.2) now shows that .Q(t) = .0 #(1) for all t that are multiples of link for 
arbitrarily large k ,that is, for all t of the form t = a2- lI with a and v integers. Thus 
there exists always a continuous semi-group {.Q #(t)} such that .Q(t) = .0 #(t) for all t 
of a dense set L. 

We are now in a position to prove the initial proposition. Choose E"n > 0 such that 
t + E"n is in L. Then 

(5.13) 

As E"n -.0 the left side tends to .0 #{t) and hence it suffices to sho;. that if Q(E"n) -+0 ~ 
then the distribution F is concentrated at a single point. Choose points hn in L sucq 
that 0 < E"n <"n and hn -. O. Then .0 # (I1n) = .Q(hn -E"n) .Q(E"n)' The 'eft sid~ tends 
to the identity operator, and so F can. indeed have only one point of increase. 

6. EXAl\-fPLE: STABLE SEl\n-GROUPS 

A semi-group {.Q(t)} is called stable if its distributions are of)he form 

(6.1 ) 

where }.t > 0 and f3t are constants depending continuously on t, and 
G is a fixed distribution. Obviously, G is a stable distribution as defined 
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in VI,!. The theory of stable semi-groups is here developed principally as an 
illustration for the results of the last section and to put on record the form 
of their generators. In an indirect way the results of this section are derived 
independently in section 8. 

Because of the assumed continuity of At and f3t the semi-group (if it 
exists) is continuous. As t ~ 0 the distribution Qt tends to the distribution 
concentrated at the origin, and hence At ~ 00 and p, -- O. The first 
relation in (5.14) takes on the form 

(6.2) x> O. 

Since flt -- 0 and G is monotone this relation remains valid also when Pt 
is dropped, and then (6.2) may be rewritten in the form 

(6.3) 
1 - G(AtX) + 
1 _ G(At) -- 1p (x). 

< 

(Here we assume that 1 is a point, of continuity for 1p-l-, which can be 
achieved by a change of scale.) Now (6.3) is a particular case of the relation 
VIII,(8.1) defining regular variation. We conclude that eitber 1p+ vanishes 
identically, or else the tail I - G varies regularly at infinity and 

(6.4) 1p+(x) = c+x-«, x > 0, c+ > o. 
On the positive half-axis the measure n has therefore the'density ex.C+X-a:-l. 

We conclude that 0 < ex. < 2 because n attributes finite masses to finite 
neighborhoods of the origin, and 1f'+(x) -+ 0 as x -+ 00. For similar reasons 
either "P- vanishes ·identically or else ·"P-(x) = c-lxl-a: for x < O. The 

. exponent ex. is the same for the two tails, because also the tail sum 
1 - dex) + G( -x) varies regularly. 

The functions 1p+ and 1p- determine the measure n up to a possible 
atom at the origin. We shall see that such an atom cannot exist unless both 
1p+ and 1p- vanish identically and n is concentrated at the origin. 

The generator ~ is given by (5.7). ]n the present case it is convenient to 
write it in the form 

(6.5) 

where the operators ~l+ and ~l- describe the contributions of the two half 
axes and are defined as follows. 

IfO<cx.<l 
(6.6) ~l~ u(x) = .C£l [u(x-y) - u(x)]y-:z-l dy. 

If l<(J.<2 

(6.7) 'll; u(x) = J.oo [u(x-y) - u(x) - Y u'(x)]y-cz-l dy, 
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and finally if r1. = 1 

(6.8) 'lfi u(x) = f.oo [u(x-::lI) - u(x) - T.(Y) u'(x)]y-' dy. 

'lI; is defined by the analogous integral over - 00,0 with y-a.-l replaced by 
Iyl-%-l. The centering in (6.6) an" (6.7) differs froni that in the canonical 
form (5.6), but the difference is absorbed in the term bd/dx ·in (6.5). An 
atom of 12 at the origin would add a' term yd2/dx2 to the generator 'lI. It 
was shown in example 4(a) that this term by itself generates a semi-group of 
normal distributions. 

Theorem. (a) ~Vhen b = 0 and 0 < ~ < 1 or I < r1. < 2 the operator 
(6.5) generates a strictly stable semi:group of the form 

(6.9) 

when r1. = 1 and b = 0 it generates a stable semi-group of the form 

(6.10) 

(b) A stable semi-group is either generated by (6:5) or else it is a semi~group 
of normal distrib~tions. 

[We saw in 2(b) that bdjdx generates a translation semi-group and to 
obtain the semi..,group generated by (6.5) with b ~ 0 it suffices in (6.9) and 
(6.10) to replace x by x + ht.1 

Proof. (a) A change of scale changes the distribution Q t of a semi-group 
into distributions defined by Qt#(x) = Qt(x/p). These form a new semi
group {n #(t)}. rfwe put vex) = u(px) it is seen from.. the c.kfinition of a 
convolution that n#(t) u(x) = net) v(:r/p). For the generators this means 
that to find ~#u(x) we have simply to calculate ~rv(:r) and replace x by 
x/po The substitution y = zip in (6.7) and (6.8) shows that fer the corre
sponding generators ~(: = pa.'l(~. Hol.v P<%~a. is obviously the generator of 
the semi-group (n(p%t)}, and from the uniqueness of generators we con
clude therefore that Qt(:r/p) = QtI'Cl(X). Letting G = Ql and p = r-JiJ. we 
get (6.9). 

A similar argument applies in the case ':I. = I. except that when Ihe 
substitution y = zip is used in (6.S) the centl!rin.g function give.; rise to an 
additional term of the form (c+ - c-)(p log p) l/(.~-.l, and this leads to (6.10). 

(b) To measure Q concelltrated at the origin there corresponds a normal 
semi-group. We saw that the geI1er~~tor of any other ~table semi·group is of 
the form '2fa + yd2 jdx2. As shown in example 2(c) the distribution~ of the 
corre:iponding semi-group would be the convolutions of our stable Q t with 
norm'll distributions with variance 2)'1 and it is clear that such a semi
group can not be stable. .. 
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The theorem asserts that the function At occurring in the definition of 
stable semi-groups is of the form A. t = t-l/a.. Considering (6.2) and its 
analogue for the negative half-axis we get the 

Corollary. If 0 < r1. < 2, c+ > 0, c- > 0 (but c+ + c- > 0) there 
exi8ts exactly one stable distribution function G such tnat as x -+ rx.; 

(6.11) 

The normal distribution is the only remaining stable distribution [and satisfies 
(6.1 I) with r1. = 2 and c+ = c- = 0]. 

The assert·jon within brackets will be proved in section 8. 

7. TRIANGULAR ARRAYS WITII IDENTICAL DISTRIBUTIONS 

For each n let X1 . n , ••• , Xn .n be mutually independent random 
variables with a common distdbution Fn. We are interested in the possible 
limit distributions of the sums S1l = X1 . 1I + ... + Xn .1I , but it is useful 
to begin by investigating a necessary condition for the existence of a limit. 
distribution, namely the requirement that the sequence {Sn} be stochastically 
bounded. We recall from VIII ,2 that {Snj is said to be stochastically bounded 
if to each € > 0 there corresponds an a such that P{lSnl > a} < € 

for all n. Very roughly speaking this means that no probability mass flows 
out to in~nity. Obviously this is a necessary condition for the existence of 
apr~per limit distribution. 

We shall rely heavily on truncation~ It is most convenient to use once more 
the truncation function 7"s introduced in (5.3) in order to avoid discontin
uities~. Ts is the continuous monotone function such that 7"s(x) = x when 
Ixl ~ sand 'Ts(x) = ±.s when Ixl > s. \\lith this truncation function 
we put 

(7.1) X~.n = 7"s(Xk.n), ~k.n = Xk.1I = X~.1I + X~~~. 
The new variables depend on the parameter s even though our notati.on does 
riot emphasize)t. The row sums of the triangular arrays {X~.n} and {X;.n} 
will be denoted by S~ ana S:. Thus S1I = S~ + S~. The variables X~.n 
are bouQded, .and for their expectation we write. 

(7.2) (J.n = E(X~.n)' 
({In is, of course, independent of k.) FinaIIy we introduce the analogue 
to the measures at of section 5, namdy the measure <I> 11 defined by 

(7.3) <1>'I{dx} = nx21~{dx}. 

<l>n{~} is finite for finite intervals I, but the whole line may receive.an 
i nfiriite mass. 
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It is plausible that. {Sn} cannot remain stochasticaIIy bounded unless the 
individual components become small in the sense that 

(7.4) n -+ 00, 

for every € > O. (The left ~ide is independent of k.) Arrays with this 
property are called null-arrays. We shall see that only null-arrays can have 
stochastically bounded row sums, but for the time being we introduce (7.4) 
as a starting assumption. 

The "necessary" part of the following lemma was used in the proof of 
theorem 1 in section 5; there the condition (7.4) was fulfilled because the 
semi-group was continuous. 

Lemma. (Compactness.) In order that the row sums Sn of a null-array 
{Xk •n } remain stochastically bounded it is necessary and sufficient 

(i) that <l>n{l} remains bounded for every finite interval I, and 
(ii) that for large x the tail sums 

(7.5) 

are uniformly small. 

In other words, it is required that to each € > 0 there corresponds a t 

such that Tn(x) < € for x > t. (Note that Tn is a decreasing function.) 

Proof. In the special case of symmetric distributions Fn the necessity 
of condition (ii) is apparent from the inequality 

(7.6) 

[see V,(5.l0)]. For arbitrary Fn we apply the familiar symmetrization. 
Tdgether with Sn the symmetrized variables °Sn also remain stochastically 
bounded, and therefore condition Oi) applies to the tails °Tn of the 
symmetrized distributions. But for a null-array it is clear that for each 0 > 0 
ultimately °Tn(a) > !Tn(a + 0), and so condition (ii) is necessary in all 
cases. 

Assuming that condition (ii) is satisfied, the truncation point s can be 
chosen so large that Tn(s) < J for all n. The number of terms among 
X;.n' ... ,X~,n that are different from 0 is then a binomial random variable 
with expectation and variance less than 1. It is therefore possible to pick 
numbers Nand c such that with probability arbitrarily close to 1 fewer 
than N among the variables X;.n will be different from 0 and all of them 
<c. This means that the sums S: remain stochastically bounded, and 
under these circumstances {Sn} is stochastically bounded iff {S~} is. 

'It remains to show that condition (i) is necessary and sufficient for the 
stochastic boundedness of {S:J 
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Put a~ , Var (Sll)' If an -- <Xl the central limit theorem of example I (a) 
applied to the variables (X~.n -{3n)/an shows that for large n the distribution 
of S~ will be approximately normal with variarice a! -- <Xl and hence 
P{S~ E l} -- 0 for any finite interval I. The same argument applies to 
subsequences and proves that {S~} cannot remain stochastically bounded 
unless Var (S~) remains bounded. But in this case Chebyshev's inequality 
shows that {S~ - npn} is stochastically bounded, and the same will be true 
of S~ iff {nPn} is bounded. Now Pn -- 0 because {Xk •n} is a nuII-array, 
and hence the boundedness of nPn implies that Var (S~) r"'-' E(S~2). 

We have thus shown that the boundedness of E(S~2) is a necessary 
conditio'n for the stochastic boundedness of {S~}, and by Chebyshev's 
inequality this condition is also sufficient. But 

and henc'e und~r the present circumstances the condition (i) is equivalent to 
the condition that E(S~2) remains bounded. ' '~ 

The assumption that {Xk •n } is a null-array was used only in connection 
with the symmetrization and could be omitted for arrays with symmetric 
distributions Fn. However, the boundedness of <1> n{I} implies the E(X~~n) = 
= O(n-I), and one concludes easily from the lemma that an array with 
stochastically bounded row sums and symmetric distributions is necessarily 
a null-array. By symmetrization it follows that in the general case there exist 
numbers I1n (for example, the medians of Xk.~) such that {Xk.n - I1n} is 
a null-array. In other words, an appropriate centering will produce a null
"array, and in this sense oniy null-arrays are of interest. 

Example. Let the Xk •n have nt>rmal distributions with expectation 
Pn and variance n-I . Then Sn - nPn has the standa:rd normal distribution 
but since the {3n are arbitrary, {Sn} need not be stochastically bounded. 
This illustrates the importance of centering. ... 

For theoretical purposes it would be possible to center the array so that 
{3n = 0 for all 'n, but the resulting criterion would be difficult to use in 
concret~ situations. With arbitrary centerings the criteria involve non-Ilnear 
terms and become unwieldy. We shall cover this case in full generality in 
XVII,7, Here we shall strike a compromise: we shall require only that 

(7.8) n -- 00. 

This condition seems to be satisfied in all cases occurring in practice .. In 
any case, it is so mild that it is usually easy to satisfy it by an appropriate 
centering whereas the more stringent requirement that {3n = 0 may require 
complicated calculations. 
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Theorem. Let {Xk : n} be a null-array such that (7.8) holds. 

In order that there e.xist centering constants bn such that the distributions of 
Sn - b n tend to a proper limit it is necessary and sufficient that there exist a 
canonical measure .Q such that 

(7.9) 

for every finite interval and that for x > 0 

(7.10) 

In this case the distribution of Sn - nf3n tends to the distribution Ql 
associated with the convolution semi-:-group generafed by the operator ~ 
defined by 

(7.11) '1!u(x) = (+00 u(x-y) - u(x; + Ts(Y) u'(x) .Q{dy}. 
)-00 y 

Proof. We observe first that with arbitrary bn the conditions (i) and (ii) 
of the lemma are necessary for {Sn - bn } to be stochastically bounded. The 
proof is the same with the simplification that the relation E(S~2),-....; Var (S~) 
is now a consequence of (7.8) whereas before we had to derive it from the 
boundedness of S~. 

Assume the~ the conditions of the lemma satisfied. By the sdection 
theorem there exists a sequence {nk } such that as n runs through it (7.9) 
holds for finite intervals. For a finite interval 0 < a < x <b we have 

(7.12) n[Fn(b). - Fn(a)] = Cy- 2 <I>n{dy} 
.. a 

and (7.9) entails that also this quantity tends to a limit. Condition (ii) 
assures us that n[l - Fn(b») will be less than an arbitrary € > 0 provided 
only that b is sufficiently large. It follows that for 0 < a < b < 00 the 
integral in (7.12) converges to the analogous integral with respect to .U. 
Thus .Q is a canonical measure, and (7.10) is true as n runs through {n k }. 

We know that the operator '2( of (7.11) defines a semi-group {-O(t)} of 
convolution operators. Let (fill be the operator induced by the distribution 
Gn of X k • n - f3n,' namely GI/(x) = Fnex+fJ,J· It was shown in section 1 
that to show that the distribution of Snk - nkf3nk tends to the distr;bution 
Ql associated with .0(1) it suffices to show that as n runs through {nd 

(7.13) 

Now 

(7.14) 



312 INFINITEL Y DIVISIBLE DISTRIBUTIONS AND SEMI-GROUPS IX.8 

We express u(x+ Pn -y) using Taylor's formula-to-second-order terms. 
Since Pn -- 0 it follows from (7.8) and the boundedness of cI>n{1} that 
nP! -- O. As also UN is bounded it is seen that 

(7.15) n[(fjn-1] u(x) = l+oo
oo

[U(X- Y) - u(x) + Ts(Y) u'(x)]nFn{dy} +- €n(x) 

where En is a quantity tending uniformly to zero. The integral may be 
rewritten in the form (7.11) except that the integration is with respect to <1>n 
rather than n. As was shown repeatedly, the limit relations (7.9)-(7.10) 
imply that the integral in (7.15) converges to that in (7.11) and so (7.13) 
holds as n runs through. {nk }. Finally, the' uniqueness of the semi-group 
containing QI sbows that our limit relations must be true for an arbitrary 
approach n -- 00, and this concludes the proof. ... 

8. DOMAINS OF ATTRACTION 

In this section Xl' X2 , • •• are independent variables with a common 
distribution F. By definition 2 of VI,1 the distribution F belongs to the 
domain of attraction of G if there exist constants an > 0 and bn such that 
the distribution of a;I(XI+" ·+Xn ) - bn tends to G, wh~re G is a 
proper distribution not concentrated at a point. Despite preliminary results 
in VI,l and in section 6 we here develop the theory from scratch. (In XVII,S 
the' theory will be developed independently and in greater detail.) 

Throughout this section w.e use the notation 

'(8.1) x> o. 

We recall from the theory of regular variation in VIII,8 that ~ positive 

function L defined on 0, 00 varies slowly (at (0) if for x > 0 

(8.2) L(sx) --1 
L(s) , s -- 00. 

Theorem 1. A distribution F belongs to the domain of attraction of some 
distribution G iff there exists a slowly varying L such that 

(8.3) U(x) r"'-' x 2
-

a L(x), 

with 0 < '1.. <2, and when ex < 2 

(8.4) 
1 - F(x) 

----~-- -- p, 
1 - F(x) + F( -x) 

___ F_(::...-x....:;.) __ 
--q. 

·1 - F(x) + F( -x) 

x -- 00, 
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When fY. = 2 condition (8.3) alone is sufficient provided F is not concentrated 
at one point.6 

We shall see that (8.3) with fY. = 2 implies convergence to the normal 
distribution. This ~overs distributions with finite variance, but also many 
distributions w~th unbounded slowly varying U [see example VIIr,4(a)]. 

Using theorem 2 of VIII,9 with ~ = 2 and TJ'-':' 0 it is seen that the 
relation (8.3) is fully equivalent t07 

(8.5) x
2
[1-F(x)+F(-x)] ~ 2 - fY. 

U(x) 'fY. 

in the sense that the two ,relations imply each other. 
When 0 < fY. < 2 we can rewri~e (8.5) in the form 

(8.6) 
2-fY. 

1 - F(x) + F( -x) ~ x-cz L(x), 
fY. ' 

and conversely (8.6) implies (8.3) and (8.5). This leads us to a reformulation 
of the theorem which is more intuitive inasmuch as it describes the behavior 
of the individual tails. (For other aiternatives see problem 17.) 

Theorem la. (Alternative form). (i) A distribution F belongs to the 
domain of attraction of the normal distribution iff U varies slowly. 

(ii.) It belongs to some other domain of attraction iff (8.6) and (8.4) hold 
for some 0 < fY. < 2. 

Proof. We shall apply the theorem of section 7 to the array of variables 
Xk,n = Xk/an with distributions Fn(x) = F(anx). The row sums of the 
array {Xk •n } are given by 

~n = (Xl + ... + Xn)/an· 

Obviously an '-+ 00 and hence {Xk •n } is a null-array. To show that the 
condition (7.8) is satisfied we put 

(8.7) vex) = I:¥zy F{dy} 

6 For distributions with finite variance, V varies'slowly except when F is concentrated 
at the origin. In,all other cases (8.3) and (8.4) remain un.changed if F(x) is replaced by 
F(x+b). 

7 Condition (8.4) requires a similar relation for each tail separately: • 

x2[1-F(x)] 2 - tX x2F( -x). 2 - tX 

(*) Vex) --p-tX-' V(x) --q-tX-

When' tX = 2 these relations follow from (8.5), which explains the absence or A sec\.1.d 
condition when tX = 2. Theorem 1 could have been formulated more" concisely '::;ut 
more artificially) as follows: F belongs to some domain of attraction iff (*) is true with 
o < tX ~ 2, P > 0, q > 0, P + q = 1. 
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and note that (7.S) i,s certainly true if 

(S.S) v:(x) = o(V(x». 

Now if U(i) -- 00 as x -- 00 it is clear that vex) = o(x Vex)) and Vex) = 
= o(x- 2

), and therefore (S.S) holds. The case of a bounded function V is 
of no interest since we know that the central I imif theorem applies to 
variables with finite variances. However, even with bounded functions V 
the relation (S.S) holds provided that the distribution F is centered to zero 
expectation. 

Condition (i) of the last theorem requiresB that for x > 0 

(8.9) n -- 00, 

while Oi) reduces to 

(S.I 0) 

[for the notation see (5.2)]. It is easily seen that9 an+1/an -- 1. According to 
lemma 3 of VI I r,s it foI1ows therefore- from (S.9) that U varies regularly, 
and the I imit on the right is proportional to a power of x. Following a custom 
establisheq by P. Levy we denote this power by 2 -~. Thus 

(S.l1) n{ -x, x} = Cx2-tx, x> o. 
The'left side being a non-d~creasing function of ;l; and bounded near the 
origin, we have 0 < ~ < 2. It follows that V is indeed of the form 
asserted in (S.3). 

Again, the same lemma 3 of VIII,S assures us 'that the limits in (S.10) are 
either identically zero, or else proportional to a power of x. Now (S.5) shows 
that the only possible power is x-a; in fact, when (X = 2 both limits are 
identicaJIy zero, whereas for (Yo < 2 the limits are necessarily of the form 
Ax-a and Bx-a :where A >0 and B > 0, but A + B > O. It follows 
that the conditions of the theorem are necessary. 

Assuming (S.3) to be tru~it is possible to construct a sequence {an} such 
that 

(S.12) 

For example, one may take for an. the lower bound of all t such that 
nt-2 V(t) < I. Then (S.3) guarantees that for x > 0 

(8.13 ) 

8 As usual, it is tacitiy understood that convergence is required only at points of continuity. 
9 For ~ymmetric distributions this follows from tite fa.:t that (Xl + ... + Xn)/an and 

(Xl + ... + Xu)/a llt 1 have the same limit distributien. For arbitrary F the assertion 
follows by symmetrization. 
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Thus condition (7.9) is satisfied for intervals of the form 1= {-X, x}. In 
case (X = 2 the limit measure .n is concentrated at the origin and therefore 
(7.9) is automatically satisfied for all finite intervals; in this case it follows 
from (8.5) that also condition (7.10) is satisfied wit-h 1p+ and 1p- identically 
zero. When (X < 2 the relations (8.3)-(8.5) together imply that as x -- 00 

2-(X 
(8.14) 1 - F(x) r"'-' P . x-CZ L(x), 

. 2 - (X. 
F( -x) r"'-' q X-IX L(x) 

(X (X 

provided p > 0 and q > O. (In the contrary case the symbol r"'-' is to be 
l"eplaced. by "little oh' ~ and there is no essential change.) It follows that 
condition (7.10) holds, and this in turn implies that (7.9) applies to arbitrary 
intervals at a positive distance from the origin. ~ 

It is noteworthy that all the .results of section 7 ~re implicitly contained in 
the present theorem and its proof. The proof leads also to other valuable 
information. First we have the obvious 

Corollary. If (X = 2 the limit distribution is normal, and otherwise it is a 
stable distribution satisfying (6.11). In either. case it is determined up to 
arbitrary scale parameters. 

We saw also that (8.12) leads to a possible sequence of norming factors 
an' It is easily seen that another sequence {a~} wiII do iff the ratios a~/an 
tend to a positive limit. 

Under the conditions of theorem 1 we have established the existence of a 
limit distribution for SlI - n{ln where [with v defined in (8.7)] 

(8.15) 

We now proceed to prove the pleasant fact that the centering constants {In 
are really unnecessary except when (X = 1: 

When (X < 1 we apply theorem 2 of VIII,9 with {= 1 and 17 = 0 
separately to the two half-axes to find that as x, 

(8.16) vex) r"'-' (X x[l-F(x)-F( -x)]. 
l-(X 

From this and (8.1 0) it follows that n{ln tends to a finite limit and therefore 
plays no ess\!ntial role. 

When (X > 1 the same theorem 2 of VIII,9 with ~ = 2 and T) = 1 
shows that F has an expectation, and we naturally center F to zero 
expectation. The domain of integration in the integral (8.7) for v may then 
be replaced by Iyl > x and it is found that (8.16) holds wit~out change. 
Thus the distributions of Sn tend to a limit which is again centered to zero 
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expectation. Similarly, when (X < 1 the limit distribution is centered so as 
to be strictly stable. We have thus proved 

Theorem .2. Suppose that F satisfies the conditions of theorem 1. If 
(X < 1 then FlI *(anx) ~ G(x) where G is a strictly stable distribution 
satisfying (6.1 I). If (x' > 1 the same is true provided F is centered to zero 
expectation. 

(For the centering when (X . 1 see XVII ,5. Concerning the moments of 
F see problem 16.) 

9. V ARIABLE DISTRIBUTIONS. THE THREE-SERIES 
THEOREM 

We turn very briefly to general triangular arrays·· {Xk •n } where the 
variables10 X1 •n , ••• , Xn .n of the nth row are mutually independent, but 
have arbitrary distributions Fk •n • To preserve the character of our limit 
theorems Wy consider only null-arrays: it is required that for arbitrary 
'YJ > 0 and € > 0 and n suffici~ntly large 

(9.1) P{jXk.nl > 'YJ} < €, k = 1, ... , n. 

The theorj developed in section 7 carries oyer with the sol~ change that 
expressions like 1Z Var (Xk,n) are ~eplaced by the corresponding sums. In 
particular, only infinitely divisible distributions occur as limit distributions of 
row sums of null-arrays. The verification may be left to the reader· as a 
matter of routine. 

We proceed to discuss some interesting special cases. The notations are 
the same as in section 7, but in the following it Goes not matter which type of 
truncation is 'used; it, is perhaps simplest to define the truncated variables 
by X~.n = Xk.n when 1Xk.nl < s and X~,n = 0 otherwise. Here the 
truncation level s is arbitrary. 

The first theorem is a variant of the compactness lemma clnd is equivalent 
to it. 

Theo~em 1. (Law of large numbers.) Let Sn stand Jor the row sums of a 

null-array. In order that there exist constan.ts bn such that 11 Sn .- bn ~ 0 
it is necessary and sufficien.t that for each 1'/ > 0 and each truncation level s 

n n 

(9.2) IP{IXk,nl> 'YJ} ~ 0, IVar (X~.n) ~ 0 
k=1 k=1 

!n this case olle may take bn = I E(X~.n)· 
k 

10 Concerning the number of variables in the nth row see problem 10 in VII,B. 
11 We recall from VIII,2 that Zn converges .in probability to O.if p{IZnl > €} -+ 0 

for every € > O. . 
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As an application we prove the following theorem which was already 
discussed in VIII,5. 

Theorem 2. (Infinite ~om;olutions.) Let YI , Y2, • •. be independent 
random variables with distributions GI , G2 , •••• In order that the distributions 
GI * G2 ••• * Gn of the sums Tn = YI + ... -+ Y n tend to a proper limit 
distribution· G it is necessary and sufficient that for each s >.0 

(9.3) 

and 

(9.4) 

1 Var (Y~) < 00 

n 

2E(Y~) ~ m .. 
k=I 

Proof. For a given increasing sequence of integers Vb V2, • •. and 
k = 1; ... , n. put Xk •n = Y"n+k ' The· distributions GI * ... * Gn con
verge iff all triangular arrays of this type obey the law of large numbers with 
centering constants bn = O. From theorem 1 it is clear that the conditions 
(9.3) and (9.4) are necessary and sufficient for this.. ~ 

Theorem 2 may be reformulated more strikingly as foHows. 

Theorem 3. (Kolmogorov's "three-series theorem".) The series ! Y k 

converges with probability one if (9.3) and (9.4) hold, and with probability 
zero otherwise. 

Proof. Assume (9.3) and (9.4). By theorem 2 Qf VII,S the second con
dition in (9.3) guarantees that 1 [Y~ - E(Y~)] converges with probability 
one, and then (9.4) implies the same fo.r 1 Y~. By the Borel-Cantelli lemma 
(see 1; VIII,3) 'the fiTSt condition in (9.3) entails that with probability one 
only finitely many Yk differ from Y~, and so ~ Yk converges with 
probability one. 

To prove the necessity of our conditions recall from IV,6 that the prob
ability of co.nvergence is either zero or one. In the latter case·the. distribution 
of the partial sums must converge, and so ,(9.3) .and (9.4) hold. . ~ 

Pro~esses with Non-stationary Incremen~ 

The semi-group theory developed in this chapter. is the tool particularly adapted to 
processes with stationary independent increments. Without the condition of stationarity 
the incremept X(t) - X{-r) will have a distribution depending on the two parameters I 

and T, and we have t9 deal with a two-parametric family of operators .Q(T, I), 0 < T < I 
satisfying the corivolution ~quation 

(9.5) .Q(T, s).Q(s, I) = .Q(T, I), 

Are the distributions associated with such o~rators infinitely divisibre? We can partition 
--,--J 
T, I into n intervals Ik-I' lit and consider the variables X(tlt) - X(tk-I)' but to apply 



318 INFINITELY DIVISIBLE, DISTRIBUTIONS AND SEMI-GROUPS IX.IO 

the theory of triangular arrays we require the condition (9.1) amounting to a unifotm 
continuity of the distributions in their dependence on the two time parameters'. But 
.0(1') t) need not depend continuousiy on t. In fact, the partial sums of a sequence 
Xl' X2 , •• ' o( independent random variables represent a process with independent incre
ments where all changes occur ~t integer-valued epochs and so the process is basically 
discontinuous. In a certain sense, however, this is the only type of essential discontinuity. 
The qualification "essential" is necessary, for it was shown in section Sa that even with 
ordinary semi~groups artificial centering can produce mischief which, though inconse
quential, requires caution in formulations. For simplicity we stick therefore to symmetric 
distributions and prove 

Lemma. If the distributions associated with .Q( T, 't) are .5ymmetric, a one-sided limit 
.0(1', t-) exists for each t. 

Proof. Let l' < tl < t2 <4. .. and tn ~ t. The sequence of distributions associated 
with .Q( 1', tn ) is sto~hastically bounded and so there exists a convergent subsequence. 
Dropping double subscripts we may suppose that .0(1', tn ) -+ U where U is associated 
with a proper distribution U. It follows easily thal .QUn , tn+I ) -- 1 and this implies 
.QUn, sn) -~ 1 for any sequence of epochs such that tn < Sn ~ tn+!' In view of (9.5) this 
means that .0(1', sn) -+ U, and so the limit U is independent of the sequence {tn}, and 
the lemma is proved. ~ 

Following Paul Levy, we say that ajixed discontinuity occurs at t if the two limits 
.0(1', t+) and .0(1', -1) are different. It follows readily from theorem 2 that the set of 
fixed discontinuities is countable. Using symmetrization it follows also in the general case 
that, except for at most denumerably many epochs, discontinuities are due only to centering 
(and are removable by an adequate centering). The contribution .QiT, t) of all fixed 
discontinuities to .0(1', t) is an infinite convolution and it is possible to decompose the 
process into a discrete and a continuous part: For the triangular arrays arising from con
tinuous processes it is not difficult to see (using theorem 2) that the uniformity condition 
(9.1) is automatically satisfied and we "feach the conclusion that the distributions associated 
with continuous processes.are infinitely divisible. P. Levy has shown that the sample function 
of such processes are well-behaved in the sense that with probability one right and left 
limits exist at every epoch t. 

10. PROBLEMS FOR SOLUTION 

1. In Example 1 (a) show that 2 xtn ~~ 1 as n -- OJ: (Hint: Use variances.) 

2. In an ordinary symmetric random walk Jet T be the epoch of the first 
passage through + 1. In other words, T is a random variable such that 

P{T = 2r - I} = - 2-2r . 1 (2r) 
2r r 

Consider a triangular array in which Xk,n has the same distribution as T/n2. 
Using the elementary methods of section 1 show by direct calculation that 

1 fOC) u(x - y) - u(x) 
(*) nmllu(x) - u(x)] ~ ~ vi' dy. 

V21T 0 y3 

Conclude that the distribution of the row sums tends to the stable distribution 
Fl defined in 11,(4.7) with the convolution property 11,(4.9). Int(;;~ret the result 
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in terms of a random walk in which the steps are ± lin and the times between 
successive steps l/n2

• 

[Hint: The series defining tjnu(x) can be approximated by an integraL] 
3. Consider the gamma distributions of 11,(2.2) for the parameter value ex = l. 

Show that the convolution property 11,(2.3) implies that they form a semi-group 
with a generator given by 

Uu(x) = e-Vdy. f<Xl u(x-y) - u(x) 

o y 

Discuss the absence of a centering term. 

4. The one-sided'stable distributions of Il,(4.7) enjoy the convolution property 
11,(4.9) and therefore form a semi-group. Show that the generator is given by the 
right side of (*) in problem 2. 

5. Let t!:te dis~ributions Qt of a semi-group be concentrated on the integers 
and denote the weight of k by qk(t). Show that 

Uu(x) = -q'(O) u(x) + 1 q'(O) u.(x - k). 
k#O 

Compare with the canonical form (5.9~. Interpret in this light the generating 
functions for infinitely divisible distributions obtained in 1; XU,2. 

6. Generalize the notions of section 2 to semi-groups with defective distributions. 
Show that if U generates {.Q(t)} then U - c1 generates {e-c1.Q(t)}. 

7. The notation et(ij-1) for the cQmpound Poisson semi-group tempts one to, 
write in general .Q(t) = elll. For the normal semi-group this leads to the formal 
operational equation 

exp - t - u(x) = ,- - u(2n)(x) (
1 d2) 1 (t)n 
2 dx2 ~n! 2 . 

Show that it is valid whenever the Taylor series of u converges for all x and the 
series on the right converges for t > O. (Hint: start from the Taylor series for the 
convolution of u and a normal distribution. Use the moments of the normal 
distribution.) 

8. The distributions of a semi-group have fi?ite. expectations iff I I Ixl is 
integrable with respect 'to the measure n appearmg In the generator. + 

9. Show directly that if n[tj.fi -1] - U, the operator U is necessarily of the 
form of a generator. [Use the method of section 4 considering functions of the 
form (4.4) but do not use semi-group theory. The intention is to derive the general 
form of a generator without first proving its existence.] 

10. Let Fk attach probabilities i to the two points ±p,k. Then 

h=-<Xl 

generates a semi-group such that Q2t(X) = Qt(xp,), but Qt is not stable. (P. Levy.) 
11. (A direct proof that the limit distributions of row sums of triangular arrays 

are infinitely divisible.) Let {Xk •n} be a triangular array with identically distributed 
variables. The stochastic boundedness of Sn implies the same for the partial sums 
X1 . n + ... + Xm.n> where m stands for the largest integer ~nlr. Using the 
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selection theorem show that this implies that the limit distribution G of 8 n is 
the r-fold convolution of a distribution Gr. 

12. For any distribution F and smooth u 

1I(ll' - l)ull :$; IOO(lIuli + lIuHII) f:: I ~ x' F{dx} + Ilu'li. 

13. To the triangular array {Xk •n} with distributions Fn there corresponds 
another array {~!. n} with compound Poisson distributions, 

~# = e~n-l. 
n 

Show that n[~n -~~] ~ 0 whenever {8n} is stochastically bounded. This shows 
th:at the row sum.!.' 8 n and 8! are asymptotically equivalent. Since the distribution 
of 8 ~ is associated with e[n ~n-I] this yields a second method for deriving the main 
theorems of section 7. This method can be used also for arrays with variable 
distributions. (Hint: Use problem 12.) 

14. With the notations of section 5 put Mn = max [XI.n, ... , Xn,n]' If 8 11 

has a limit distribution show that ",+(x) = -lim log P{Mn < x}. 

15. If 8 n has a limit distribution so do the row sums of the array formed by 
the squares X;.n' 

16. (Domains 0/ attraction.) Let' F belong to the domain of attraction of a 
stable distribution with index ex. Using theorem 2 of VIII,9 show that F possesses 
absolute moments of all orders < ex. If ex < 2 no moments of order > ex exist. 
The last statement is false when ex = 2. 

17. (Continuation.) In section 8 the theory was based on the truncated second 
moment function, but this was done only for reasons of tradition. Theorem 2 of 
VIII,9 permits us to replace y2 in (8.1) by lylP with other exponentsp, and for 
each p to replace (8.3) and (8.5) by equivalent relations. 

18. Let Xl' X2 , • •• be independent variables with a common distribution F. 
If 1 - F(x) + F( -x) varies slowly, deduce from the compactness lemma that 
a sequence 8 nk/ak + bk can have no proper limit distribution G except G 
concentrated at a point. (This may be expressed by saying that F belongs to no 
domain o/partial attraction. See XVII,9.) Hint: Use symmetrization. 



C If APT E R X 

Markov Processes and Senli-Groups 

This chapter starts out with an elementary survey of the most common 
types of Markov processes-or rather, of the basic equations governing 
their transition probabilities. From this we pass to Bochner's notion of 
subordination of processes and to the treatment of Markov processes by 
semi-groups. The so-called exponential formula of semi-group theory is the 
connecting link between these topics. The existence of generators will be 
proved only in chapter XIII by the theory of resolvents. In theory the present 
exposition might have covered the processes and semi-groups of the preceding 
chapter as a special case, but the methods and USes are so different that the 
following theory is self-contained and independent of chapter IX. The results 
~iIl be amplified in chapter XUI, but the theory of Markov processes is not 
used for the remaining topics in this book. 

This chapter is largely in the nature of a survey, and no attempt is made at 
either general ity or completeness. l Specifically, we shall not discuss properties 
of the sample functions, and throughout this chapter the exi.stence of the 
processes will b'e taken for granted. Our interest centers entirely on the 
analytical properties of the transition probabilities and of the defining 
operators. 

The theory of the induced semi-groups of transformations will be treated 
in fair generality in sections 8-9. In the earlier sections the basic space is an 
interval on the line or the whole line although parts of the theory apply more 
generally. To avoid special symbols it is therefore agreed that when no 
limits are indicated integrals are taken Ol'er a fixed set n serving as the basic 
space. 

1 The semi-group treatment of Markov p~ocesses is described in greater detail in Dynki.n 
(1965) and Loeve (1963). Yosida (1966) contains a succinct introduction to the analytiC 
theory of semi-groups and their applications to diffusion and to ergodic theory. 

321 
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1. THE PSEUDO-POISSON TYPE 

Throughout this chapter we limit our discussion to Markov processes with 
stationary transition probabilities Qt defined by 

(1.1) Qt(x, r) = P{X(t+7") E r I X(7") = x} 

and supposed to be independent of 7". (See VI,ll.) 
A simple generalization of the compound Poisson process leads to an 

important Class of such processes from which all others can be derived by 
approximation. The theory of semi-groups hinges on an analytical counter
part to this situation (section 10). 

Let N(t) denote the variable of an ordinary Poisson process. In VI,4 
the compound Poisson process was introduced by considering the random 
sums SNW where So, Sh . . . are the partial sums of a sequence of independ
ent identically distributed random variables. The pseudo-Poisson process is 
defined in like manner except that n<?w . So, 8 1 , • •• are the variables of 
Markov chain with transition probabilities given by a stochastic kernel K 
(see VI,ll). The variables X(t) = SN<tl define a new stochastic process 
which can be described formally as follows. 

Between the jumps of the Poisson process the typical sample path remains 
constant. A transition from x to r can occur in 0, 1, 2, ... steps, and hence 

a:j (rx.t)n 
Qt( x, r) = e-rzt 2 - K( nl( x, r), 

n=O n! 
(1.2) t > o. 

This generalizes the compound Poisson distribution VI,(4.2) and reduces to 
it in the special case when n is the whole line and Sn is. the sum of n 
independent random variables with a common distribution F. 

The composition rule 

(1.3) Qt+r(x, r) = f Qt(x, dy) Qr(Y, r) 

(t,7" > 0) analogous to VI,(4.1) is easily verified analytically.2 It is called 
the Chapman-Kolmogorov equation and states that a transition from x at 
epoch ° to r at epoch t + 7" occurs via a point y at epoch 7" and that the 
subsequent change is independent of the past.3 [See 1; XVII ,9 and also 
VI,(11.3).] 

Examples. (a) Particles under collision. Let a particle travel at uniform 
speed through homogeneous matter occasionally scoring a collision. Each 

2 Approximating Qt and Qr by their partial sums with n terms shows that the right 
side in (1.3) is .~ the left side but ~ the nth partial sum of Qt+r' 

3 It is sometimes claimed that (1.3) is a law either of nature or of compound prob
abilities, but it is not true for non-Markovian processes. See 1; XV,13. 



X.1 THE PSEUDO-POISSON TYPE 323 

collision produces a change of energy regulated by a stochastic kernel K. 
The transition probabilities for the energy X(t) are of the form (1.2) if 
the number of col1isions obeys a Poisson process. This will be the case 
under the now familiar assumptions concerhing homogeneity of space and 
lack of memory. 

It is usually assumed that the fraction of energy lost at each 0 collisipn is 
independent of the initial amount, which means that K(x, dy) = V{dy/x} 

where V 0 is a probability distribution concentrated on 0, 1. For later 
applications we consider the special case where Vex) = x A• Then K has a 
density glven by 

\ 

(1.4) 0<' y < x. 

For ). = 1 this implies that the fraction of energy lost is uniformly dis
tributed. 4 The iterated kernels kC,n) were calculated in VI,(11.5). Sub
stituting into (1.2) it is seen that Qt has an atom of weight e--lZt at the origin 
(accounting for the event of no collision) and for ° < y. < x the density 

(1.5) q,( x, y) = e-"'.j ).ocl .j y'-l I,(2.j ocl). log (:ely) ) 
x A log (x/y) 

where II is the Bessel function defined in II,(7.1). [See examples 2(a) and 
2(b ).] 

(b) Tile energy loss of fast particles by ipnization.5 An instructive 
variant of the last example is obtained by considering the extreme case of a 
particle whose energy may be considered infinitely large. The energy losses 
at successive collisions are then independent random variables with a common 

distribution V concentrated on 0, 00. If X(t) is the total energy loss 

within the time interval 0, t then X(t) is the variable of a compound Poisson 
process. Its transition probabilities are given by (1.2) with K(n) replaced by 
the convolutions vn * 

(c) Changes in direction. Instead of the energy of a particl~ we may 
consider the direction in which it travels and derive a model analogous to 
example (a). The main difference is that R direction in :R,3 is determined by 
two variables, and so the density kernel ok now depends on four real 
variables. 

4 This assump~ion is used by W. HeitIer and L. Janossy, Absorption of meson producing 
nucleons, Proc. Physical Soc., Series A, vol. 62 (1949) pp. 374-385, where the Fokker
Planck equation (1.8) is derived (but not solved). 

5 Title of a paper by L. Landau, J. Physics, USSR, vol. 8 (1944) pp. 201-205. Landau 
uses a different terminology, but his assumptions are identical with ours and he derives 
the forward equation (1.6). 
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(d) The randomized random walk of example II,7(b) represents a pseudo
Poisson process restricted to the integers. For a fixed integer x the kernel 
K attributes weight l to the two points x ± 1. ~ 

From (J .2) one gets easily 

(1.6) 

This is Kolmogorov's forward equation which will be discussed in a more 
general setting in section 3 where it will be shown in the next section that 0.2) 
is its only solution satisfying the obvious probabilistic requirements. The 
equation (1.6) takes on a more familiar form when K has a density k. At the 
point x . the distribution Qt has an atom of weight e-lZt , which is the prob
ability of no change; except for this atom Qt has 11 density qt satisfying 
the equation 

(1.6a) --=...;..~-.:... = -rxqt(x, ~) + rx qt(x, z) k(z, ~) dz. aqt(x, ~) J 
at . 

If flo is the probability distribution at epoch 0 the distribution at epoch 
t is given by 

(1-.7) 

and (1.6) implies 

(1.8) 

- -
This version of (1.6) is known to physicists as the Fokker-Planck (or 

continuity) equation. Its nature will be analyzed in section 3. When K and 
the initial distribution flo have densities, then flt also has a density mt, 
and the Fokker-Planck equation reduces to 

(1.8a) 

2. A VARIANT: LINEAR INCREl\fENTS 

A simple variant of our process occurs in physics, queuing theory, and 
other -applications. The assumptions concerning the jumps remain the 
same but between jumps X(t) varies linearly at a rate c. This means that 
X(t) - ct is the variable of the described pseudo-Poisson process; if 
Qt stands for the transition probabilities of the new process, then 
Q,(x, r + ct) must satisfy (1.6). The resulting equation for Qt is of an 
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unfamiliar form, but if differentiable densities exist they satisfy familiar 
equations. For m t we have to replace ~ in (L8a) by ~ + ct. With the 
change of variables Y = ~ + ct we get the Fokker-Planck equation." 

omt(y) omt(y) J 
(2.1) ot = -c oy -rxmt(y) + rx mt(z) ''tz, y) dz. 

The analogue to (1.6a) is obtained similarly by adding the term -c oqt/oy 
to the right side. 

In connection with semi-group theory we shall cast the Fokker-Planck 
equation in a more flexible form quite independent of the unnatural differ
entiability ~onditions. [See example IO(b).] 

Examples. (0) Particles under collision. In the physical literature example 
I (a) occurs usually in a modified form where it is assumed that between 
collisions energy is dissipated at a constant rate due to absorption or friction. 
The model of (2.1) fits this situation if the energy loss is proportional with mt 

standing for the probability density of the' energy at epoch t. 
In other situations physicists assume that between collisions energy is 

dissipated at a rate proportional to the instantaneous energy. In this case 
the logarithm of the energy decreases at a c~nstant rate and an·equation of 
the form (2.1) now governs the probability density for the logarithm of the 
energy. 

(b) Stellar radiation.7 In this model the variable t stands for distance 
and X(t) for the intensity of a light ray traveling through space .. It is 
assumed that (within the equatoria(plane) ea<;h element of volume radiates 
at a constant rate and hence X(t) increases linearly. But the space also 
contains absorbing dark clouds which we treat as a Poissonian ensemble ~f 
points. On meeting a cloud each ray experiences a chan~e-determined loss 
and we have the exact situation that led us to (2.1). It is plausible (and it 

6 Manyspccial cases of the Fokker-Planck equation (1.8) have been discovered in
dependently, and much fuss has been made about the generalization (2.1). The general 
notion of Fokker-Planck equations was developed by Kolmogorov in his celebrated 
paper, Ober die analytischen lvlethoden in der Wahrscheinlichkeitsrechnung, Math. Ann., 
vol. 104 (1931) pp. 415-458. In it Kolmogorov mentions the possibi.lity of adding an 
arbitrary diffusion term 

to the right side, and (2.1) is merely a special case of this. Even the first existence theorems 
covered the general equation in the non-stationary case. [Feller, Math. Ann., vol. 113 
(1936).] 

7 The physical assumptions are taken from V. A. Ambarzumian, On lire brightness 
fluctuations in the Milky Way, Doklady Akad. Nauk SSSR, vol. 44 (1944) pp. 223-226, 
where a version of (2.1) is derived by an indirect approach. 
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can be proved) that the density mt of X(t) approaches a steady state density 
m which is independent of t and satisfies (2.1) with the left side replaced by O. 

Ambarzumian assumes specifically that the loss of intensity at an individual 
passage through a cloud is regulated by the transition kernel (1.4). In this 
case an explicit solution is available in (l.5) but it is of minor interest. More 
important (and easily verified) is the fact that (2.1) has a time-independent 
(or steady state) solution, namely the gamma density 

(2.2) m(y) = - yAe-(a/C)1I (
0:)A+1 1 
c r(A+lf· , y> O. 

This result shows that pertinent information can be derived from (2.1) 
even without finding explicit solutions. For example, it is readily verified 
by direct integration that the· steady state solution has expectation· 
c[o:(l_Il)]-l where Il is the expectation of the absorption distribution V. 

(c) The ruin problems of VI,S represent the special case where k is a 
convolution kernel. The variable of these processes is obtained by adding 
- ct to the variable of a . compound Poisson process. Analogous ruin 
problems can be formulated for arbitrary pseudo-Poisson ian processes, 
and they lead to (2.1). ~ 

3. JUMP PROCESSES 

In the pseudo-Poisson process the waiting time to the next jump has a 
fixed exponential distribution with expectation 1/(1.. A natural generalization 
consists in permitting this distribution to depend on the present value of 
the path function X(t). [In example 1 (a) this amounts to .assuming that 
the probability of scoring a hit depends on the energy of the particle.] The 
Markovian character of the process requires that the distribution be expon
ential, but its expectation can depend on the pr.esent value of X(t). Accord:
ingly, we start from the following 

Basic postulates. Given that X(t) ==- x, the waiting time to the next jump 
has an exponential distribution with expectation l/(1.(x) and is independent 
of the past history. The probability that the following jump leads to a point in 
r equals K(x, r). . 

In analytical terms these postulates lead to an integral equation for the 
transition probabilities Q t(X, r) of the process (assuming that such a 
process does in fact exist). Consider.a fixed point x and a fixed set r not 
containing x. The event {X(t) E r} cannot occur unless the first jump 
from x has occurred at some epoch s < t. Given this, the conditional 
probability of {X(t) E r} is obtained by integrating K(x, dy)Qt-s(y, r) over 
the set Q of all possible y. Now the epoch of the first jump is a random 
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variable with exponential density cx(x)e-a(Z)'. Integrating with respect to 
it we get the probability of {X(t) E r} in the form 

(3.1a) Q'(x, r) = ot(x) fe-«C'" ds L K(x, dy) Q,-.(y, r). 

For a set r containing x we must add the proHabiIity that no jump occurs' 
before t and thus we get 

(3.1b)Q,(x, r) = e-a(z)t + cx(x) (te-a(Z)"ds r K(x, dy) Qt-ly, r). 
J~ - In 

These two equations, valid for x ¢T and x E r, respectjvely, are the 
analytic equivalent of the basic postulates. They simplify by 'the change of 
the varia6le of integration to 'T = t - s. Differentiation with respect to t 

then reduces the two equations to the same form, and the pair is rep!aced 
by the single integro-differential equation . 

oQt(x, r) [ 
~ = -cx(x) Qt(x, r) + cx(x) K(x, dy) Qt(y, r). 
ut ~n 

(3.2) 

This is Kobnogorov's backward equation, which serves as point of departure 
for the analytical . development because it avoids the annoyance of 
distinguishing between two cases. 

The backward equation- (3.2) admits of. a simple intuitive interpretation 
which may serve to reformulate the basic postulates in more practical terms. 
In terms of difference ratios (3.2) is equivalent to 

(3.3) Q'+h(x, r) = [l-ot(x)hl Q,(x, r) + ot(x)h L K(x, dy) Q,(y, r) + o(h). 

For an intuitiv.e interpretation of this relation consider 'the change within 

the time interval 0, t+h as the result of the change within the initial short 

interval 0, h and the subsequent interval h, t+h of duration t. Evidentiy 

then (3.3) states that if X(O) = x, the probability of one jump within 0, h 
iscx(x)h + o(h); and the probability of more than one jump is o(h); 

finally, if a jump does occur within 0, h, the conditional probabilities of 
the possible transitions are given by K(x, dy). These three postulates lead to 
(3.3) and hence to (3.2). In essence they repeat the basic postulates.8 

From a probabilistic point of view the backward equation is somewhat 
artificial inasmuch as in it the terminal state r plays the role of a parameter, 

8 The differentiability of Qt with respect to t and the fact that the probability of more 
than one jump is o(h) are now stated as new postulates, whereas they are implied by the 
original more sophisticated formulation. . 
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and (3.2) describes the dependence of Qt(x, r) on the initial position x. 
Offhand it would seem more natural to derive an equation for Qt+h by 
splitting up the interval 0', t+h into a long initial interval 0, t and the 
short terminal interval t, t+h. Instead of (3.3) we get then formally 

(3.4) Qt+h(X, r) = frQt(X, dz)[l-ex(z)h] + L Qt(x, dz) ex(z)h K(z, r) + o(h) 

and hence 

(3.5) oQt(X, r) i L .-;;:;..;..~--:; = - Qt(x, dz) ex(z) + Qt(x, dz) ex(z) K(z, r). ot r n 

This is Kolmogorov'sforward equation (in special ca.ses known to physicists 
as the continuity or Fokker-Planck equation). It reduces to (I.6) when ex is 
independent of z. 

The formal character of the derivation was emphasized because the 
forward equation is really no~ implied by our basic postulates. This is 
because the term o(h) in (3.3) depends on z and since z appears as variable 
of integration in (3.4), the term o(h) should have appeared under the 
integral sign. But then the problem arises as to whether the integrals in 
(3.5) converge and whether the passage to the limit h --- 0 is legitimate. 
[No such problems occurred in connection with the backward equation 
because the initial value x was fixed and the integral in (3.2) exists in con
sequence of the bounded ness of Qt.] 

It is possible to justify the forward equation by adding to our basic 
postulates an appropriate condition on the error term in (3.3), but such a 
derivation would lose its intuitive appeal and, besides, it seems impossible 
to formulate conditions which will cover all typical cases occurring in 
practice. Once unbounded functions ex are admitted, the existence of the 
integrals in (3.5) is in doubt and the equation cannot be justified a priori. 
On the other hand, the backward equation is a necessary consequence of 
the basic assumptions, and it is therefore best to use it as a starting point 
and to investigate the extent to which the forward equation can be derived 
from it. 
~ solution of the backward equation is easily constructed using successive 

approximations with a simple probabilistic significance. Denote by 
Q~n)(x, r) the probability of a transition from X(O) = x to X(t) E r with 
at most n jumps. A transition without jumps is possible only if x E r, 
and since the sojourn time at x has an exponential distribution we have 

(3.6) 

(where K(O)(x, r) equals I or 0 according as x is, or is not, contained 
in r). Suppose next that the first jump occurs at epochs s < t and leads 
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from x to y. Summing over ~n possibte' sand y. we get las in (3.1)] the 
recursion formula . . 

(3.7) Q!_+1I(x: r) = Q!OI(x, r) + f,,-·C.I·/X(x)dS J K(x, dy) Q!:-':(y, r) 
. , . 

vaiid for ,; = 0, I, .. ~.. Obvio\lsIYQ~O) S Q~l) and hence by induction 
Q!l) S Q!2) ~ ..•.. , . ';.. . . . 

It fonows that fo! every pair x, r, th~ limit 

(3.8) Q!oo\x, r) = liII~:Q~")(x, r) 
" ..... 00 

exists, but conceiva,bly it could be infinite. 'We show th~t actually 

(3.9) Q!oo)(x, 0) ~ 1 

[which implies Q~CO)(x, r) S I for all sets in OJ. It suffices to prove that 

(3.10) Q!"'(x; ~O) S 1 

for all n. This is trivially true for n = 0 and we'proceed'~y)nduct~on: 
Assuming (3.1 0) for some fi~ed n we get from (3.7) (reealIing ~af 1<. is 
stochastic) .. 

(3.il) Q!-+ll(x, Q) < e~c.lt +f.'e-'C'h~(~) ds i, . 

and hence (3.10) is true for all n. 
Fro~ (3.7) it follows by monotone 'convergence that Q~CO) .sa·tisfies the 

backward equations in the original integral version (3.1) [and he~ce also in 
the integro-differenti~l version (3.2)]. For any other positive solution Qt of 
(3.1) it is clear that Qt ~ Q~O); comparing (3.1) with (3.7) we'conclude that 
Qt > Q!") for all n, and hence Q~ ~ Q!OC). F,?i" this reason Q~OO) is calle~ 
the minimal solution of the backward equations; (3~9) shows thatQ!CO} i~ 
stochastic or substochastic. . 

It follows from (3.8) that Q~CX:)(x, r) is the probability of a passagefrom 
x to r in finitely many steps. Accordingly, with a substochastic solution 
the defect 1 - Q~CO)(x, 0) represents. the probability that, from. x as 
starting point, infinitely many jumps will occur within time t. We know 
from 1; XVII ,4 and example VIII;5(c) that this .phenomenon occurs in 
certain pure birth processes,· and hence substochastic. solutions exist. But 
they are th~ exception rather than the ~ule. In particular, if the coefficient 
cx(x) is bounded the minimal solution is strictly stochastic, that is, 

(3.12) t> O. 

Indeed, if cx(x) < a < 00 for all x we show by induction that 

.(3.13) 
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for all nand t > O. This is trivially true for n = O. Assume (3.12) for 
some n, and note that the right side is a decreasing function, say J(t). 
Consider (3.7) with r = Q. In consequence of (3.13) the inner integral is 
'C,f(t) which does not depend on the variable of integration. Integrating 
ex(x)e-a:\x)s it is then seen that (3.13) holds with n replaced by n + 1. 

Finally we note that in the strictly stochastic case (3.12) the solution Q~CX) 

is unique. In fact, because of the minimal character of Q~CX) any otheJ 
acceptable solution would satisfy 

1 > Qt(x, Q) = Qt(x, r) + Qt(x, Q - r) 
(3.14) > Q~CX)(x, r) + Q~CX)(x, n - r) = Q~CX)(x, Q) = 1 

which is impossible unless the equality sign prevails in both places. We have 
thus proved the 

Theorem. The backward equations admit of a minimal solution Q~CX) 

defined by (3.8) and corresponding to a process in H'h~ch transitions from x to 
r occur only with finitely many jumps. It is stochastic or substochastic. 

In the substochastic case the defect 1 - Q~ OO)(x, Q) accounts for the prob
ability of the event that infinitely many jumps occur within time t, in which 
caSe the minimal process terminates. 

In the strictly stochastic case (3.12) the minimal solution is the unique 
probabilistic solution of the backward equation. This case arises ~i'henever' the 
coefficient a(x) is bounded. 

The discovery of defective solutions came as a shocking surprise during 
the early stages of the theory in the 1930's, but it has given impetus to 
research leading to a unified theory of Markov processes. Processes in which 
transitions from x to r are possible after the occurrence of infinitely many 
jumps are the analogue to diffusion processes with boundary conditions 
and therefore not as pathological as they appeared at the beginning. The 
possibility of infinitely many jumps also explains the difficulties in deriving 
the forward equations directly.9 The backward equations were derived from 
the assumption that, given the present state x, the next jump occurs after an 
exponentially distributed waiting time with expectation l/ex(x). The forward 
equations depend on the state just prior to epoch t, and therefore depend 
on the whole space Q. In particular, it is not easy to express directly the 
requirement that there exist a last jump prior to epoch t. 

However, itwiII be shown in the Appendix that th.e minimal solution Q~_CX) 
automatically satisfies the forward equations and is minimal also for the latter. 
It follows, in particular, that if ex is bounded, Q~ CO) represents the unique 

9 Compare the analogous discussion in 1; XVII,9. 
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solution of the forward equation. When Q~ CO) is substochastic there exist 
various processes involving transitions through infinitely many jumps and 
satisfying the backward equations. The transition probabilities Qt of such 
processes may, but need not, satisfy the forward equations. This surprising 
fact shows that the forward equations may be satisfied in situations where 
the derivation from (3.4) breaks down. 

J n conclusion we note again that (in contrast to the process in section 2 
and to diffusion processes involving derivatives with respect to x) the pure 
jump process does not depend on the nature of the underlying space: OUf 

formulas apply to any set n on which a stochastic kernel K is defined. 

Example. Denumerable sample spaces. If the random variables X(t) 
are positive and integral-valued the underlying sample spac~ consists of 
the integers 1, 2, . . .. It suffices now to know the transition probabilities 
Pik(t) from one integer to another; all other transition probabilities are 
obtained by summation over k. The theory of Markovian processes on the 
integers was outlined in 1; XVII,9 where, however, also non-statiollary 
transition probabilities were considered. To restrict that theory to the 
stationary case the coefficients Ci and probabilities Pik must be assumed 
independent of t.' The assumptions are then identical with the present one~ 
and the two systems of KOlinogorov equations derived in 1; XVII,9 are 
easily seen to be the special cases of (3.2) and (3.5) [replacing !XU) by ci 

and K(i,j) by Pi;]' The divergent birth process of 1; XVII,4 is an example 
of a process with, infinitely many jumps within a finite time interval. We 
shall return to this process in XIV,7 to present the possibility of a passage 
from i to j involving infinitely many jumps. ~ 

Appendix.1o The minimal solution for the forward equation. The cpnstr'uction of the minimal 
solution Q~oo) for the backward equation can be adapted to the forward equation. We 
indicate briefly how this can be done and how one can verify that the two solutions are 
in fact identical. Details will be left to the reader. 

Let 

(3.15) 

To construct a solution of the forward equation we define Q~O) by (3.6) and put 
t 

(3.16) Q~n+l) (x, r) = Q~O)(x, r) + II Q~~~(x, dy) cx(y) Ks#(Y, r). 

o 

10 In XIV, 7 the, theory is developed by means of Laplace transforms. (For simplicity 
only countable spaces are treated, but the argument applies generally without essential 
change.) The direct method of the text is less elegant, but has the advantage that it applies 
also to non-stationary processes with transition probabilities depending on the time param
eter. In this general form the theory was developed by Feller, Trans. Amer. Math. Soc. 
vol. 48 (1940) pp. 488-51'5 [erratum vol. 58, p. 474]. 
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This defines the probabilities for transitions in at most n + 1 steps in terms of the last 
jump, just as (3.7) refers to the first jump. Repeating the proof of the last theorem it is 
seen that Q~co) = lim Q~n) is the minimal solution of the forward equations . 
. Although we used the same letters, the two recursion formulas (3.7) and (3.16) are 
independent, and it is by no means clear that the resulting kerrreis are identical. To show 
that this is so we put p~n) = Q~n) - Q~n-ll, which corresponds to transitions in exactly 
n steps. Then (3.16) reduces to 

t 

(3.17) pln+l'(x, r) . ffpl~!(x, dy) ~(y) K!tJt, r). 

o 

We indicate this by the shorthand notation p~n+l) = p~n)~. For the recursion formula 
(3.7) we write similarly p~n+l) = !Bp~n). The starting p~O) is the same in either case 
[defined by (3.6)]. We now prove that the two recursion formulas lead to the same result. 
More precisely: the p:n) defined by p~n""l) = p~n)~ satisfy also p~n+l) = ~p!n). We 
proceed by induction. Assume the assertion to be true for all n ~ r. Then 

p:r+l) = p~r)~ = (!Bp:r-ll)~ = !B(P~r-ll~) = !Bp~r) 

and thus the induction hypothesis holds also for n = r + 1. 
We have thus proved that the minimal solution is common to the backward and forward 

equations. 

4. DIFFUSION PROCESSES IN :IV 

Having considered processes in which all changes occur .by jumps we turn 
to the other extreme where the sample functions are (with probability 
one) continuous. Their theory is parallel t6 that developt!d in the last 
section, but the basic equations require more sophisticated analysis. We 
shall therefore be satisfied with a derivation of the backward equation and 
with a brief summary concerning the minimal solution and other problems. 
The prototype for diffu~ion processes is the. Brownian motion (or Wiener 
process). This is the process with independent normally distributed incre
ments. Its transition probabilities have densities qt(z, y) given by the normal 
density with expectation x and variance at, where a > 0 is a constant. 
These densities satisfy the standard diffusion equation, 

aqix, y) 1 a2Qt(x, y) - - a --::~;...;;;...; at - 2 az2 ' 
(4.1) 

I t will now be shown that other transition probabilities are governed by 
related partial differential equations. The obj~ct of this derivation is merely 
to give an idea concerning the types of processes and the problems involved 
and thus to serve as a first introduction; for this reason we shall not strive at 
generality or completeness. 

From the nature of the normal distribution it is evident that in Brownian 
motion the increments during a short time interval of duration t have the 
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fo~lowing properties: (i) for fixed <5 > 0 the probability of a displacement 
exceeding <5 :is o(t); (ii) the expected value of the displacement is zero; 
(iii) its variance is at. We retain the first condition, but adapt the others 
to an inhomogeneous medium; that 'is, we let a depend on x and permit a 
non-zero mean displacement. Under such circumstances the expectation 
and the variance of the displacement will not be strictly proportional to 
t and we can postulate only that given X(,) = x the displacement 
X(t+,) - X(,) has an expectation b(x)t + oCt) and variance a(x) + o(t). 
Moments do not necessarily exist, but in view of the first condition it is 
natural to consider truncated moments. These considerations lead us to the 
following 

Postulatesll for the transition probabilities Qt. For every <5 > 0 as t -+ 0 

(4.2) t-1 r Qt(x, dy) ~ 0 
J/V-Z/~6 

(4.3) t-1 r (y-x)Qt(x, dy) -+ b(x) 
J/v-zl <6 

(4.4) t-1 r (Y-X)2Qt(X, dy) -+ a(x). 
J'tI-Z/ <6- . 

Note that if (4.2) holds for all <5 > 0, the asymptotic behavior of the 
quantities in (4.3) and (4.4) is independent of <5; it is then permissible in 
the last two relations to replace <5 by 1. 

The first condition makes large displacements improbable and was 
introduced in 1936 in the hope that it is necessary and sufficient for the 
continuity of the sample functions.12 It was named in honor of Lindeberg 
because of its similarity to his condition in the central limit theorem. It can 
be shown that under mild regularity conditions ori the transition probabilities 
the existence of the limits in (4.3) and (4.4) is really a consequence of (4.2)~ 
We shall not discuss such details because we are not at this juncture interested 
in developing a systematic-theory.13 Our modest aim is to explain the nature 

11 The original derivation of (4.1) from probabilistic assumptions is due to Einstein. 
The first systematic derivation of the backward equation (4.6) and forward equation (5.2) 
was given in Kolmogor.ov's famous paper of 1931 (see section 2). The improved postulates 
of the text are due to Feller (1936), who gave the first existence proof and investigated the 
relation between the two equations. 

12 This conjecture was verified by D. Ray. 
13 Modem semi-group theory enabled the author to derive the most general backward 

equation (generator) for Markov processes satisfying a Lindeberg type condition. The 
classical differential operators are replaced by a modernized version, in which a "natural 
scale" takes over the role of the coefficient b) and a "speed measure" the role of a. The 
study of such processes was the object of fruitful research by E. B. Dynkin and his school on 
one hand, by K. Ito and H. P. McKean on' the other. The whoie theory is developed 
in the books by these authors quoted in the bibliography. 
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and the empirical meaning of the diffusion equations in the simplest situation. 
For this purpose we show how certain differential equations can be derived 
formally from (4.2)-(4.4), but we shall not discuss under what conditions 
there exist solutions to these equations.H The coefficients a and b may be 
therefore assumed as bOUllded continuous functions and a(x) > O. 

We take as our basic space a finite or infinite interval I on the line and 
continue the convention that when no limits are indicated, the integration 
is over the interval I. To simplify writing and to prepare for the applications 
of semi-group theory we introduce the transformations. 

(4.5) u(t, x) = J Qt(x, dy) uoCy) 

changing (for fixed t) a bounded continuous "initial function" Uo into a 
function 15 with values u(t, x). 

Clearly the knowledge of the left side in (4.5) for all initial Uo uniquely 
determines Qt. It will now be shown that under mild regularity conditions 
u must satisfy the backward equation 

(4.6) 

generalizing the standard diffusion equation (4.1). We seek a function u 
satisfying it and such that u(t, x) -+ uo(x) as t -+ O. In case of uniqueness 
this s0lution is necessarily of the form (4.5) and Qt is called the Green 
function of the equation. Cases of non-uniqueness will be discussed in the 
next section. 

To derive the backward equation (4.6) we start from the identity 

(4.7) u(s+t, x) = J Q'(x, dy) u(t, y), S, t > 0 

which is an immediate consequence of the Chapman-Kolmogorov equation 
(1.3). From it we get for h > 0 

(4.8) u(l+h, x)-u.(t, x) =! JQh(X, dy)[u(t, y)-u(t, x)]. 
h h 

We now suppose that the transition probabilities Qt are sufficiently regular 
to ensure that in (4.5) the transform u has two bounded contjnuous deriva
tives with respect to x, at least when Uo is ir;finitely differentiable. To given 

14 For the treatment of diffusion equations by Laplace transforms see XlV,5. 
15 In terms of the stochastic process; u(t, x) is the conditional expectation of uo(X(t» 

pn the hypothesis that X(O) = x. 
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€ > 0 and fixed x there corresponds then by Taylor's form11Ja a 0 > 0 
such that 

(4.9) 

ou(t, x) 2 02U(t, x) 
u(t, y) - u(t, x) - (y-x) ax - !(y-x) ox2 < € ly-xl 2 

for all Iy - xl < o. With this ~ consider in (4.8) separately the contribu
tions ~f the domains Iy - xl > 0 and Iy - xl <0. The former tends to 
o in consequence of (4-.2) and of the boundedness of u. Owing to the 
conditions (4.3) and (4.4) it is clear from' (4.9) that for sufficiently small. h 
the c'ontribution of Iy - xl ~ 0 differs from the right.side in (4.6) by less 
than € '. a(x). Since € is arbitrary, this means that as h -+ b the right side 
in (4.8) tends to that of (4.6). Accordingly, at least a right-sided derivative 
au/at exists and is given by (4.6). The principal result of the theory may be 
summarized roughly as follows. If the transition probabilities of a 111arkov 
process satisfy the continuity condition (4.2) the process is determined by ihe 
two coefficients band a. This sounds theoretical, but in practical situations 
the coefficients band q are given a priori from thei'r empirical meaning and 
the nature of the 'process. 

To explain the meaning of b and a consider the increment X(t+T) - X(T) 
over a short time interval assuming that X(T) = z. If the moments in (4.3) 
and (4.4) were complete, this increment would have the conditional expecta
tion b(x)t + oCt) and the conditional variance a(x)t - b2(x)t 2 + o(t) = 
= a(x)t + oCt). Thus b(x) is a measure for the local average rate of 
displacement (which may be zero for reasons of symmetry), and a(x) for the 
variance. For want of a better word we shall refer to b as the infinitesimal 
velocity (or drift) and a as the infinitesimal variance. 

The following examples illustrate the way in which these coefficients are 
determined in concrete situations. 

Examples. (a) Brownian motion .. If the x-axis is assumed homogeneous 
and symmetric, a(x) ffi:ust be independent of x and b(x) must vanish. We 
are thus led to the classica~ diffusion equation (4.1)., 

(b) The Ornstein-Uhlenbeck process is obtained by subjecting the particles 
of a Brownian motion to an elastic force. A~alytically this means a drift 
towards the origin of a magnitude proportional to the distance, that is, 
b(x) = px. As this doe~ not affect the infinitesimal variance, a(x) remains 
a constant, say I. The backward equation takes nn the form 

u(t, x) 1 02U(t, x) ou(t, x) 
= - - px . 

at 2 ox2 ax 
( 4.10) 
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It is fortunately easy to solve this equation. Indeed, the change of variables 

reduces it to 
vet, x) = u(t, xeP t

) 

(4.11) e2pt ov = ! 02V 
'ot 20X2 

and the further change of variables 

(4.12) 
1 - e-2pt 

T=---
2p 

c~anges (4.II) jnto the standard diffusion equation (4.0. It follows that 
the transition densities qt(x, y) of the Ornstein-Uhlenbeck process coincide 
with th~ normal density centered at xe-pt and with variam;e T given by (4. t2). 

It was shown in example nI,8(e) that the Ornstein~Uh1enbeck process 
determined by (4.10) and an initial normal distribution is the only normal 
Markovian process with stationary transition probabilities. (Brownian 
motion is included as the special case p = 0.) , 

(c) Diffusion in genetics. Consider a population with distinct generations 
and a constant size' N. (A cornfield represents a typical example.) There 
are 2N genes and each belongs to one of two genotypes. We denote by 
Xn the proportion of genes of type A. 'If selection advantages and mutations 
are disregarded, the genes in the (n+ I)st generation may be taken as a random 
sample of size 2N of the genes in the nth' generation. The Xn process is 
then Markovian, 0 < Xn < I, and given that Xn = x the distribution of 
2NXn+l is binomial with mean 2Nx and variance 2Nx(1 -x). The ~hange 
per generation has expectation 0 and variance proportional to x(1 -x). 

Suppose now that we look ov~r a tremendous number of generations and 
introduce a time scale on which the development appears continuous. 
In this approximation we deal with a Markov process whose transition 
probabilities satisfy our basic conditions with b(x) = 0 and a(x) pro'por
tional to x(l - x). The proportionality factor depends on the unit of time 
scale and may be norma~ized to I. Then (4.6) takes on the form 

(4.13) 
ou(t, x) = x(I _ x) 02U(t, x) 

ot ox2 

and this time the process is restricted to the finite interval 0, 1. Selection 
and mutation pressures would cause a drift and lead to an equation (4.13) 
with a first-order term added. The resulting model is mathematically 
equivalent to the models developed by R. A. Fisher. and S. Wrig~t although 
their ,arguments were of a different nature. The genetical implications are 
somewhat dubious because of the assumption of Constant population size, 
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the effect of which is not generally appreciafed. The correct description15 

depends on an equation in two space variables (gene frequency and population 
size). 

(d) Population growth. We wish to describethe growth of a large population 
in which the individuals are stochastically independent and the reproduction 
rate does not depend on the population siz~. For a very large population the 
process is approximately continuous, that is, governed by a diffusion 
equation. The independence of the individuals implies that the infinitesimal 
velocity and variance must be proportional to the population size. Thus the 
process is governed by the backward equation (4.6} with a'= (XX and b = {lx. 
The constants . rx and {l depend on the choice of the units of time and 
population size, and with appropriate units of measurement it is possible to 
achieve that rx = I and {l = I, - I, or 0 (depending on the net rate of 
growth). 

In 1; XVJI,(S.7) the same population growth is described by a discrete 
model. Given X(T) = n it was assumed that the probabilities of the 
contingencies X(t+T) = n+l, n-I, and n differ from· Ant, p,nt, and 
1 - (A+ p,)nt, respectively, by terms 0(t 2),. and'so the infinitesimal velocity 
and variance are (A-p,)n and. (A+p.)n. The diffu·sion process is obtained 
by a simple passage to the limit, and it can be shown that its transition 
probabilities represent the limit of the transition probabilities for the discrete 
model. 

Similar approximations of discrete processes by diffusion processes are 
often practical; the passage from ordinary random· walks to diffusion 
processes described in 1; XIV,6 provides a typical example. [Continued 
in example S(a).] ~ 

5. THE FORWARD EQUATION. BOUNDARY CONDITIONS 

In this section we assume for simplicity that the transition probabilities 
Q t have probability densities q t given oy a stochastic density kernel 
q t(x, y). 

The transformation (4.S) and the ensuing backward equation (4,6) describe 
the transition probabilities in their dependence on the initial point x. From 
a probabilistic point of view it appears more natural to keep the initial point 
x fixed and to consider q t(x, y) as a function of t4e terminal point y. 
From this point of view the transformation (4.5) should be replaced by , 

(5.l) 

15 W. Feller, Proc. Second Berkeley Symposium on Math. Statist. and Probability, 
1951, pp. 227-246. 
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Here Vo is an arbitrary probability density. From the stochastic character 
of qs it follows that for arbitrary fixed s > 0 the transform v is again a 
probability density. In other words~ whereas the transformation (4.5) 
operated on continuous functions, the new transformation changes probability 
densities into new densities. 

In the preceding section we were able by probabilistic arguments to show 
that the transform (4.5) satisfies the backward equation (4.6). Even though 
the new transformation is more natural from a probabilistic point of view, 
a similar direct derivation of the forward equation is impossible. However, 
the general theory of adjoint partial differential equations make it plausible 
that (under sufficient regularity conditions) v should satisfy the equation17 

ov(s, y) 1 02 . 0 
::! = - -0· 2 [a(y) v(s, y)] - - [b(y) v(s, y)]. 
uS 2 y oy 

(5.2) 

17 Here is an informal sketch of the derivation of (5.2). From the Chapman-Ko!omogorov 
equation (1.3) for the transition probabi-lities it follows that 

fF(S, y) u(t, y) dy 

depends only on the sum s + t. Accordingly, 

f ih:(s, y) f ou(t, y) 
(*) os u(t, y) dy = L{5.I'~) ot dy. 

We now express OU/OI in accordance with the backward equation (4.6) and apply the 
obvious integrations by p~rts to the resulting integral. If R(s, y) stands for the right 
side in (5.2) we conclude that (*) equals 

f R(s, YI u(t,y) dy 

plus a quantity depending only on the values of u, v and their derivatives at the boundaries 
(or at infinity). Under appropriate conditions these boundary terms may be neglected, 
and in this case the passage to the limit t -+ 0 leads to tht identity 

J [
OV(S, Y) ] 

os - R(s. y) uo(y) dy. 

If this is to be valid for arbitrary Uo the ex.pression within brackets must vanish, that is 
(5.2) must hold. 

This argument is justified in most situations of practical interest and accordingly the 
forward equation (5.2) is generally valid. However, in the so-called return processes the 
boundary terms which we have neglected actually playa role. The transition probabilities 
of such processes therefore satisfy the backwa.rd equation (4.6), but not (5.2); the correct 
forward equation i!; in this case an equation of a different form. 

It is also noteworthy that (5.2) is meaningless unless a and b are differentiable whereas 
no such restriction applies to the backward equation. The true forward equation can be 
written down also when a and b are not differentiable, but it involves the generalized 
differential operators mentioned in footnote 13 of section 4. 
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In probability theory this equation is known as the forward or Fokker-Planck 
equation. 

Before proceeding let us illustrate the kind of information that can be 
derived from (5.2) more easily than from the backward equation. 

Example. (a) Population growth. Example '4(d) leads to the forward 
equation 

(5.3) 
ov(s, y) _ o2y v(s, Y) R oy v(s, y) 

- 0( - t. • 
;;s dy2 oy 

It can be proved that for a given initial density Vo there exists a unique 
solution. Although explicit formulas are hard to come by, much relevant 
information can be obtained directly from the equation. For example, to 
calculate the expected population size . .. !\tl(s) multiply (5.3) by y and 
integrate with respect to y from 0 to 00. On the left we get the derivative 
M' (s). Using integration by parts and assuming that v vanishes at infinity 
faster than l/y2 it is seen th3.t the right side equals (lM(s). Thus 

. Af'(s) = (JA/(s) 

and hence M(s) is proportional to ePs• Similar formal manipulations show 
that the variance is proportional to 2ot{J-IePS(ePS -1). [Compare the analogous 
result in the discrete case, formulas (5.10) and (to.9) of 1; XV[[.] Admittedly 
the manipulations require justification, but the result has at least heuristic 
value and could not be obtained from the backward equation without 
explicit calculation of q t. ~ 

The connection between the forward and backward equations is similar to 
that described in the case of jump processes in se'.:ti\.Hl 3. \Ve give a brief 
summary without proof. 

Consider the backward equation (4.6) in an open interval Xl' x 2 which 
may be finite or infinite. We assume, of course,'la > 0 and that the co
efficients a and· b are sufficiently regular for (5.2) to make sense. Under 
these conditions there exists a unique minimal solurion Q t such that (4.5) 
yields a solution of the backward ~quation (4.6). The catch is that for fixed 
t and X the kernel Q (x, r) may represent a defective distribUTion. Under 
any circumstances Qt' possesses densities and the function l' of (5.1) 

satisfies the forward equation. [n fact, this solution is again minimal in the 
obviolls sense made precise in section 3. To ·this extent the forward ~quation 
is a consequence of the backward equation. However, these equations deter
mine the process uniquely only when the minimal solution is not defective. 
In all other cases the nature of the process is determined by additio!1al 
boundary conditions. 

The nature of boundary conditions is best understood by analogy with 
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the simple random walk on 0, 00 discussed in 1; XIV. Various conventions 
can be in effect when the origin is reached for the first time. In the ruin 
problem the pro(;ess stops; in this case the origin is said to act as an absorbing 
barrier. On the other hand, when the origin acts as reflecting barrier, the 
par.ticle is returned instantaneously to the positio'n I and the process 
continues forever. The point is that boundary conditions appear iff a 
boundary point can be reached. The event "the boundary point X 2 has 
been reached before epoch t" is w~ll defined in diffusion processes because 
of the continuity of the path functions. It is closely related to the event 
"infinitely many jumps have occurred

g 
before t" in jump processes. 

In some diffusion processes with. probability one no boundary point 
is ever reached. Such is the Brownian motion [example 4(a)]. Then the 
minimal solution stands for a proper probability distribution and no other 
-solutions exist. In all other situations the minimal solution regulates the 
process until" a boundary is reached. It corresponds to absorbing barriers, 
that is, it describes a process that stops wheri a boundary point is reached. 
This is the most important type of process not only because all other 
processes are ~xtensions of it, but even more because all. first-passage 
probabilities can be calculated by imposing "artificial absorbing barriers. 
The method is generally applicable. but will be explained by" the simplest 
example .. (It was used implicitly in random walks and elsewhere, for ex;ample 
in problem 18 of 1; XVII,IO.) " 

In the following examples we limit our attention to the simple equation 
(5.4). M-ore general diffuGion equations will be treated by the method of 
Laplace transforms in XIV,S. 

Examples. (b) One absorbing barrier. First-passage times. Consider 

Brownian motion on 0,. 00 with an absorbing barrier at the origin. More 
precisely, a Brownian motion starting at the point x > 0 at epoch 0 is 
stopped at the epoch of the first arrival at the origin. Because of symmetry 
both the backward and the forward equation take on the form of the classical 
diffusion equation 

(5.4) 
au 1 a2u ----at 2 ox2 • 

The appropriate boundary condition is q t(O, y) = 0 for all t;" just as in the 
case of random walks." (The assertion can be justified either by the passage 
to the limit in 1; XIV,6 or frow the minimal character of -the solution.) 

For a given Uo we seek a solution of (5.4) defined for t > 0, x. > 0 and 
such that u(O, x) = uo(x) and u(t, 0) = O. Its construction depends on 
the method of images due to Lord Kelvin. Is We extend Uo to the left hal.f
line by uo( -x) = -uo(x) and' solve (5.4) with this initial condition In 

18 See problem 15-18 in 1; XIV,9 for the same method applied to difference equations. 
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- 00, 00. For reasons of symmetry the solution satisfies the condition 

u(t, 0) = 0, and restricting x again to' 0, 00 we have the desired solution. 

It is given by the integral of uo(y) q t(x, y) over 0, 00 where 

(5.5) q,(x, y) = .J~1TJexp (- (Y~tX)') - exp ( - (Y:
t
X)2) 1 

Thus qt represents the transition densities of our process (t > 0, x > 0, 
y > 0). It is easily seen that q t is, for fixed y, a solution (5.4) satisfying the 
boundary condition qt(O, y) = O. [For a more systematic derivation see 
example XIV,5(a).] 

Integrating over y oh~ gets the total probability mass at epoch t 

(5.6) f.oo qt(x, y) dy = 2'R(xl.,J;) - 1, 

where 91 stands for the standard normal distribution. In other words, 
(5.6) is the probability that a path starting from x > 0 does not reach the 
origin" before epoch t. In this sense (5.6) represents the distribution of 
first-passage times in a free Brownian motion. Note that (5.6) may be charac': 
terized as the solution of the differential equation (5.4) defined' for x> 0 
and satisfying the initial condition u(O, x) = 1 together with the boundary 
condition u(t, 0) = O. 

[One recognizes in (5.6) the stable distribution with exponent rx = t; 
the same result was found in VI,2 by a passage to the limit from random 
walks.] 

(c) Two apsorbing barriers. Consider now a Brownian motion impeded 
by two absorbing barriers at 0 and a > O. This means 'that for fixed 
o < y < a the transition densities qt should satisfy the differential equation 
(5.4) together with the boundary conditions qt(O, y) = qt(a, y) = O. 

It is easily verified that the solution is given by19 

qt(x, y) = 

1 ~ ( (y-x+2ka)2) ( , (y+x+2ka)2) l = -=,L. exp - - exp -
-J27Tt k=-oo 2t ,,2t 

(5.7) 

where 0 < x, y < a. Indeed, the series is manifestly convergent, and the 
obvious cancellation of terms shows that qt(O, y) = qt(a, y) = 0 for all 
t > 0 and 0 < y < a. [The Laplace transform of (5.7) is given in XIV,(5.l7).] 

19 The construction depends on successive approximations by repeated reflections. In 
(5.5) we have a solution of the differential equation satisfying the boundary condition at 
0, but not a. A. reflection at a leads to a four-tenn solution satisfying the boundary 
condition at a, but not at O. Alternating reflections at 0 and a lead in the limit to (5.7). 
The ana!ogous solution for random walks is given in 1; XIV,(9.1), and (5.7) could be 
dc:rived from it by the passage to the limit described in 1; XIV,6. 
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Integrating (5.7) over 0 < y < a we get the total probability mass at 
epoch t in the form 

(5.8) "a(t, x) = ~ (91(2ka + a - X) _ m(2ka -=- X) 
k=-oo . .J t .J t 

_ meka ~; + X) + mCk~; X) ). 

This is the probability that a particle starting at X will not be absorbed 
before epoch t. 

The functionAa is a solution of the diffusion equation (5.4) tehding to 1 
as t ~ 0 and satisfying the boundary conditions Aa(t,O) = Aa(t, a) = O. 
This solution can be obtained also by a routine application of the method of 
Fourier series in the forrn20 

(5 9) A (t' ) 4 ~ 1 (2n+l)27T2). (2n+l)7Tx 
. Aa, x = - k . exp - t . sm . 

7T n=O 2n + 1 2a2 a 

We have thus obtained two very different representations21 for the same 
func~ion Aa. This is fortunate because the series in (5.8) converges reasonably 
only when t is' small, whereas (5.9) is applicable for large t. 

For an alternative interpretation of Aa consider the position X(t) of a 
particle in free Brownian motion starting at the origin. To say that during 

the time interval 0, t the particle remained within -la, la amounts to 
.saying that in a process with absorbing barriers at ±la and starting at 0 
no absorption took place before epoch t. Thus Aa(t, la) equals the prob
ability that in an unrestricted BrQHmian motion starting at the origin I X(s)1 < ia 
for all s in the intervaf 0 < s < t. 

(d) Application to . limit theorems and Kolmogorov-Smirnov tests.' Let 
. Yb Y2 , • .• be independent random variables wi~h a common distribution 
and suppose th~t E(Y;) = 0 and E(Y;) = 1. Put Sn = Y 1 + ... + Y n 

and Tn ~ max [lSll, ... ,ISnl]. In view of the central limit theorem it is 
plausible that the asymptotic behavior of Tn will be nearly the same as 
ih the case where the. Y; are normal variables, and in the latter case the 

normed sum Skl.J~ is comparable to the variable of a Brownian motion 

20 The analogous formula for random walks is derived in 1; XIV,5 where, however, 
the boundary conditions are Aa(t,O) = 1 and Aa(t, a) =0. 

21 The identity between (5.8) and (5:'9) serves as a standard example for the poisson 
summ~tion formula [see XIX,(5.1O)). It has acquired historical luster, having been dis
covered originally in connection with Jacobi's theory of transformations of thf':ta functions. 
See Satz 277 in E. Landau, Verteilung der Primzahlen, 1909. 
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at epoch kin (k = 0, 1, ... , n). The probability that this Brownian motion 
remains constrained to the interval (-ia, l-a) was shown to equal Aa(l, l-a). 
Our plausibility argument would therefore lead us to the conjecture that as 
n-- 00 

(5.10) P{Tn < z} -- L(z) 

where L(z) = A2z(l, z) is obtained from (5.8) and (5.9): 

<Xl 

L(z) = 2 :2 {91«4k+ l)z) - 91«4k-l)z)} = 

(5.11) 
k=-<Xl 

This conjecture was proved in 1946 by P. Erdos and M. Kac, and the 
underlying idea has since become known as in variance principle. It states, 
roughly speaking, that the asymptotic distribution of certain functions of 
random variables is insensitive to changes of the distributions of these 
variables and may be obtained by considering an appropriate approximating 
stochastic process. This method has been perfected by M. Donsker, P. 
Billingsley, Yu. V. P Ih ...... ov, and others, and has become a powerful tool 
for proving limit theOI~u:'~. 

For similar reasons the distribution (5.11) plays a prominent part also in 
the vast literature on non-parametric tests of the type discussed in 1,12.22 

(e) Reflecting barriers. By analogy with the ordinary ra1).dom walk we 

d fi fl · b' h' . b h b d d' . oqtCO, y) e ne a re ecttng arrIer at t e OrIgtn y t e oun ary con It10n oy = 

= 0 for a reflecting barrier at the origin is imposed by analogy with random 

walks. It is readily verified that the solution for the interval 0, 00 is given by 
(5.5) with the minus sign replaced by plus. The formal derivation by the 
method of images is the same, except that one puts uo( -x) = uo(x). The 

solution for 0, a with reflecting barriers at both 0 and a is obtained 
similarly by changing the. minus sign to a plus in (5.7). (An alternative 
expression obtained by Fourier expansions or the Poisson summation 
formula is given in problem 11 of XIX,9.) 

It should be noted that in the case of reflecting barriers q t is a proper 
probability density. ~ 

22 The topic is relatively new, and yet the starting point of the much used identity (5.! 1) 
seems already to have fallen into oblivion. [A. Renyi, On the distribution function L(z). 
Selected Translations in Math. Statist. and Probability, vol. 4 (1963) pp. 219-224. Renyi's 
supposedly new proof depends on the classical argument involving theta functions, thus 
obscuring the simple probabilistic meaning of (5.11).] 
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", '6. DIFFUSION IN HIGHER DIMENSIONS 

It is easy to generalize the foregoing theory to two dimensions. To avoid 
the nuisance of subscripts we denote the coordinate variables by (X(t), yet»~ 
and the values of the transition' densities by qe<x, y; ~,17); here x, y is the 
initial point and q t is a density in (~, 17). The postulates are as in section, 
4 except that the infinitesimal velocity b(x) is replaced by a vector, and the 
variance a(x) by a covariance matrix: Instead, of (4.6) we get for the 
backward diffusion equation 

au 02U' a2u' a2u au' au· 
_. = all - + 2a12 a a + a22 a2 + bl -a' + b2 -a ' at· . a x2 x '!t y . x y 

(6.1) . 

the coefficients depending on x and y. In the case of two-dimensional 
Brownian motion we requir~ rotation~l symmetry, and up to, an irrelevant 
nor,ming cons~ant we must have 

(6.2) 

The corresponding transition densities are normal with variance t, centered 
at (x, y) .. The obvious factoring of this'density shows that X(t) and yet) 
are stochastically independent. , 

The most jnteresting variable in this process is the distance R(t) from 
the origin(R2 = X2 + y2). It is intuitively obvious that R(t) is the 
variable of'a one-dimensional diffusion process and It is interesting to 
co~pare the various ways of getting at the diffusion equation for this process. 
In polar coordinates our normal transition densities for (6.2) take on the form 

(6.3) 
P (P

2 + r2 - 2pr cos (O-ct.») -exp -
27ft' , 2t . 

(with x = r cos ct., etc.). Given the position r, ct. at epoch 0, the marginal 
density of R(t), is obtained by integrating (6.3) with respect to O. The 
parameter ct. drops out and we get23 for the transiiion densities of the R(t) 
process 

(6.4) 1 (r2 + p2) (rp) 
wt(r, p) =; exp - 2t 10 t 

where 10 is the Bessel function defined in 11,(7.1). Here r stands for Jhe 
initial position at epoch O. From the derivation it is clear that for fixed p the 

23 The integral is well known. For a routine verification expand &086 into a power 
series in cos O. 
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with a variety of other distributio'ns, each of which leads to an analogue of 
the exponential formula. .. 

The variables X(T(t» form a new stochastic process which need not be 
"Markovian. For the process to be Markovian it is obviously necessary that 
the P t satisfy the Chapman-Kolmogorov equation 

(7.3) Ps+tCx, r) = f_+'X)'X) Pix, dy) Ply, r). 

This means that the distribu.tion of X'lTCt+s) is obtained by integration of 
P f(Y' r) with respect to the distribution of X(T(s» and so 

(7.4) Pt(y, r) = P{X(T(t+s)) E 1'1 X(T(s») = y} 

by the definition of conditional probabilities. A similar calculation of higher 
order transition probabilities shows that (7.3) suffices to ensure the Markovian 
character of the derived process {X(T(t))}. 

Vie wish now to find the distributions U t that lead to solutions P t of 
(7.3). A direct attack on this problem leads to considerable difficulties, bl!t 
these can be avoided by first considering the simple special case where the 
variables T(t) are restricted to the multiples of a fixed number h > O. For 
the distribution of T(t) we write 

(7.5) P{T(t) = nh} = an(t). 

Given that X(O) = x the variable X(T(t)) has the distribution 

'X) 

(7.6) Plx, r) = 2 ak(t) Qkh(X, r). 
k=O 

Since the kernels {Q t} satisfy the Chapman-Kolmogorov equatio.n we have 

(7.7) f:: P,(x, dy) P,(y, r) = t. a;(s) ak(.t) . Q(j+kllix , r) 

and it is seen that the kernels P t satisfy the Chapman-Kolmogorov equation 
(7.3) iff 

(7.8) Go(s) an(t) + aleS) an-let) + ... + dn(s) ao(t) = an(s+t) 

for all s > 0 and t > O. This relation holds if {T(t)} is a process wiih 
stationary independent increments, and the most general solution of (7.8) 
was found in 1; XH,2. 

This result leads to the conjecture that in general (7.3) will be satisfied 
whenever the T(t) are the variables of a process with stationary independent 
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increments, that is, whenever the di~tributions U t satisfy24 

UH-s(x) =J,:r:VlX - Y) Vt[dy}, 
0-

(7.9) 

We verify this conjecture by a passage to the limit. 25 We represent V t as the 
limit of a sequence of arithmetic distributions of the type just l:onsidered: 
U: V

) is concentrated on the multiples of a number hv, and the weights that it 
attaches to the points nhv satisfy a relation of the form (7.8). For each 11 

we get thus a kernel P:,") corresponding to (7.6) that satisfies the Chapman
Kolmogorov equation (7.3). To show that also the kernel P t of (7.1) 
satisfies this equation it suffices the'fefore to show that P: V

) -- P t, or, what 
amounts to the same, that 

(7.10) 

for every continuous function f-OC> vanishing at infinity. If we put 

(7.11) f
+OC> 

F(t, x) = -OC> Qt(x, dy) fey) 

(7.10) may be rewritten in the form 

(7.12) f F(s, x) U!"{ds} -+ fF(S, x) U,{ds}. 

This relation holds certainly if F is continuous, and this imposes only an 
extremely mild regularity condition on the Qt. We have thus proved the 
following basic result: 

Let {X(t)} be a Markov process with con.tinuous transition probabilities 
Q t and {T(t)} a process with non-negative independent increments. Then 
{X(T(t»)} is a Markovian process with transition probabilities P t given by 
(7.7). This process is said to be subordinate26 to {XC t)} using the operational 
time T(t). The process {T(t)} is called the directing process. 

The most interesting special case arises when also the X{t) process has 
independent increments. In this case the transition probabilities depend only 
on the differences r - x and may be replaced by the equivalent distribution 

24 The most general solution of (7.9) will be found by means of Laplace transforms in 
XIII,7. It cart be obtained also from the general theory of infinitely divisible distributions. 

25 A direct veri,fication requires analytic skill. Our procedure shows once again that a 
naive approach is sometimes most powerful. 

26 The notion of subordinated semi-groups was introduced by S. Bochner in 1949. For a 
high-level systematic approach see E. Nelson, A functional calculus using singular Laplace 
integrals, Trans. Amer. Math. Soc., 88 (1958), pp.,400-413. 
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functions. Then (7.7) takes on the simpler form 

(7.13) Pt(x) = f.ex) Qix) Ut{ds}. 

All our examples are of this type. 

Examples. (b) The Cauchy process is subordinated to Brownian motion. 
Let {X(t)} be the Brownian motion (Wiener process) with transition 
densities given by q t{x) = (21Tt)-!e-~x2/t. For {T{t)} we take the stable 
process with exponent t with transition densities given by 

t 1 2 
ut(x) = / e-'Jt Ix. 

V 21T.j X3 

The distribution (7.13) has then a density given by 

(7.14) Pt{X) = - S-2e-(x +t )/(28) ds = ---t i+ex) 2 2 t 

21T -ex) 1T(t2+X2) 

and thus our subordination procedure leads to a Cauchy process. 
This result may be interpreted in terms of two independent Brownian 

motions X(t) and yet) as follows. 
It was shown in example VI,2(e) that U t may be interpreted as the 

distribution of the waiting time for the epoch at whicp. the Y(s)-process for 
the first time attains the value t. > O. Accordingly, a Cauchy process Z(t) 
may be realized by considering the value of the X-process at the epoch T(t) 
when yes) first attains the value t. [For anothet connection of the Cauchy 
process with hitting times in Brownian motion see example VI,~(f).] 

(c) Stable processes. The last example generalizes easily to arbitrary 
strictly stable processes {XCi)} and {T(t)} with· exponents. ,rx and {J, 
respectively. Here rx < 2, but since T(t) must be positive we have 
necessarily f3 < 1. The transition probabilities Q t and. U t are of the form 
Qt(x) = Q(xt-1/a) and Ut(x) = U(xt~l//J) where Q. and U are fixed stable 
distributions. We show that the subordinated process X(T(t» is stable with 
exponent rx,B. This assertion is equivalent to the relation Pu(x) = Pt(x-1/aP). 

In view of the given form of Qs and Ut this relation follows trivially from 
(7.l3) by the sub~titution s = y).l/p. 

[Our result is essentially equivalent to the product formula derived in 
example VI,2(h). When X(t) > 0 the formula can be restated in terms of 
Lapl~ce transforms as in XIII,7{e). For the Fourier'version see problem 9 
in XVII,12.] 

(d) Compound Poisson process directed by gamma process. Let Q t be 
the compound Poisson distribution generated by the probability distribution 
F and let Ut have the gamma density e-xxt-1/r(t). Then (7.13) takes on 
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transition probabilities W t satisfy (6.2) in polar coordinates; that is to say 

(6.5) oWt = !(02Wt + ~ OWt). 

ot 2 or2 r or 

This is the backward equation for the R(t) process and is obtained from (6.2) 
simply by requiring rotational symmetry. 

-Equation (6.5) shows that the R(t) process has an infinitesimal velocity 
1/(2"). The existence of a drift away from the origin can be understood if 
one considers a plane Brownian motion starting at the point r of the x-axis. 
For reasons of symmetry its abscissa at epoch h > 0 is equally likely to be 
> r or. <r . . In the first c~se certainly R(h) > r, but this relation can occur 
also in the second case. Thus the relation R(h) > r has probability>!, 
and on the average R is bound to increase. 

The sCime derivation of transition probabilities applies to three dimensions 
with one essential simplification: the Jacobian p in (6.3) is now replaced 
by p2 sin 0, and an elementary integration is possible. Instead of (6.4) we 
get for the transition densities of the R(t) proc~ss in three dimensions 

(6.6) weer, p) = 1 E.[exp (_ (p_r)2) _ exp (_ (p+r)2)] .. 
~21Tt r 2t 2t 

(Again r stands for the initial position at epoch 0.) 

7. SUBORDINATED PROCESSES 

From a Markov process {X(t)} with stationary transition probabilities 
Q t(x, r) it is possible to derive a variety of new processes by introducihg 
what may -be called a randomized operational time. Suppose that to each 
t> 0 there corresponds a random variable T(t) with distribution Ut• 

A new stochastic kernel P t may then be defined by 

(7.7) Pt(x, f) = f~Qs(X' r) Ut{ds}. 

This represents the distribution of X(T(t» given that X(O) = O. 

Example. (a) If T(t) has a Poisson di~tribution with expectation fl..t 

0.2) P · r) ~ ~Ilt (fl..t)n Q ( r t(x, =""e -- n X , ). 
n=O n! 

These P t are the transition probabilities of a pseudo-Poisson process. It 
will be shown in section 9 that the randomization by Poisson distributions 
leads to the so-called exponential formula which is basic for the theory of 
Markov semi-groups. We shall now see that similar results are obtained 
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the form 

(7.15) 

where 

. (7.16) 
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00 

Pt = ~ an(t) F n* 
n=O 

. (t) 100 
-s sn -s st-l d r(n + t) 2-n- t an = e -. e - s = . 

o n! ret) n! ret) 

It is easily verified that the probabilities an(t) have the infinitely divisible 
generating function L an(t),n = (2-,)-t. 

(e) Gamma process directed by the Poisson process. Let us now consider 
the same distributions but with reversed roles. The- operational time is then 
integral-valued and 0 has weight e- t

• It follows that the resulting distribution 
has an atom of weight e- t at the origin. The continuous part has the density 

00 xn
-

1 
t

n JI- -(7.17) "'" -z . -t -t-z I (2 I ) k e . e - = e - 1 '\ xt , 
n=l (n-l)! n! x 

where II is the Bessel function ofII,(7.1). It follows that this distribution is 
, infinitely divisible, but a direct verificati6n is not easy. ~ 

8. MARKOV PROCESSES AND SEMI-GROUPS 

Chapter VIII revealed the advantages of treating probability distributions 
as operators on continuous functions. The advantages of the operator 
approach to stochastic kernels are even greater, and the theory of semi-groups 
leads to a unified theory of Markov processes not attainable by other 
methods. Given a stochastic kernel K in jtl and a bounded continuous 
function u the relation 

i+OO 

U( x) = -00 K( x, dy) u(y) . 

defines a new function. Little gener3.Iity is lost in assuming that the transform 
U is again continuous and we could proceed to study properties of the kernel 
K in terms of the induced transformation u -. U on continuous functions. 
There are two main reasons for a more general setup. First, transformations 
of the form (B.1) make sense in arbitrary spaces, and it would be exceedingly 
uneconomical to develop a theory which does not cover, the simplest and 
most important special case, namely processes with a denumerable state 
space [where (B.l) reduces to a matrix transformation]. Second, even in a 
theory restricted to continuous functions on the line various types ofb6undary 
coriditions compel one to introduce special classes of continuous functions. 
On the other hand, the greater generality is bought at no expense. Readers 
so inclined are urged to ignore the generality and refer all theorems to one 
(or several) of the following typical situations. (i) The underlying space 2: 
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is the real line and 2 the class of bounded continuous functions vanishing at 
infinity. (ii) the space ~ is a finite closed interval I in jp or ~2 and !l' 
the class of continuous functions on it. (iii) ~ consists of the integers 
and Y or-bounded sequences. In this case it is best to think of sequences 
as column vectors and of transformations as matrices. 

As in chapter VIII the norm of a bounded real function u is defined by 
Ilull = sup lu(x)l· A sequence of functions Un converges uniformly to u 
iff Ilun - ull--O. 

From now on 2 l1'ill denote a family of real functions on some set ~ 
with the follOlring properties: (i) If Ul and U2 belong to .P then every 
linear combination ClUl + C2U2 E 2. (ii) If Un E 2 and HUn - U II -- 0 
then u E 2. (iii) If u E 2 then also u+ and u- belong to 2 (wher~ 
u = u+ - u- is the usual decomposition of u into its positive and negative 
parts.) In other words, 2 is closed under linear combinations, uniform 
limits, and absolute values. The first two properties make 2 a Banach 
space, the last a lattice. 

The following definitions are standard. A linear transformation T 
is an endomorphism on 2 if each u E 2 has an image Tu E 2 such that 
II Tu II < m Ilull where m is a constant independent of u. The smaJJest 
constant with this property is called the norm IITII of T. The-transformation 
T is positive if u > 0 implies Tu > O. in this case - Tu- < Tu < Tu+. 
A contraction is a positive operator T with -II Til < 1. If the constant 
function 1 belongs to 2 and T is a positive operator such that Tl = 1, 
then T is called a transition operator. (It is automatically a contraction.) 

Given two endomorphisms Sand T on 2, their product ST is the 
endomorphism mapping u into S(Tu). Obviously IISTII < IISII . II Til· In 
general ST yf TS, in contrast to the particular class of convolution operators 
of VIII ,3 which commuted with each other. 

-We are seriously interested only in transformations of the form (8.1) where 
K is a stochastic, or at least substochastic, kernel. Operators of this form 
are contractions or transition operators and they also enj oy the 

Monotone convergence property: if Un > 0 and Un t U (with Un and U in 
2) then TUn ~ Tu pointwise. 

In practicaIly all situations contractions with this property are of the form 
(8.l). Two examples will illustrate this point. 

Examples. (a) Let ~ stand for the real line and 2 = C for the family 
of all bounded continuous functions on it. Let Co C 2 the subclass of 
functions vanishing at ± 00. If T is a contraction on !l' then for u E Co 
the value Tu(x) of Tu at a fixed x is a positive linear functional on ~. 
By the F. Riesz representation theorem there exists a possibly defective 
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probability distribution F such that Tu(x) is the expectation of u with 
respect to F. Since F depends on x we write K(x, r) for F(r). -Then· 
for U E Co 

(8.2) 
(+co 

Tu(x) = J-co K(x, dy) u(y), 

and when T has the monotone convergence proper.ty this relation auto
matically extends to all bounded continuous functions. 

For fixed x, as 8 function of r, the kernel K is a measure. If r is an 
open interval and {un} an increasing sequence of continuous functions 
such that un(x) -+- 1 if x E rand un(x) -+- 0 otherwise, then K(x, r) = lim 
TUn (x) by the basic properties of integrals. Since TUn is continuous it 
follows that for fixed r the kernel K is a Baire function of x and therefore 
K has all the .properties required of stochastic or substochastic kernels. 
The same situation prevails when the line is replaced by an interval, or 3{,n. 

(b) Let L be the set of integers, and .P the set of numerical sequences 
U = {xn} with !lull = sup Ixnl. If Pi; stands for a stochastic or substochastic 
matrix we define a transformation T such that the ith component of Tu
is given by 

I 

(8.3) . (TU)i = I PikUk' 

Evidently T is a contraction operator enjoying the monotone convergence 
property; if the matrix is strictly stochastic, then T is a transition 
operator. ~ 

l'hese examples are typical and it is actually difficult to find contractions 
not induced by a stochastic kernel. Anyhow, we are justified to proceed 
with the general theory of contractions with the assurance th~t applications to 
probabilistically significant problems will be obvious. (In fact, we shall 
never have to go beyond the scope of these examples.) 

The transition probabilities of a Markov process ~orm a one-parameter 
family of kernels satisfying the Chapman-Kolmogorov equation 

(8.4) 

(s > 0, 1 > 0), the integration extending over the underlying space. Each 
individual kernel induces a transition operator .0(1) defined by 

. (8.5) ,C(t) u(x) = f Q,(x, dy) u(y) . 

Obviously then (8.4) is equivalent with 

(8.6) .Q(S+I) = .Q(s) .0(1), s > 0,1> O. 
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A family of endomorphisms with this property is a semi-group. Clearly 
.Q(s) .Q(t) = .Q(t) .Q(s), that is, the elements of a semi-group commute 
with each other. 

A sequence of endomorphisms Tn on !e is said to converge27 to the endo
morphism T iff II Tnu - Tu II -+- 0 for each u E.P. In this case we write 
Tn -+- T. 

From now on we concentrate on semi-groups of contraction operators 
and" impose a regularity condition on them. Denote again by 1 the identity 
operator, 1u = u. 

Definition. A semi-group of contraction operators .Q (t) will be called 
continuous28 if .Q(O) = 1 and .Q(h) -+- 1 as h -+- 0+. 

If 0 < t ' < t n we have 

(S.7) 1I.Q(t")u - .Q(t')u II < 1I.Q(t" -t')u - u II. 
For continuous semi-groups there exists a ~ > 0 such that the right side is 
<£ for t" - t ' <~. Thus .not only is it true that .Q(t) -+- .Q(1o) as t - to, 
but (S.7) shows that .Q(t)u is a uniformly continuous function of t for each 
fixed U.29 

The transformation (8.1) is, of course, the same as (4.5) and served as starting point -for 
the derivation of the backward equation for diffusion processes. N ow a family of Markovian 
transition probabilities induces also a semi-group of transformations of measures such that 
the measure p. is ,lransformed into a measure T(t)p. attributing to the set r the mass 

(8.8) T(t)p.(r) = f ,u{dx} Qt(x, r). 

When the Qt have a density kernel qt this transformation is the same as (5.1) and was 
used for the forward equation. Probability theory being concerned primarily with measures, 
rather than functions, the question arises, why we do not start from the semi-group 
{TU)} rather than .o(t)? The answer is interesting and throws new light on the intricate 
relationship between the backward and forward equations. 

The re~son is that (as evidenced by the above examples) with the usual setup the con
tinuous semi-groups of contractions on the function space !l' corne .from transition 
probabilities: stUdying our semi-groups .Q(t) is in practice the same as stUdying Markovian 

27 This mode of convergence was introduced in VIII,3 and is called strong. It does 
not imply that IITn - Til - 0 (which type of convergence is called uniform). A weaker 
type of convergence .is I defined by the requirement that Tnu(x) - Tu(x) for ~ch x, but 
not necessarily uniformly. See problem 6 in vn:,lO. 

28 We use this word as abbreviation (or the standard term "s~rongly continuous at the 
origin." 

29 There exist semi-groups such that D(h) tends to an operator T:;6 1, but they are 
pathological. For an example define an endomorphism T by 

Tu(x) = iu(O)[1 + cos xl + lu(n)[l-cos xJ 

and put .a(t) = T for all t ~ O. 
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transition probabilities. For semi-groups of measures this is nol true. There exist analytically 
very reasonable contraction semi-groups that are not induced by Markov processes. To 
get an example consider any Markovian semi-group of the form (8.8) on the line assuming 
only that an absolutely continuous I' is transformed into an absolutely continuous T(I)" 
[for example, let T(t) be the convolution with a normal distribl.tion with variance I]. 
If I' = p.c + 1'. is the decomposition of I' into its absolutely continuous and singular 
parts define, a new semi-group {S(/)} by 

(8.9) S(/)p. = T(1)p.c + 1'" 

This semi-group is continuous and S(O) = t, but it is not difficult to see that it is not 
connected with any system of transition probabilities and that it is probabilistically 
meaningless. 

9. THE "EXPONENTIAL FORMULA" OF 
SEMI-GROUP THEORY 

The pseudo-Poisson processes of section 1 are by far the simple&t Markov 
process~s, and it will now be shown that practically all Markov processes 
represent limiting forms of pesudo-Poisson processes.30 An abstract version 
of the theorem plays a fundamental role in semi-group theor.y, and we shall 
now see that it is really a consequence of the. law of large numbers. 

If T is the operator induced by the stochastic kernel K, the operator 
~(t); induced by the pseudo-Poisson distribution (1.2) takes on the form 

(9.1) .Q(t) = e-l1.t i «(Xt)n Tn, 
n=O n! 

the series being defined as the limit of the partial sums. These operators 
form, a semi-group by virtue of the Chapman-Kolmogorov equation (1.3). 
It is better, however, to start afresh and to prove the assertion for arbitrary 
contractions T.' 

Theorem 1. If T is a contraction on .P, the operators (9.1) form a con
tinuous semi-group of contractions. If T is a transition operator so is .Q(t). 

Proof. Obvious"ty .Q(t) is positive' and 1I.Q(t)II < e-iZHl1.t/lT/I < 1. The 
semi-group property 'is easily verified from the formal product of the series 
for .Q(s) and .Q(t) (see footnote 1 to section 1). The relation .Q(h) -~ 1 
is obvious from (9.1). ~ 

We shall abbreviate (9.1) to 

(9.2) 

30 The special case where the .Q(t) are convolution operators is treated in chapter IX. 
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Semi-groups. of contractions of this form will be called pseudo-Poiss'onian31 

and we shall say that {.Q(t)} is generated by Ct.(T-1). 
Consider now an arbitrary continuous semi-group of contractions .a(t). 

It behaves in many respects just as a real-valued continuous function and the 
approximation theory developed in chapter VII using the law of large 
numbers carries over without serious change. "We show in particular that the 
procedure of example VII,l(b) leads. to an important formula of general 
semi-group theory. 

For fixed h > 0 we define the operators 

(9.3) .Q1t(t) '= e-t/h ~ (t/ht ~(nh) 
n=O n! 

which could be described as obtained by randomization of the parameter 
t in .Q(t). Comparing with (9.1) is it seen that the .Qh(t) form a pseudo
Poissonian semi-group generated by [.Q(h)-1Jjh. We now prove that 

(9.4) .Qh(t) ~ .Q(t), h ~ O. 

Because of the importance of this result we formulate it as 

Theorem 2. Every continuous semi-group of contractions .a(t) is the 
limit (9.4) of the pseudo-Poisson semi-group {.Qh(t)} generated by the 
endomorphismh-1 [.Q(h) -1]. 

Proof. The starting poin~ is the identity 

(9.5) 
co (th-l)n 

Oh(t)U - .Q(t)u = e-th I [.Q(nh)u-.Q(t)uJ. 
, n=O n! 

Choose ~ such that 1I.Q(s)u - u II < £ for 0 < s <~. In view of (8.7) 
we have then 

(9.6) 1I.Q(nh)u - .Q(t)ull < £ for Inh - t I < 'Y}t. 

The Poisson distribution appearing in (9.5) has expectation and variance 
equal to tfh. The contribution of the terms with Inh - t I ~ 0 can be 
estimated using Chebyshev's inequality, and we find that 

IIOh(t)U - O(t)ull < £ + 2 lIull thfJ-2. 

It f(\llows that (9.4) holds uniformly in finite t-intervals. 

Equivalent variants of this section are obtained by letting other infinitely divisible dis
tributions take over the role of the Poisson distribution. We know from 1; XII,2 that the 

31 There exist contraction semi-groups of the form etS where S is an endomorphism not 
of the form a(T - 1). Such are the semi-groups associated with the solutions of the jump 
processes of section 3 if «(z) remains bounded. 
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generating function of an infinitely divisible distribution {un(t)} concentrated on the 
integers n ~ 0 is of the form 

(9.7) 

where 

(9.8) 

00 

I un(t){n = exp (ta[pa)-l]) 
o 

p( () = Po· + PI ( + ... , p; ~ 0, 2:.p, = 1. 

Suppose that the distribution {un(t)} has expectation bt and a finite variance ct. Replac
ing in (9.3) the Poisson distribution by {un(t/b)} leads to the operator 

(9.9) 

As in the preceding proof a simple application· of the law of large. numbers shows that 
.Qh(t) -- .Q(t) as h -- O. In this way we get a substitute "exponential formula" in which 
{un(t)} takes over the role of the Poisson distribution.32 

To see the probabilistic content and the possible generalizations of this argument, denote 
by X(t) the variables of the Markov process with the semi-group {O(t)}, and by T(t) 
the variables of the process with independent increments subject to {un(t)}. The operators 

(9.9) correspond to the transition probabilities for the variables X (hT (:h) ). In other 

words, we have introduced. a particular subordinated process; the law of large numbers 
for the T-process makes it plausible that as h -- 0 the distributions of the new process 
tend to those of the initial Markov process. This approximation procedure is by no means 
restricted to integral valued variables T(t). Indeed, we may take for {T(t)} an arbitrary 
process with positive independent increments such that E(T(t» = bt and that variances 
exist. 

The given Markov process {X(t)} thus appears as the limit of the subordinated Markov 

processes with variables X (hT(:h) ). 
The point is that the approximating semi-groups may be of a much simpler structure 

than the original one. In fact, the semi-group of the operators .Qh(t) of (9.9) is of the simple 
pseudo-Poisson type. To see this put . 

00 00 

(9.10) .0 # = p(.Q(h» = I Pn.Qn(h) = I Pn.Q(nh). 
n=O n=O 

This is a mixture of transition operators and therefore itself a transition operator. A 
comparison of (9.7) and (9.9) now shows that formally 

(9.11) 
Q. 

Dh(t) = exp - (.0# - 1) 
bh 

which is indeed of the form (9.2). It is not difficult to justify (9.11) by elementary methods, 
but we shall see that it is really only a special case of a formula for the generators of 
subordinated semi-groups (see example XIII,9(b». 

32 This was pointed out by K. L. Chung (see VII,5). 
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10. GENERATORS. THE BACKWARD EQUATION 

Consider a pseudo-Poisson semi-group {.Q(t)} of contractions generated 
by the operator ~ = (X( T -1). This operator being an endomorphism, 
~u = v 'is defined for all U E .ff, and 

(10.1) 
n(h) - 1 

u --.. v, 
h 

It would be pleasant if the same were true of all semi-groups, but this is 
too much to expect. For example, for the semi-group associated with 
Brownian motion the diffusion equation (4.1) implies that for twice con
tinuously differentiable u the left side in (10.1) tends to iu", but no limit 
exists when u is not differentiable. The diffusion equation nevertheless 
determines the process uniquely because a semi-group is determined by its 
action on twice differentiable functions. We must therefore not expect that 
(10.1) will hold for all functions u, but for all practical purposes it w~ll 
suffice if it holds for sufficiently many functions. With this in mind we 
introduce the 

Definition. If for some elements u, v in !l' the relation (10.1) holds (in the 
sense of uniform convergence) we put v = ~u. The operator so defined is -
called the generator33 of the semi-group {.o(t)}. 

Premultiplying (10.1) by .o(t) we see that it implies 

(10.2) .o(t+h) - .o(t) u --.. .o(t)v. 
h . 

Thus, if ~u exists then all functions .o(t)u are in the domain of the ~ 'and 

(10.3) n(t+h) - .o(t) u --.. .o(t) Uu = U.o(t)u. 
h 

This relation is essentially the same as the backward equation for Markov 
processes. In fact, with the n'otations of section 4 we should put 

u(t, x) = .o(t) uo(x), 

where Uo is the initial function. Then (10.3) becomes 

(l0.4) ou(t, x) _ U ( ) 
-"--'--~ - u t, x . 

ot 

33 The treatment of convolution semi-groups in chapter IX restricts t!1e consideration to 
infinitely differentiable functions with. the result that all generators are defined on the same 
domain. No such convenient device is applicable for general semi-groups. 
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This is the familiar backward equation, but it must be interpreted properly. 
The transition probabilities of the diffusion processes in section 4 are so 
smooth that the backward equation is satisfied for all continuous initial 
functions Uo. This is not necessarily so in general. 

Examples. (a) Translations. Let !R consist of the continuous functions 
on the line vanishing at infinity and put .o(t)u(x) = u(x+t). Obviously 
(10.1) holds iff u possesses a continuous derivative u' vanishing at infinity, 
and in this case ~u = u'. 

Formally the backward equation (l0.4) reduces to 

ou ou ---ot Ox 
(10.5) 

The formal solution reducing for t = 0 to' a given initial Uo would be 
given by u(t, x) = uo(t+x). But this is a true solution only if Uo is differ-
entiable. . 

(b) As in section 2 consider a pseudo-Poisson process with variables X(t) 
and another process defined by X#(t) = X(t) - ct. The corresponding. 
semi-groups are in the obvious relationship that the value of .0 #(t)u at x 
equals the value of .o(t)u at x + ct. For the generators this implies 

u# = U - c..E... 
dx 

(10.6) 

and so the domain of ~ # is restricted to differentiable functions. The 
backward equation is satisfied whenever the initial function .Uo has a 
continuous derivative but not for arbitrary functions. In particular, the 
transition probabilities themselves need not satisfy the backward equation. 
This explains the difficulties of the old-fashioned theories [discussed in 
connection with IX,(2.14)] and also why we had to introduce unnatural 
regularity assumptions to derive the forward equation (2.1). ~ 

The usefulness of the notion of generator is due to the fact that for each 
continuous semi-group of contractions the generator defines the semi-group 
uniquely. A simple proof of this theorem will be given in XIII,9. 

This theorem enables us to handle backward equations without un
necessary restrictions and greatly simplifies their derivation. Thus the 
most general form of diffusion operators alluded to in footnote 12 of section 
4 could not have been derived without the a priori knowledge that a generator 
does in fact exist. 



CHAPTER XI 

Renewal Theory 

Renewal processes were introduced in VI,6 and illustrated in VI,7. We 
now begin with the general theory of the so-called renewal equation, which 
occurs frequently in various connections. A striking example for the 
applicability of the general renewal theorem is supplied by the limit theorem 
of section 8. Sections 6 and 7 contain an improved and generalized version 
of some asymptotic estimates originally derived laboriously by deep analytic 
methods. This illustrates the economy of thought and tools to be achieved 
by a general theoretical approach to hard individual problems. For a 
treatment of renewal problems by Laplace transforms see XIV,1-3. 

Many papers and much ingenuity have been spent on the elusive prpblem 
of freeing the renewal theorem of the condition that the variables be. positive. 
In view of this impressive history a new and greatly simplified proof of the 
general theorem is incorporated in section 9. 

1. THE RENEWAL THEOREM 

.;t F be a distribution concentrated1 on 0, 00, that is, we suppose 
F(O) = O. We do not require the existence of an expectation, but because 
of the assumed positivity we can safely write 

(1.1) # = J.oo y F{dy} = Jooo [I-F(y)] dy 

where # < 00. When ~ # = 00 we agree to interpret the symbol #-1 as o. 
In this section we investigate the asymptotic behavior as x -+ 00 of the 

function 

(1.2) 
11=0 

1 No essential changes occur if one permits an atom of weight p < 1 at the origin. 
(See problem 1.) 

358 
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It will be seen presently that this problem is intimately connected with the 
asymptotic behavior of the solution Z of the renewal equation 

(1.3 ) Z(x) = z(x) + J.xZ(X- Y) F{dy}, x> o. 

For definiteness we take the interval of integration closed, but in the present 
context it will be understood that z and Z vanish on the negative half-axi·s; 
the limits of integration may then be' replaced by - OJ and 00, and the 
renewal equation may be-written in the form of the. convolution equation 

(1.4) Z=z+F*Z. 

(A similar remark applies to all convolutions in the sequel.) 
The probabilistic meaning of U. and probabilistic applications of the 

renewal e.quation were discussed at some length in VI,6-7. For the present 
we shall therefore proceed purely analytically. However, it should be borne 
in mind that in a renewal process U(x) equals the expected number of 

, ~ 
renewal epochs in 0, x, the origin counting as a renewal epoch. Accordingly, 

j---

U should be interpreted as a measure concentrated on 0, 00, the interval 
-/ 

I = a, b carrying the mass U{I} = U(b) - U(a). The origin is an atom of 
unit wejght contributed by the zeroth term in the series (1.2). 

The following lemma merely restates theorem 1 of VI,6 but a new proof 
is given to render the present section self-contained. 

Lemma. U(x) < 00 for all x. If z is bounded the function Z defined by 

(1.5) 
"x 

. Z(x) = L z(x-y) U{dy}, x>o 

is the unique solution of the renewal equation (1.3) that is bounded on finite 
intervals. 

[With the convention that, z(x) = Z(x) = 0 '(or x < 0 we may write 
(1.5) jn the form Z = U * z.] 

Proof. Put Un = £0* + ... + Fn* and choose positive numbers 
T and 'Yj such that 1 - F(T) > 'Yj. Then 

(1.6) J.x[l - F(x-y)] Un{dy} = 1 - F(n+l)*(x), x>o 

and hence 'Yj[Un(x) - Un(X-T)] < 1. Letting n -- 00 we conclude that 
utI} < 'Yj-l for every interval I of length < T. Since an arbitrary interval 
of length a is the union of at most 1 + arr. intervals of length T it follows 
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that 

(1.7) U(x) - U(x - a) S Ca 

where Ca = (a + T)/( T'YJ). Thus U{/} is uniformly bounded for all intervals 
I of a given length. 

Now Zn = Un * z satisfies Zn+I= Z + F* Zn. Letting n -+ a:> one 
sees that the integral in (l.5) makes sense and that Z is a solution of (1.3). 

To prove its uniqueness note that the difference of two solutions would 
satisfy V = F* V, and therefore also 

(1.8) V(x) = f V(x-y)F'"*{dy}. x>O 

for r = 1,2, . . .. But P*(x) -+ 0 as r -+ 00 and since V is supposed 

bounded in 0, x this Implies Vex) = 0 for all x > o. ~ 

The formulation of the renewal theorem is encumbered by the special 
role played by.distributions concentrated on the multiples of a number A. 
According to definition 3 of V,2, such a distribution is' called arithmetic, . 
and the largest A such that F is concentrated on A, 2A, '. .. is called·the 
span of F. In this case the measure U is purely atomi~, and we denote by 
Un the weight of nA. The renewal ~heorem of 1; XIII,l1 states that un -+ A/Il' 
The following theorem2 generalizes this result to arbitrary distributions 

concentrated on 0, OO~ The case of arithmetic F is repeated for.complete
ness. (We recall the convention that 1l-1 = 0 if Il = 00.) 

Renewal theorem (first form). If F is not arithmetic 

(1.9) u(t)' - U(t - h) -+ hIll, t -+ 00 

for every h > O. If F is arithmetic the same. is true when h is a multiple 
of the span A. 

Before proving the theorem we reformulate it in terms of the asymptotic 
behavior of the solutions (1.5) of the renewal equation. Since the given 
function z maybe decomposed into its positive and negative parts we may 
suppose that z' ~ O. For definiteness we suppose at first that the distribution 
F is non-arithmetic and has an expectation Il < 00. 

2 The discrete case was proved in 1949 by P. Erdos, W. Feller and H. Pollard. Their 
proof was immediately generalized by D. Blackwell. The present proof is new. For a 
generalization to distributions not concentrated on 0, co see section 9. A far reaching 
generalization in another direction is contained in Y. S. Chow and H. E. Robbins, 1 
renewal theorem for random variables which are .dependent or non-identically distribuied. 
Ann. Math. Statist., vol. 34 (1963), pp. 390-401. 
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If z(x) = 1 for 0 S a S x < b < 00 and z(x) = 0 for all other x 
we get from (1.5) 

(1.10) Z(t) = V(t - a) - V(t - b) -+ (b - a)/Il, t·-:-+ 00. 

This result generalizes immediately to finite step functions: Let II"" , I,. 
be non-overlapping intervals on the positive half-axis or"lengths L 1 , • •• , L,.. 
If z assumes the valueak in I~ and vanishes outsi~e the' union of the Ik , 

then clearly 

(1.11) 

Now the classical Riemann integral of a function z is defined in terms of 
approximating finite step functions, and it is therefore plausible that the 
limit relation (1.11) should hold whenever z is Riemann integrable. To 
make this point clear we recall the definition of the Riemann integral of z 
over a finite interval 0 < x <a. It suffices to consider partitions into sub
intervals of equal length h= a/no Let mk be the largest, and mk the 
smallest number such that 

(1)2) mk < z(x) < mk for (k-l)h < x < kh. 

The obvious dependence of mk and mk on h should be kept in mind. The 
lower and upper Riemann sums for the given span h are defined by 

( 1.13) 

As h -+ 0 both S!. and B approach finite limits. If B _. S!. -+ ° these 
limits are the same, and the Riemann iI)tegral of z is defined by th~s common 
limit. Every bounded function that is continuous except for jumps is 
integrable in this sense. 

When it con:tes to integrals over 0, 00 the classical definition introduce~ 
an avoidable complication. To make the class of integrable functions as 

extensive as possible th~ integral over 0, 00 is conventionally 'defined as the 

limit of integrals over 0, a. A continuous non-negative function z is 
integrable in this sense iff the area between' its graph and the x-axis is finite. 
Unfortunately this does not 'preclude the. effective oscillation of z(x) and 
00 as x -+ 00. (See example a.) It is obviously not reasonable to assume 
that the solution Z will tend to a finiteIimit if the given function z oscillates 
in a wild manner. In other words, the sophisticated standard definition 
makes too many functions integrable, and for our purposes it i~ preferable 
to proceed in the naive manner by extending the origi.nal definition also to 
infinite intervals. For want of an established term we speak of a direct 
integration in' contrast to the indirect procedure involving a passage to the 
limit from finite intervals. 
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Definition. A function z > 0 is called directly Riemann integrable if the 
upper and lower Riemann sums defined in (1.12)-(1.13) are finite and tend to 
the same limit as h -+ O. 

This definition makes no distinction between finite and infinite intervals. 

It is easily seen that z is directly integrable over 0, 00 if it is integrable over 

every finite interval 0, a and if ii < -00 for some h. (Then automatically 
ii < 00 for all h.) It is this last property that excludes wild oscillations . 

. We may restate the definition in terms of approximating step functions. 
For fixed h > 0 put Zk(X) = 1 when (k - l)h ~ x < kh and Zk(X) = 0 
elsewhere. Then 

(1.14) ~ = 2 m~k and z = 2 in~k 
are two finite step functions and : < Z < z. The integral of Z is the common 
limit as h -+ 0 of the integrals of these step functio!1s. Denote by Zk the 
solution of the renewal equation corresponding to zi.:. The solutions corre
sponding to Z and z are then given by 

(1.15) Z = 2 Zkmk and Z = 2 mkZk· 

By the renewal theorem Zk(X) -+ h/fl fo~each fixed k. Furtnermore, (1.7) 
assures us that Zk(X) ~ Ch for all k and x. The remainders of the' series in 
(1.15) therefore tend uniformly to 0 and we conclude that 

(1.16) Z(X) -+ ii/fl (x -+ (0). 

But Z ~ Z ~ Z and hence all limit values of Z(x) lie between fl.//)' and 
iJ/fl. If Z is directly Riemann 'integrable it follows that 

(1.17) Z(x) -+ fl- 1 J.oo z(y) dy, x -+ 00. 

So far we have assumed that F is non-arithmetic and fl < 00. The 
argument applies without change when fl = 00 if fl- 1 is interpreted as 0., 

If F is arithmetic with, span A the solution Z of (1.5) is of the form 

(1.18) Z(x) = ~ z(x - kA)Uk 

where Uk -+ A/I':. One concludes easily that for fixed x 

00 

(1.19) Z(x + ;,}.) -+ Afl-1 2:z(x + j}.), n -+ 00. 
j=1 

provided the series converges, which is certainly the case jf z is -directly 
integrable. 

We have derived (1.17) and (1.19) from the renewal theorem, but these 
relations contain the renewal theorem as a special case when z reduces to 

the indicator of an interval 0, h., We have thus proved the following 
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Renewal theorem. (Alternative form).3. If z is directly Riemann integrable 
the solution Z of the renewal equation satisfies (1.17)' if F is non-arithmetic, 
and (1.19) if F is arithmetic with span A. 

One may- ask whether the condition o(directintegrabilitytnay be dropped 
at .least for continuous (unctions i tending to 0 at infinity. The following 
examples show that this'is not so. Example 3(b) will showsimilarly that the 
renewal' theorem may ,.fail' for an unbounded function z even when it 
vanishes outside a finite interval. . Improper Riema~n integrals are therefore 
not usable in renewal theory and direct integrability appears as the natural 
basis. . . 

ExampleS. (a) A continuous function z may be unbounded and yet Riemann 

integrable over 0, 00. To' see this let. zen) -..:.. an for n = 1, 2, .. -. and let z 
vanish identically outside the union' of the intervals Ix - nl < hn < t; 
between nand n ± hn let z yary linearly wi~h x. The graph of ~ then 
consists of a sequence of triangles of areas anhn' and hence z is Riemann 
integrab.le iff ~ anhn < 00. This does not preclude' that an .--:+. 00. 

(b) To explore the role of direct integrability in the renewal theorem it 
suffices to consider arithmetic distributions F.' Thus we may suppose that 
the measure U is concentrated on' the integers and that the weight Un 

carried by the point n tends to the limit #-1 > O. For any positive integer 
n we have then 

Zen) = Un z(O) + Un-l z(l) + ... + uoz(n). 

Now choose for z the function of the preceding example with an = 1; 
then Zen) "" np,-I, and so Z is not even bounded. The same is obviously 
true if an tends to 0 sufficiently slowly, and thus we get an example of a 
continuous integrable function z such that z(x) --:+ 0, but Z(x) does not 
remain bounded. ~ 

3 It is hoped that this form and the preceding discussion will end the sorry confusion now 
prevailing in the·literature. The most widely used reference is the report by W. L. Smith, 
Renewal theory and its ramifications, in the J. Roy. Stat. Soc. (Series B), vol. 20 (1958), 
pp. 243-302. Since its appearance Smith's "key renewal theorem" has in practice repla~d 
all previously used versions (which were not always correct). The key theorem proves (1 t 7) 
under the superfluous assumption that z be monotone. Smith's proof (of 1954) is based 
on Wiener's deep Tauberian theorems, and the 1958 report gives the impression that this 
tortuous procedure is simpler than a direct reduction to the first form of the renewal 
theorem. Also, the condition that z be bounded was imidvertently omitted in the report. 
[Concerning its necessity see example 3(b).] 
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2. PROOF OF THE RENEW AL THEOREM 

For arithmetic distributions F the renewal theorem was proved in 1; 
XIII,II and we suppose therefore F non-arithmetic. For the proof we 
re'luire two lemmas. (The first reappears in a stronger form in the coroIIary 
in section 9.) 

Lemma 1. Let ~ be a bounded uniformly continuous function such that 
{(x) ~ {CO) for - 00 < x < 00. If 

(2.1) {(x) = f.~{(~ - y) F{dy} 

then {(x) = {CO) identically. 

Proof. Taking convolutions with F we conclude from (2.1) by induction 
that 

(2.2) r = 1,2, .... 

The integrand is < {CO), and for x = 0 the equality is. therefore possible 
only if {( -y) = {CO) for ev.ery y that is a point of increase of Fr *. By 
lemma 2 of V,4a the set ~ formed by such points is "asymptotically dense at 
infinity, and in ~iew of the uniform continuity of { this implies that 

. {( -y) -+ {CO) . as y -+ 00. Now as r'-+ 00 the mass of Fr* tends to be 
concentrated at 00. For large r the integral in (2.2) therefore depends 
essentially only on large values of y, and for such values {(x -- y) is close 
to {CO). Letting r -+ 00 we conclude therefore from (2.2) that {(x) = {CO) 
as asserted. ~ 

. 
Lemma 2~ Let z be a. continuous function vanishing outside 0, h. The 

corresponding solution Z of the renewal equation, is uniformly continuous and 
for every a 

(2.3) Z(x + a) - Z(x) -+ 0, x -+ 00. 

Proof. The differences z(x + 0) - z(x) vanish outside an interval of 
length. h + 20 and therefore by (1.5) and (1.7) 

(2.4) IZ(x + 0) - Z(x)1 < C't+26 max Iz(x + 0) - z(x)l· 

This shows that if z is uniformly continuous the same is true of Z. 
Suppose now that 2 has a continuous derivative z'. Then z' exists and 

satisfies the renewal equation 

(2.5) Z'(x) = z'(x) + f.xZ'(X - y) F{dy}. 
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Thus Z' is bounded and uniformly continuous. Let 

(2.6) lim sup Z'(x) = 1], 

and choose a sequence such that Z' (t n) -+ 1]. The family of functions {n 
defined by . 

(2.7) 

is equicontinuo~s and 

(2'.8) 
. fz+t 

{n(x) = z'{tn+ x) + Jo {n(x - y) F{dy}. 

Hence there. exists a subsequence such that {n~ converges to a limit {. 
It follows from (2.8) that this limit satisfies the conditions of lemma 1 and 
therefore rex) = {'CO) = 1] for all x. 

Thus Z'(tn
r 
+ x) -+ 1] or 

(2.9) Z(t nr + a) - Z(tn) -+ !la. 

This be~ng true for every a and Z being bounded it follows that 1] = O. 
The same argument applies to the lower limit and proves that Z'(x) -+ O. 

We have thus proved the lemma for continuously differentiable z. But an 
arbitrary continuous z can be approximated by a continuously differentiable 

. function ZI vanishing outside 0, h. Let ZI be the corresponding solution 
of the renewal equation. Then 

Iz - zll < € implies IZ - ZII < Ck €, 

and thus IZ(x+a) - Z(x) 1 < (2Ck + O€ for all x sufficiently large. Thus 
(2.3) 'holds for arbitrary continuous z. ~ 

The conclusion of the proof is now easy. If I is the interval ~ S x < {J 
we denote by 1+ t the interval ~ + ( ~ x ~ {J + t. We know from (1.9) 
that UtI + t} remains bounded for e:very finite interval I. By the selection 
theorem 2 of VIlI,6 there exists therefore a sequence tk -+ 00 and a measure 
V such that 

(2.10) U{lk + dy} -+ V{dy}. 
r--

The measure V is finite on finite intervals, but is not concentrated on 0, 00. 

Now let z be a continuous function vanishing outside the finite interval 

0, a. For the corresponding solution Z 'of the renewal equation we have 
then 

(2.11) Z(I. + x) = fZ( -s) U{I, + x + ds} --+ fZ( -s) V{x + ds}. 

From the preceding lemma it follows that the family of measures V{x + ds} 
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is independent of x, and hence V{I} must be proportional to the length of 
I. Thus (2.10) may be put in the form 

(2.12) 

This is the same as the assertion (1.9) of the renewal theorem except that 
the factor 'Yj--1 is replaced by the unknown )' and that I is restricted to the 
sequence {lk}' However, our derivation of the alternative form of the 
T~newal theorem remains valid and thus 

.'2.13) 

whenever z is directly integrable. 
The function z = 1 - F is ~onotone, and its iritegral equals ft. The 

correspqnding solution Z reduces to the constant 1. If ft <. 00 the function 
z is directly integrable, and (2.13) states that yft·= 1. When ft = 00 we· 
truncate z and conclude from (2.13) that y-1 exceeds the integral of z 

over an arbitrary interval 0, a. Thus ft = 00 implies y = O. Hencethe 
1imit in (2.12) is independent of the sequence {lk} , and (2.12) reduces to the 
assertion (1.9) of the renewal theorem. .. 

*3. REFINEl\1ENTS 

In this section we show how regularity properties of the distribution F 
may lead to sharper forms of the renewal theorem. The results are not 
exciting in themselves, but they are useful in many applications. 

Theorem I. If F is non-arithmetic with expectation fl and variance 
0-2 , then 

t a2 + 2 
(3.1) . '0 < U(t) _ - -+ ft 

-. Ii 2ft2 

The renewal theorem itself states only that U(t)""-' tift, and the estimate 
(3.1) is much sharper. It 'is applicable even when no variance exists with the 
right side replaced by 00. [The analogue for arithmetic distrib~tions is given 
by 1; XIII, (12.2 ).] 

Proof. Put 

(3.2) Z(t) = U(O - tift· 

It is easily verified that this is the solution of the renewal equation correspond
ing to 

1 J~ . z(t) = -. [I-F(y)] dy. 
ft t 

(3.3) 

* This section should be omitted at the first reading. 
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Integrating by parts we get 

i
oo 1 i OO 

J2 + ft2 (3.4) z(t) dt ~ -- y2 F{dy} = -~ 
o 2ft 0 2ft 

Being monotone z is directly integrable, and the alternative form of the 
renewal theorem asserts that (3.1) is true. • 

Next we turn to smoothness properties of the renewal function U. If F 
has a density f the renewal equation for U takes on the form 

(3.5) V(x) = 1 + f U(x-y)f(y) dy. 

If f is continuous a formal differentiation would indicate that U should 
have a derivative u satisfying the equation 

(3.6) u(x) = f(x) + f.:I: u(x-y) fey) dy. 

This is a renewal equation of the standard type, and we know that it has a 
unique solution whenever f is bounded (not necessarily continuous). It is 
easily verified that the function U defined by . 

(3.7) U(t) = 1 + f.tU(Y) dy, t > O. 

satisfies (3.5) and hence the solution u of (3.6) is indeed a density for U. 
As a corollary to the alternative form of the renewal theorem we get thus 

Theorem 2. If F has a direct~y integrable density f, then U has a density 
u such that u(t) -- ft-1. 

Densities that are not directly integrable will hardly occur in practice but certain con
clusions are possible even for them. In fact, consider the density 

(3.8) f2(t) = f.t f(t -y) f(y) dy 

of F* F. In general f2 will behave much better than f For example, if f < M we get 
for reasons of symmetry 

(3.9) /2(t) < 2M[1 - F(tt)]. 

If p < 00 the right side is a monotone integrable function and this implies that f2 is 
directly integrable. Now u - f is the solution of the renewal equation with z = h. and 
we have thus 

Theorem 28. If F has a bounded density f and a finite expectation p, then 

(3.10) u(t) - /(t) -+ p-l. 

This result is curious because it shows ~hat if the oscillation5 of f are wild, u will 
oscillate in a manner to compensate them. (For related results see problems 7-8.) 
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The condition that f be bounded is essential. We illustrate this by an example which also 
throws new light on the condition of direct integrability in the renewal theorem. 

Examples. (a) Let, G be the probability distribution concentrated on 0, I and defined 
by 

(3.11) 
1 

G(x) = 1 (/)' , og ex 
o<x~1. 

1t has a density that is continuous in the open interval, but since x-1G(x) - .• CX) as x -- 0 
the density is unbounded near the origin. The sum of n independent random variables 
with the distribution G is certainly <x if each component is <x/n, and hence 

(3.12) an*(x) > (G(x/n»)n. 

It follows that for each n the density of an* is unbounded near the origin. 
, . Now put F(x) = G(x - 1). Then Fn*(x) = Gn*(x - n), an.d hence Fn* has a 
density which vanishes for x < n, is continuous for x > n, but unbounded near n. The 
density U of the renewalfunr:tion U = 2: Fn* is therefore unboundedintheneighborhood 
of every integer n > o. 

(b) The density u of the preceding example satisfies (3.6) which agrees with the standard 
renewal equation (1.3) with z = f This is an integrable function vanishing for x > 2 and 
continuous except at the point 1. The fact that the solution Z = u is unbounded near 
every integer shows that the renewal theorem breaks down if z is /lot properly Riemann 
integrable (bounded), even when z is concentrated on a finite i~terval. ~ 

4. PERSISTENT RENEWAL PROCESSES 

The renewal theorem will now be used to derive various limit theorems 
for the renewal processes introduced .in VI,6. We are concerned with a 
sequence of mutually independent random variables T}, T2 , ••• , the 
interarrival times, with a common distribution F. In this section we assume 
that F is a proper distribution and F(O) = o. In addition to the Tk there 
may be defined a non-negative variable So with a proper distribution Fo. 
We put 

(4.1) S'T! = So + T} + ... + Tn· 
The variables Sn are called renewr;i/ epochs. The renewal process {Sn} is 
called pure if So = 0 and delayed otherwise. 

We adhere to the notation U ~ I Fn* .introduced in (1.2). The expected 
I-I 

number of renewal epochs in 0, tequals 
co " 

(4.2) Vet) = L P{Sn < t} = Fo * U 
n=O 

For h > 0 we have therefore4 

(4.3) V(t+h) - Vet) = Iot+k[U(t+h- y ) - U(t-y)] ~~o{dy}. 
4 We recall from section 1 that the intervals of integration are taken closed; . the limits of 

integration may therefore be replaced by - wand 00. 
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If F is not arithmetic the integrand tends to p,-lh as t -- 00, ,and thus the 
basic theorem extends also to delayed processes: . if F is non-arithmetic 

\ 
the expected number of renewal epochs within t, t+h tends to' ,u-1h. This 
statement contains two equidistribution theorems; first, the renewal rate 
tends to a constant, and second, this constant rate is independent <1f the 
initial distribution. In this sense we have an analogue to the ergodic theorems 
for Markov chains in 1; XV. 

If # < 00 it follows that Vet) ~ #-It as t -- 00. It is natural to ask 
whether Fo can be chosen as to get the identity Vet) = #-It, meanmg a 
constant renewal rate. Now V satisfies the renewal equation 

(4:4) V=Fo+F*V 

and thus Vet) = #-It iff 

(4.5) Fo(t) = !.. - 1: itu~y) F{dy}. 
# # 0 

Integration by parts shows this to be the same as 

(4.6) 1 f.t Fo(t) = - [1 - F(y)] dy. 
# 0 

This Fo is a probability distribution and so the answer is affirmative: with 
the initial distribution (4.6) the rene~1;al rate is cOl1stant~ V(t) = p,- l t. 

The distribution (4.6) appears also as tile limit distribution of the residual 
waiting times, or hitting probabilities. To given t > 0 there c0rresponds a 
chance-dependent subscript N ( such that 

(4.7) 

In the terminology introduced in VI,? the variable S~t+l - t is called 
residual waiting time at epoch 1. We denote by fU l,~) rhf'. probability 
Nlati't is <~. In other words, H(t,~) is the probdoility that the first --..., 
renewal epoch following epoch t lies within t, t+;, or that the level t 

'qe overshot by an amount <~. This event occurs if some rene\\:it epoch S 0\ 

equals x < l and the following intcrarrival Lime lies between ( - x and 
t - x +~. In the case of a pure renewal process 'Ne get, su.:nmmg over 
x and n, 

(4.8) H(t, ~) = CU{d.rHF(t-;r+'~) --- >\t-x)1. 
",0 

Th~s integral contains ; as a free parameter but is of ;.he standard form 
U * z with z(t) = f(t+~) - F(t), which function is directly integrable.5 

5 For II~ < X < (n+l)~ we have z(x):C:;; F«n+2)~) - F(n~), and the series with 
these terms is obviously convergent. 



370 RENEW AL THEORY XI.4 

Assume F non-arithmetic. Since 

(4.9) r z(l) dl = r ([1 - F(tll - [1 - F(t+~)]) dl = f(l - F(s» ds 

we have the limit theorem 

(4.10) lim H(t, ~) = ft-1i~ [1 - F(s)] ds. 
t-oo 0 

(It is easily verified that this is true also for the delayed process regardless 
of the initial distribution Fo.) This limit theorem is remarkable in several 
respects. As the following discussion shows, it is closely connected with the 
inspection paradox of VI,7 and the waiting time paradox in 1,4. 

When ft < 00 the limit distribution (4.10) agrees with. (4.6) and thus 
jf ft < cp the" residual waiting time has a proper limit distribution which 
coincides with the distribution attaining a uniform renewal rate. In this 
pattern we recognize one more the tendency towards a "steady state." 

The limit distribution of (4.10) has a finite expectation only"if F has a 
variance. This in9icates trat, roughly speaking, the entrance probabilities 
behave worse than F. Indeed, when ft :=; 00" we have 

(4.11) H(t, ~) -+ 0 

for all ~: the probability "tends to 1 that the level t" will be overshot by an 
arbitrarily large amount ~. (For the case of regularly varying tails more 
precise information is derived in XIV,3.) 

Example$. (a) Superposition of renewal processes. Given n renewal proc
e&ses, a new process can be formed by combining all their renewal epochs 
into one sequence. In general the new process is not a renewal process, 
but it is easy to calculate the waiting time W for the first renewal following" 
epoch O. We shall show that under fairly general conditions the distribution 
of W is approximately exponential and so the combined process is close to a 
Poisson process. This result explains why many processes (such as the in
coming traffic at a telephone exchange) are of the Poisson type. 

Consider n mutually independent renewal processes induced by the 
distributions of their interarrival times by F1 , .. ~ , Fn with expectations 

/11' ... , ftn' Put 
111 

(4.12) - + ... + - = -. 
ftl ftn (X 

\"Ie require, roughly speaking, that the renewal epochs of each individual 
renewal process are extremely rare so that the cumulative effect is due to 
many small causes. To express this we assume that for fixed k and y the 
probabilities Fk(y) are small and ftk large-an assumption that becomes 
meaningful in the form of a limit theorem. 
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Consider the "steady state" situation where the processes have been 
going on for a long time. For the waiting time W k to the nearest renewal 
epoch in the kth process we have then approximately 

(4.13) 1 I.t t P{W k < t} ~ - (1 - F k(Y» d Y ~ - . 
f-tk 0 'f-tk 

[The last approximation is justified by the smal1nes~. of Fk(Y)'] The waiting 
time W in the cumulative process is the smallest among the waiting 
times W k and hence 

(4.14) 

This estimate is easily made precise, and under the indicated conditions 
the exponential distribution emerges as the limit distribution as n -+ 00. 

(b) Hitting probabilities in random walks. For a sequence of independent 
random variables Xl, X2 , • •• let 

Y n = Xl + ... + X n• 

FJr positive Xk the random walk {Yn } reduces to a renewal process, but 
we consider arbitrary Xk • Assume the random walk to be persistent so 
that for each t > 0 with certainty· Y n > t for some n .. If N is the smallest 

index for which this is true YN is called the point of first entry into t, 00. 

The variable Y N - t is the amount by which the t level is overshot at the 
first entry and corresponds to the residual waiting time in renewal processes. 
We put again P{YN ~ t + ~} = H(t, ~), and show how the limit theorem 
for residual waiting times applies to this distribution. 

Define Sl as the point of first entry into 0, 00 and, by induction, 5 nH 

as the point of first entry into Sl'P '1:). The sequence Sl' S2, ... coincides 
'with the ladder heights introduced in VI,8 and forms a renewal prQcess: 
the differences Sn+l - Sn are evidently mutually independent and have the 
same distribution as So. Thus Y N - t is actually the residual waiting 
time in the renewal process {Sn}, and so (4.10) applies. • 

By the method used to derive (4.10) it can be shown that !he spent waiting 
time t - SN

t 
has the same limit distribution. Fr.r the length L t = SN1+l - SNc 

of the interarrival time containing the epoch t we get 

( 4.15) P{L, < ;) = L, U{dx)[F(~) - F(t-xl] 

an¢ hence 

(4.16) limP{L t ~ ~}= f-t-lI.~[F(~) - F(y)] dy = ICiI.~x F(dx). 
t .... oo 0 0 
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The curious implications of this formula were discussed in r.onnection with 
the inspection paradox in VI,7 and the waiting time paradox in 1,4. 

It is easily seen that the three families of random variables t - SNH SNt+l - 1, and L 
form Markov processes with stationary transition probabilities. Our three limit theorems 
theref~re represent examples for ergodic theorems for Markov processes. (See also 
XIV,3.) 

5. THE NUMBER Nt OF RENEWAL EPOCHS 

For simplicity we consider a pure renewal process so that the rth renewal 
epoch is the sum of r independent variables with f as distribution. The 
origin counts as renewal epoch. We, denote by Nt the number of renewal 

1--1 
epochs within 0, t. The event {N t > r} occurs iff the rth renewal epoch 

, 1-/ 

falls within 0, t" and hence 

(5.1) P{N t > r} = FT*(t). 

Obviously Nt > 1. It follows that, 

co 

(S.2) , E(Nt } = ~P{Nt > r} = Vet}. 
'r=-!) 

(For higher moments See problem 13.) 
The variable N toccursalso ,in sequential sampling. Suppose that a 

sampling {Tn} is to continue until the sum of the observations for~he first 
ti~e exceeds t. Then Nt represents ,the total 'number of trials., Many 
.tedious calculations might have been saved by the use of the estimate (3.1) 
provided by the refined renewal theorem. 

If F has expectation # and var.iance 0'2 the .asymptotic behavior of the 
distribution of Nt ,is determined by' the fact that FT*is asymptotically 
normally distributed. The nec,essary calcul~tions can be 'found in 1; .XIII,6 
and do not depend on the arithmetic character of F. W~ hav~ therefore tb,e 
,general 

Central limit theorem for Nt. If F has expectation p,' and variance 0'2 
then for large t the number Nt of renewal epochs is approximately normally , 
diwibuted with expectation tl-l~l and variance to'2#-3. 

Example. (a) Type l' counters. The ihcoming particles c'onstitute a 
Poisson process. A particle reaching the counter when it is free is registereo 
but locks the counter for afixed duration e. Particles reaching the counter 
during a locked period have no effect whatever. For simplicity we start the 
process at an epoch when a new particle reaches a free counter. We have 
then two renewal processes. The primary process-the incoming traffic-is a 
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Poisson process, that is, its interarrival times have an exponential distribution 
1 - e-ct with expectation c-1 and variance c-2

• The successive registrations 
form a secondary renewal process in which the interarrival times represent 
the sum of ~ plus an exponential random variable. The waiting time 
between registrations has thNefore expectation ~ + c-1 and variance c-2• 

Thus the number of registrations within the time interval O. t is approximately 
normally distributed with expectation tc(l +C~)-l and variance tc(l +C~)-3. 

The discrepancy between these quantities shows that the registrations 
are not Poisson distributed. In the early days it was not understood that the 
registration process differs es.sentially from the primary process, and the 
observations led some physicists to the erroneous conclusion that cosmic ray 
showers do not conform to the Poisson pattern of "perfect randomness." ~ 

A limit distribution for Nt exists iff F belongs to some domain of attraction. These 
domains of attr.action are characterized in IX,S and XVII,S and it follows that Nt has a 
proper limit distribution iff 

(5.3) 1 - F(x) ,....., x-(% L(x), x- .0 

where L is slowly varying and D < ex < 2. The limit distribution for Nt is easily obtained 
and reveals the paradoxical properties of fluctuations. The behavior is radically different 
for ex < 1 and .ex> 1. 

Consider the case 0 < ex < I. If ar is chosen so that 

(5.4) 
2-ex 

r[I - £(a7')] ---
ex 

then FT*(a,.x) -- G (%(x) where G (% is the one-sided stable distribution satisfying the con
dition ::r(%[1 - G(%(x)] -- (2 - ex)/ex as x -- 00. (Cf. IX,6 and XVII,S as well as XIII,6.) 
Let rand t increase in such a manner that t,....., arT. On account of the slow variation 
of L we get then from (5.3) and (5.4) 

2 - ex x-"I 
(5.5) r--------

ex I - F(t) 

whence from (5.1) 

(5.6) 
( 

2-ex } P [1 - F(t)]N t > -ex- x- 2 
-- G/x). 

This is an analogue to the central limit theorem. The special case ex = t is covered in 1; 
XIII,6. The surprising feature is conveyed by the norming factor 1 - F(t) in (5.6). Very 
roughly 1 - F(t) is cf the order of magnitude t -ex and so the probable order of magnitude 
of Nt is of the order t(%; the density of the renewal epochs must decrease radically (which 
agrees with the asymptotic behavior of the hitting proba~ilities). 

When I < rt. < 2 the distribution F has an expectation p < if.: and the same type of 
calculation shows that 

(5.7) 
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where .}.(t) satisfies 

(5.8) 

RENEWAL THEORY 

2-ex 
,1[1 - F(A(t)] - -- fl. 

ex 

XI.6 

In this case the expected number of renewal epochs increases linearly, but the norming 
AU) indicates that the fluctuations ab<?ut the expectation are extremely violent. 

6. TERMINATING: (TRANSIENT) PROCESSES 

The general theory of renewal processes. wjth a defective distribution F 
reduces almost to a triviality. The corresponding renewal equation, howeverz 
frequently appears under diverse disguises wjth accidental features obscuring 
the general background. A clear understanding of the basic facts will avoid 
cumberso~e argument in individual applications. In particular, the 
asymptotic estimate of theorem 2 will yield resuI'ts previously derived by 
special adaptations of the famous Wiener-Hopf techniques. 

To avoid notational confusion we replace the underlying distribution 
F by L .. Accordingly, in thi,s section L stands for a defective distribution 
with L(O) = 0 and L( (0) = Loo < 1. It serves as distribution of the 
(defective) in terarri val times Tk , the defect I - Loo representing the 
probability of a termination. The origin of the time axis counts as renewal 
epoch n umber zero, and S" = T 1 + ... + :r" is the nth renewal epoch; 
it is a defective variable with ~istributjon L"* whose total mass equals 
L1I*( (0) = L:'. The defect 1 - L:, is the probability of extinction before 
the nth renewal epoch~ We put again 

00 

(6.1) U = 2,1I'*. 
11=0 

As in the persistent process, Vet) equals the expected number of renewal 
I--f 

epochs within 0, t;· this t~me, however, the expected number of renewal 
epochs ever occurring is finite, namely , 

1 
(6.2) U(oo)=l_L' 

00 

The probability that the nth renewal epoch S" is the last and <x equals 
(t -LriJ L"*(x). We have thus 

Theorem 1. A transient renewal process commencing at the origin terminates 
with probability one. The epoch of termination· M (that is, the maximum 
attained by the sequence 0,81,82 , ••• ) has the proper distribution 

(6.3) P{M < x} = (I-Loo) U(x). 

. The probability that the nth renewal epoch is the last equals (l-Loo)L:', 
and so the number of renewal epochs haS a geometrIc distribution. 
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It is possible to couch these results in terms of the. (defective) renewal 
equation 

(6.4)' Z(t) = z(t) + ~CZ(t-y) L{dy}, 

but with a defective L the theory is trite. Assuming again that z(x) = 0 for 
x <0 the unique solution is given by 

(6.5) 

and evidently 

(6.6) 

Z(t) = ~CZ(t-y) U{dy} 

Z(t) __ z( co) 
l-L 00 

whenever z(t) -- z( co) as· i:-- co. 

Examples. (a) The event {M < t} occurs if the process terminates with 
So, or else if Tl assumes some positive value y < t and the residual 
process attains an age < t ~ y. Thus Z(t) = P{M < t} satisfies the 
renewal equation 

(6.7) ~~t) = 1 - Loo + rtZ(t_y) L{dy}, 
. Jo 

This is equivalent to (o.j). 
(b) Calculation of moments. The last equation represents the proper 

distribution Z as the sum of two defective distributions, namely a con
volution and the distribution with a single atom at the origin. To calculate 
the expectation of Z put 

(6.8) 

and similariy for other distributions, whether defective or not. Since L is 
defective the convolutio~ in (6.7) has expectation Loo' Ez + EL . Thus 
Ez = ELI(1 - Loo). For the more general equation (6.4) we get in like 
manner. 

Ez + EL 
(6.9) Ez = --'--":::;: 

1 - Loo 

Higher moments can be .calculated by the same method. 

Asymptotic estima tes 

[n applications z(t) usually tends to a limit z( co): and in this case Z(t) 
tends to the limit Z( co) given by (6.6). it is frequently important to obtain 
asymptotic estimates for the difference Z( (0) - Z(t). This can be achieved 
by a method of wide applicability in the theory of random walks [see the 
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associated random walks in example XU,4(b)]. It depends on the (usually 
harmless) assumption that there exists a number K such that 

(6.10) 

This root K is obviously unique and, the distribution L being defective, 
K > O. We now define a proper probability distribution L# by 

(6.1l) 

and associate with each function f a .new function f#. defined by 

f#(x) = eKX f(x). 

A glarice at (6.4) shows that the renewal equation 

holds. Now if Z#(t)--a¢O then Z(t)""'qe'-Kt. Accordiilgly,if z# is 
directly integrable [in which case z( (0) = 0] the renew.al theorem implies 
that 

(6.13) 

where 

(6.14) flU = r e'''y L{dy} 

In (6.13) one has a go·od estimate for Z(t) for large t. 
With a slight modification this procedure applies also when z(oo) ¢ O .. 

Put 

It is easily verified that the difference Z( co) - Z(I) satisfies the 'standard 
renewal equation (6.4) with z replaced by ZI' A simple integration by parts 
shows that the integral of ZI#(X) = zl(x)eKX is given by "the right side in (6.15). 
Applying (6.13) to ZI we get-therefore 

Theorem 2. 1/(6.10) holds then the solution of the reneHJal equation satisfies 

(6.15) ,u#eKt[Z(oo) - Z(I)] __ z(:) + iooeKX[Z(OO) - z(x)] dx 

provided ,u ¢ C? and ZI is directly inlegrable. 
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For the particular case (6.7) we get 

(6.16) P{M > t} "" 1 - La;, e-Kt• 

KIl 
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The next section will show the stlrprising power of this estimate~ In 
particular, example (b) will show th,at .our simple metho~ sometimes leads 
quickly to results that used to require deep and laborious J!lethods. 

The case Loo > 1. If Loo >1 there exists a constant K < 0 such that (6.10) is true . . 
and the transformation described reduces the integral equation (6.4) to (6.12). The 

. renewal theorem therefore leads to precise estimates of the asymptotic behavior of Z(t)eKt 

[The discrete case is c~'\lf.red in theorem 1 of 1; XIII, to. For applicat!ons in demography 
see example 1; XU,IC(e).J 

7. DIVERSE APPLICATIONS 

As has been pointed out already the theory of the last section maybe 
applied to problems which are conceptually not directly related .to renewal 
processes. In this section we give two independent examples. 

(a) Cramer's 'estimates for ruin. It was shown in VI,5 that the ruin
problem in compound Poisson processes and problems connected with 
storage facilities, scheduling of patients, etc .• depends on a probability 

distribution R., concentrated on 0, 00, and satisfying ihe integro-differential 
equation 

(7.1) . Rf(~).= ~ R(z)'- ·~·izR(Z-X) F{dxJ 
c co' 

where F is a proper d~stribution.6 Integrating (7.1) over 0, t and per
forming the obvious integration by parts one gets 

(7.2) 
. cx t 

R(t) - R(O) ;-~ Jo R(t-x)[l - F(x)] dx. 

Here R(O) ·is an unknown constant, butotherwise (7.2) is a renewal eqJJation 
with a d~fective distribution L with density cx/c [1 - F(x)]. Denoting tl).e 
expectation of F by ,u the mass of L equalS Loo . cxllic. [The process is ' 
meaningful only if La: < 1 for otherwise R(i) = 0 for all t.]. Note that 
(7.2) is a special case of (6.4) and that R(oo) = 1. Recalling (6.6) we con
clude that 

(7.3) R(O) = 1 - cxlllc, 

6 This is 'the special case of VI,(S.4) when F is concentrated on ~. It will be.treated 
by Laplace t~ansforms in XIV,2(b). The generalsituati~n will be taken up in XU,5(d). 
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and with this value the integral equation (7.2) reduces to the form (6.7) for 
the distribution of the lifetime M of a terminating process with interarrival 
time distribution L. From (6.16) it follows that if there exists a constant 
K sllch that· 

(7.4) 
':J.i'X) 
- eKX [1 - F(x)] dx = 1 
C 0 

and 

(7.5) 

then as t ---+ 00 

(7.6) 

This is Cramer's famous estimate originally derived by deep complex 
variable methods. The moments of R may be calculated as indicated in 
example 6(b). 

(b) Gaps in Poisson processes. In VI,7 we derived a renewal equation for 
the distribution V of the waiting time for the first gap of length > ~ in a 
renewal process. When the latter is a Poisson process the interarrival times 
have an exponential distribution, and the renewal equation VI,(7.1) is of 
the standard form V = z + V * L with 

L(x) = 1 - e-cx , 

(7.7) 
z(x) = 0 for x < ~ 

L(x) = 1 for x > ~. 
Since z( (0) = 1 - Loo the solution V is a proper distribution as required 
by the pro~lem. 

The moments of our waiting time Ware easily calculated by the method 
described in example 6(b). We get 

(7.8) 
eC~ 1 

E(W) = -, 
c 

e2c~ - 1 - 2c~ eC~ 
Var(W) = ------

c2 

If we interpret W as the waiting time for a pedestrian to cross a stream 
of traffic these formulas reveal the effect of an increasing traffic rate. The 
average number of cars during a crossing time is c~. Taking c~ = 1, 2 
we get E(W) ~ 1.72~ apd E(W) ~ 3.2~, respectively. The variance 
increases from about ~2 to 6~2. [For explicit solutions and connection 
with covering theorems see example XIV,2(a).] The asymptotic estimate 
(6.14) applies. If c~ > 1 the determining equation (6.10) reduces to 

(7.9) cellc- c).; = K, 0 < K < c 

and hy a routine calculation we get froPl (6.14) 

(7.10) 1 _ Vet) f"Oooj 1 - K/C e-Kt • 

1 - K~ 
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8. EXISTENCE OF LIMITS IN STOCHASTIC PROCESSES 

Perhaps the most striking proof of the power of the renewal theorem is 
that it enables us without effort to derive the existence of a "steady state" 
in a huge class of stochastic processes. About the process itself we need 
assume only that the probabilities in question are well defined; otherwise 
the theorem is purely analytic. 7 

Consider a stochastic process with denumerably many states Eo, E], ... 
and denote by Pk(t) the probability of Ek at epoch 1 > O. The following 
theorem depends on the existence of "recurrent events," that is, of epochs 
at which the' process starts from scratch. More precisely, we assume that 
with probability one there exists an epoch Sl such that the continuation of 
the process beyond Sl is a probabilistic' replica of the whole process 
commencing at epoch O. This implies the existence of further epochs 
S2' S3' . .. with the same property. The sequence {S71} forms a persistent 
renewal process, and we assume that the mean recurrence time l' =E(Sl) 
is finite. We denote by Pk(t) the conditional probability of the state Ek at 
epoch t + s given that Sl = s. It is assumed that these probabilities are 
independent of s. Under these conditions we prove the important 

Theorem 

(8.1) lim Pk(t) = Pk 
1-000 

exists WiTh Pk > 0 Qlld 2Pk = 1. 

. Proof. Let qlt) be the probability of the joint event that 81 > t and 
that at epoch t the system is in state Ek • Then 

00 

(8.2) Iqic(t) = 1 - F(t) 
'·k=O 

where F is the distribution of the recurrence times SIl--l-l - Sn. By hypothesis 

(8.3) 

The function q1e is dir~t1y integrable since it is dominated by the monotone 
integrable function 1 - F. Therefore 

1 J:oo . lim Pk(t) ~ - qk(t) dt 
1-000 J.l 0 

(8.4) 

by the second renewal theorem. Integration of (8.2) shows that these limits 
add to unity, and the theorem is proved. ~ 

7 For more sophisticated results see V. E. BeneS, A "renewal" limit theorem for general 
stochastic processes, Ann. Math. Statist., vol. 33 (1962) pp. 98-113, or his book (1963). 
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It is noteworthy that the existence of the limit (S.l) has been established 
without indication of a way to compute them. 

Ngte. If Fo is a proper distribution, then (S.l) implies that 

(S.5) f.tPk(t- y) Fo{ dy} -- Pk as t -+ 00. 

Thus the theorem also covers the case of a delayed renewal process {Sn} 
in which So has distribution Fo. 

Examples. (a) Queuing theory. Consider an installation (telephone ex
change, post office, or part of a computer) consisting of one or more "servers," 
and let the state ETc signify that there are k "customers" in the installation. 
In most models the process starts from scratch whenever an arriving customer 
finds the system in state Eo; in this case our limit theorem holds iff such an 
epoch occurs with probability one and the expectations are finite. 

(b) Two-stage renewal process. Suppose that there are two possible states 
E1, E2 • Initially the system is in E1. The successive sojourn times in E1 
are random variables Xj with a common distribution Fl' They alternate 
with sojourn times Yj in E2 , having a common distribution F2• Assuming, 
as usual, independence of all the variables we have an imbedded renewal 
process with interarrival. distribution F = F1 * F2• Suppose E(Xj) = 
= lUI < 00 and E(Yj) = /-l2 < 00. Clearly q1(t) = 1 - Fi(t) and therefore 
as t -+ 00 the probabilities of Ek tend to the limits 

(S.6) 

This argument generalizes easily to multi-stage systems. 
(c) The differential equations of 1; XVII correspond to stochastic 

processes in which the successive returns to any state form a renewal process 
of the required type. Our theorem therefore guarantees the existence of limit 
probabilities. Their explicit form can be determined easily from the diff~r
ential equations with the derivatives replaced by zero. [See, for example, 1; 
XVII,(7.3). We shall return to this point more -systematically in XIV,9. 
The same argument applies to the semi-Markov process described in problem 
14 of XIV ,10.] ~ 

*9. RENEW AL THEORY ON THE WHOLE LINE 

In this section the renewa~ theory will be generalized to distributions 
that are not concentrated on a half-line. To avoid trivialities we assume 

* Not used in the sequel. 
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that F{ - 00, O} > 0 and F{O, oo} > 0 and that F is non-arithmetic. The 
modifications necessary for arithmetic distributions will be obvious by 
analogy with section I. . 

We recall from VI,lO that the distribution F is transient iff 
OC; 

(9.1) Uri} = L FII*{J} 
1/=0 

is finite for all finite intervals. Otherwise U{I} = 00 for every interval and 
F is called persistent. For transient distributions the question imposes 
itself: do the renewal theorems of section I carryover? This problem has 
intrigued many mathematicians, perhaps less because of its intrinsic 
importance than because of its unsuspected difficulties. Thus the renewal 
theorem was generalized step by step to various special classes of transient 
distrihutions by Blackwell, Chung, Chung and Pollard, Chung and Wolfo
witz, Karlin, and Smith, but the general theorem was proved only in 1961 
by Feller and Orey using probabilistic and Fourier analytic tools. The 
following proof is considerably simpler and more elementary. In fact, 
when F has a finite ,expectation the proof given in section 2 carries over 
without change. (For renewal theory in the plane see problem 20.) 

For the following it must be recalled that a distribution with an expectation 
fl :;C 0 is transient (theorem 4 of VI,IO). As usual, [+ t denotes the 
interval obtained by translating [ through t. 

General renewal theorem. If F has an expectation !l- > 0 then for every 
finite interval [ of length h >, 0 

h 
(9.2) U{I + I} -- -' 1 -- 00 

!l-
(9.3) U{I+I}--O 1---00· 

(b) If F is transient and without expectation then U{[ + t} -- Oas 
t -- ± 00 for ever), finite ~nterval [. 

From now on it is unde'rstood that F is transient ,and that z is a con
tinuous, function vanishing outside t1!e finite interval -11 < x < h where 
z > O. 

Before proceeding to the proof we recall a few facts proved in vr ,10. 
The convolution Z = U * z is well definet! by 

(9.4) Z(x) = f_+ooooZ(X- y ) U{dy} 

because the effective domain of integration is finite. According to theorem 
2 of VI, I 0 this Z is a continuous function satisfying the renewal equation 

(9.5) Z = z + F*Z, 

and it assumes its maximum at a point ~ at which z(~) > O. 
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, Put Un = FO* + ... + Fn*. Every non-negative solution Z of (9.5) 
satisfies Z > z = Uo * Z, and hence by induction Z > Un * z. It follows 
that the solution (9.4) is minimal in the sense that ZI > Z for any other non
negative solution ZI' Since Z1 = Z + const. is again a solution, it follows 
that 

(9.6) lim inf Z(x) = 0, x-+- ± 00. 

Lemma 1. For every constant a 

(9.7) Z(x + a) - Z(x)--O x-- ±oo. 
Proof. The proof is identical with the proof of lemma 2 in section 2. 

There we used the fact that a bounded ,uniformly continuous solution of the 
convolution equation 

(9.8) 

attaining its maximum at x = 0 reduces to a constant. This remains true 

also for distributions not concentrated on 0, 00, and the proof is actually 
simpler because now the set I' formed by the points of increase of F, 
£2*, .. , is everywhere dense. ~ 

Although we shall not use it explicitly, we mention the following interesting 

Coronary.S Every bounded continuous solution of (9.8) reduces to a constanl. 

Proof. If .; is uniformly continuous the proof of lemma 1 applies without cha~ge_ 
Now if G is an arbitrary probability distribution then ~l = G * ~ is ag:!:ii a solution 
of (9.8). We may choose G such that ~1 has a bounded derivative and is therefore 
uniformly continuous. In particular, the convoiution of ~ with an arbitrary normal 
distribution reduces to a constant. Letting the variance of G tend to zero we see that ; 
itself reduces to a constant. ~ 

Proof of the renewal theorem when expectations exist. When 0 < fl < 00 

the proof in section 2 applies with one trite change. ,In the final relation (2.13) 
we used the trial function Z = 1 - F for which the solution Z reduced 
to the constant 1. Now we use instead 

(9.9) Z = £0* - F. 

For it Un * Z ="£0* - F(n+1)*, and since fl > 0 it Is clear that Z = FO*. 
It should be noticed that this proof applies also if fl = + 00 in the 

obvious sense that the integral of x F{dx} diverges over 0, 00, but converges 

over - 00, O. ~ 

S This corollary holds for distributions on arbitrary groups. See G. Choquet and J. 
Deny, C. R. Acad. Sci. Paris, vol. 250 (1960) pp. 799-801. 
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When no expectation exists the proof requires a more delicate analysis. 
The next lemma shows that it suffices to prove the assertion for one tail. 

Lemma 2. Suppose that no expectation exists and that 

(9.10) UtI - t} -+ 0, t -+ + 00. 

Then also 

(9.11) UtI + t} -+ 0, t -+ +00. 

Proof. We use the result of example 4(b) concerning hitting probabilities in 
the random walk governed by F. Denote by H(t,~) the probability that 

the first entry into t, 00 takes place between t and t +~. Relative to 
t + x the interval I + t occupies the same position as I - x relative to t 
and hence 

(9.12) U{I + t} = iooH(t, d~) U{I - ~}. 

Considering the first step in' the random walk one sees that 

(9.13) 1 - H(O, ~) ~ 1 - F(~), 

We know already that the assertion is true if f.1, < 00 or f.1, = - 00, that is, 
--

if the right side is integrable over 0, 00. Otherwise H has an infinite 
expectation, and hence B(t,~) -+ 0 as t -+ 00 for every ~. For large t 
therefore only large values of ~ play an effective role and for them ,U{l - ~} 

is small. Thus (9.11) is an immediate consequence of (9.10) and (9.12). ~ 

Lemma 3. ~uppose Z(x) < m and choose p > 0 such that p' = 
= 1 - pm > O. To given € > 0 there exists an sf: such that for s > Sf: 
either 

(9.14) Z(s) < € 

or else 

(9.15) Z(s + x) > P Z(s) Z(~) for all x. 

Proof. Because of the uniform continuity of Z and lemma 1 we can 
choose s such that 

f: 

(9.16) Z(s + x) - Z(x) > -€p'. for s > Sf: and Ixl < Iz. 

Put 

(9.17) Vs(x) = Z(s + x) - P Z(s) Z(x), vsCx) = z(s + x) - p Z(s)'z(x). 

Vs satisfies the renewal equation Vs = Vs + F * Va and from the remar.k 
preceding lemma 1 it follows that if Va assumes negative values, then It, 
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assumes a minimum at a point ~ where v(~) < 0, and hence I ~I < h. 
In vrew of (9.16) we have then if s > s€ 

(9.18) Vs(~) > ~EP' + Z(s)[l - P Z(~)] > p'[Z(s) - E]. 

AccordilJgly, either (9.14) holds, or else v:. assumes no negative values in 
which case (9.15) is true. ~ 

Lemma 4. Let 

(9.19) lim sup Z(x) = 'YJ x-+- ± 00. 

Then also 

('9.20) lim sup [Z(x) + Z( -x)] = 'YJ x-+- 00. 

Proof. Choose a such that Z(a) < b; this is possible in consequence of 
(9.6). By the preceding lemma we have for sufficiently large seither 

(9.21) p Z(s) Z(a-s) < Z(a) < 0, 

or else Z(s) < E. Since E is arbitrary, the inequality (9.21) will hold in 
any case for all s sufficiently large. In view.of lemma 1 this implies9 

(9.22) Z(s) Z( -s) -+- O. 

Thus for large x either Z(x) or Z( -x) is small, and since Z > 0 it is 
clear that (9.19) implies (9.20). ~ 

Proof of the theorem. Assume 'YJ > 0 because otherwise'there is nothing 
to be proved. Consider the convolutions of Z and z with the' uniform 

distribution Q, t, namely 

(9.23) ~(x) = - Z(y) dy, 1 f.x 
t a:-t 

1 f.x wt(x) = - z(y) dy, 
t x-t 

Our next goal is to show that as t -~ 00 one of the relations 

. (9.24) 1 it . 1 iO 

Wt(t) = - Z(y) dy ~ 'YJ or Wt(O) = - 2(y) dy -+- r; 
tot -t 

must take place. 
Because of (9.7) the upper bounds for Z(x) and Wt(x) (with t fixed) are 

the same, and hence the maximum of Wt - is >-r;. On the other hand, W t 
satisfies the renewal equation (9.5) with z replaced by W t• As noted before', 

9 It is easily seen that (9.22) is equivalent to U{I + t} U{I- t} -0. If p{I} stands for 
the probability that the random walk {Sn} governed by F enters I, then (9.22) is also 
equivalent to p{ I + t} p{ I - t! - O. If th,is were false the probability of coming near the 
origin after a visit to I + t wotlld not tend to 0, and F could not be transient. 
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this implies that the maximum of W t is attained at a point where 
positive, that is, between -h and t + h. Now for it ~ x < t 

w, is 

1 IX . 1 it-x 
~(x) = - Z(y) dy + - [Z(y) + Z( -y)] dy. 

t I-;e to' 
(9.25) 

The combined length of the two intervals of integration is x and &0 it follows 
from (9.20) that for t sufficiently large W;Cx) < n(x/t) + €. thus if 
Wt(x) > 'YJ the point x must be close to t and Wt(t) close to 'YJ. If the 
maximum of W t is attained at a point x ~ it a similar argument shows 
that x must be close to 0 and Wt(O) close to 'YJ. . 

We have now proved that for large t either Wt(t) or Wt(O).is close to 'YJ. 
But a glance at (9.23) shows that in view of (9.20) 

(9.26) lim sup [W,(t) + W,(Ol) = lim sup t-11'[Z(y) + Z( -yl) d.y < 7]. 

Because of the continuity .of the two functions therefore either fVt(t) ~ 'YJ. 
and Wt(O) ~ 0, . or else these relations hold with the limits interchanged. 

For reasons of symmetry we may.assume that Wt(t) ~ 'YJ, that is 

(9.27) ~(t) = c 1 ftz(y) dy = c 1 ftI2[ZUt+y) + Z(!t - y)J dy ~ 'YJ. Jo Jo . 
It follows that for arbitrarily large t there exist values of x such that both 
Z(x) and Z(t - x) are close to'YJ. By lemma 3 this implies that for large t . 

the values of Z(t) are bounded away from 0, and therefore Z( -t) ~ 0 In 

consequence of (9.22). Thus U{J - t} ~ 0 as t -+ 00, and in view of 
lemma 2 this accomplishes the proof. ~ 

10. PROBLEMS FOR SOLUTION 

(See also problems 1"2-20 in VI,13.) 

1 .. Dropping the assumption F(O) = 0 amounts to replacing .F by the dis
tribution F# = pHo + qF where Ho is concentrated: at the origin and p + q = 1. 
Then U is replaced by U # =U/q. Show that this is a probabilistically obvious 
consequence of the definition and verify the assertion formally (a) by calculating 
the convolutions, (b) from the renewal equation. 

2. If F is the uniform distribution in 0, 1 show that , 
n (t - k)k 

U(t)=2(_!)ket-k k! for n<·I<n+l. 
k==O 

T,his formula is frequently rediscovered in queuing theory, but it reveals little about 
the nature of U. The asymptotic formula 0 < U(t) - 21 --! is much more 
interesting. It is an immedi~.te consequence of (3.1). 

3. Suppos~ ~hat Z > o and that Iz'l is integrable over 0, co. Show that z is 
directly integrable. 
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Note: In the next three problems it is understood that Z and Zl are the 
solutions of the standard renewal equation (1.3) corresponding to z and zl. 

4. If Z -.. 00 'and Zl f""'o..I Z as x -.. 00 show that Zl ~ Z. 

5. If Zl is the integral of z and zl(O) = 0, then Zl is the integral of Z. 
Conclude that if z = x n- 1 then z.-- xn/(np) provided p < 00. 

6. (Generalization.) If zl = G * z (where G is a measure finite on finite 
intervals) then also Zl = G * Z. For G(x) = :t;<l with a > 0 conclude: 

~f z(x) "-I ;&-1 then Z(x) "-' xa/(a/l). 

7. (To theorem 2 o[section 3). Denote by Ir the density of F1'* and put 
v = u - f - ... - fr· Show that if.rr is bounded, then vex) -.. 1/ p. In particular, 
if [-.. 0 then u -.. 1/ Il. 

8. If FH has a directly integrable density then V = V-I - F has a density 
v tending to ll1l. 

9. From (4.4) show that Z(t) = Vet) - V(t - 11) satisfies the standard renewal 
equation with z(1) = Fo(t) - Fo(t - h). Derive the result V(t) - V(t - 17) -.. hlp 
directly from the renewal theorem. 

10. Joint distribution [or the residual and spent waiting times. With the notation 
(4.7) prove that as t -.. 00 

P{t - SN
t 
> x, SN

t
+1 - t > y} -.. p - x. [1 - F(s)] ds. . 1 i 

ft :t'!"'11 

(Hint: Derive a renewal equation for the left side.) 
11. Steady-state properties. Consider a delayed renewal process with initial 

distribution Fo given by (4.6). The probability H(t,~) that a renewal epoch 
S1/ occurs between t and t + ~ satisfies the renewal equation 

H(t, ~) =.Fo(t+~) - Fo(t) + Fo* H(t, ~). 

Conclude without calculations that H(t,~) = Fo(t) identically. 
12. l\-faxirrzal observed I[fetime. In the standard persistent renewal process let 

V(t,~) be the probability that the maximal interarrival time observed up to 
epoch t had a duration >~. Show that 

. V(t, <) = I - F(I;) + J: V(t-y,I;)F{dy}. 

Discuss the character of the solution. 
13. For the n~mber Nt of renewal epochs defined in section 5 show that 

co 

E{N7) = 2: (2k+l)Fk* (t) = 2V* V(t) - V(1). 
k=O 

Using an integration by parts conchide from this and the renewal theorem that 

E(N;) = 2 it Vex) dx + a: t + oCt) 
fl 0 Ii 

and hence Var (Nt) ~ (a2/ I(3)t in accordance with the estimate in the central limit 
theorem. (Note: This method applies also [0 arithmetic distributions and is 
preferable to the derivation bfthe same result outlined in problem 23 of 1; XIII,12.) 
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14. If F is proper and a a constant, reduce the integro-differential equation 

Z' = aZ - aZ *. F to Z(I) = Z(O) + a J.' Z(I-x)[1 - F(x)] dx: 

15. Generalized type IT counters. The incoming pa.rticles constitute a Poisson 
process. The }th arriving particle locks the counter for a duration T j and an1luls 
the aftereffect (if any) of its predecessors. The T j ar~ independent of each other 
and of the Poisson process and have the common distribution G. If Y is the 
duration of a locked interval and Z(t) = P{Y > t}, show that Y is a proper 
variable and 

Z( t) = [1 - G(t)]e-at + J.t Z(t -x) . [1 - G(x)]xe-aX dx. 

Show that this renewal process is terminating if and only if G has an expectation 
p < (X-I. Discuss the applicability of the asymptolic estimates of section 6. 

16. Effect of a traffic island. [Example 7(b).] A two-way traffic moves in two 
independent lanes, representing Poisson processes with equal densities. The 
expected time required to effect a crossing is 2~, and formulas (7.10) apply with 
this- change. A traffic island, however, has the effect that the total crossing time 
is the sum of two independent variables with expectations anc;l variances given in 
(7.10). Discuss the practical effect. 

17. Arrivals at a counter constitute a persistent renewal process with distribution 
F. After each registration the counter is locked for a fixed duration ; during 
which all arrivals are without effect. Show that the distribution of the time from 
the end of a locked period to the next arrival is given by 

J.~[F(~+t-y) - F(~-y')] U{dy}. 

If F is exponential so is this distribution. 
18. Non-linear 'renewal. A particle has an exponential lifetime at the expiration 

of which it has probability Pk to produce k independent replicas acting in the 
same manner (k = 0, 1, ... ). The probability F(t) that the whole process stops 
before epoch t satisfies the equation 

F(t) = Po(1 _e-l7.t) + I Pk r t (Xe-a(t-x) Fk(x) dx. 
K=l Jo 

(No general method for handling such equations is known.) 
19. Let F be an arbitrary distribution in .'R.1 with expectation fl >0 and 

finite second moment m2' Show that 

where, as usual, x+ denotes the positive part of x. Hint: If Z(t) stands for the 
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left side then Z satisfies renewal equation with 

~ LF(X)dX , t < 0 

z(x) = 

~ f.ex> (1 -F(x») dx, 
fl t 

t > 0 

20. Renewal theore!1l in :R,2. Let the distribution of the pair (X, Y) be concen
trated on the positive quadrant. Let / be the interval 0 < x, y ::::;; 1. For an 
arbitrary vector a denote by / + a the interval obtained by translating / through 
a. Lemma 1 of section 9 generalizes as follows. For any fixed vectors a and b 

U{I + a + tb} - U{/ + tb} -- 0 

as t -- 00. 

(a) Taking this for granted show that the renewal theorem for the marginal 
distributions implies that U{/ + tb} -- O. 

(b) Show that the proof of lemma carri~ over trivially.lO 

10 A more appropriate formulation of renewal problems in the plane has been introduced 
recently by P. J. Bickel and J. A. Yahav, [Renewal theory in the plane, Ann. Math. Statist., 
vol. 36 (1965) pp. 946-955J. They consider the expected number of visits to the region 
between circles of radii rand r + a, and let r -- 00. 



CHAPTER XII 

Randonl Walks in:lt 1 

This chapter treats random-walk problems with emphasis on combinatorial 
methods and the systematic use of ladder variables. Some of the results 
will be derived anew and supplemented in chapter XVIII by Fourier methods. 
(Other aspects of random walks were covered in VI,lO.) In the main our 
attention will be restricted to two central topics. First, it will be shown that 
the curipus results derived in 1; III for fluctuations in coin tossing have a 
much wider validity. and that essentially the same methods are applicable. 
The second topic is connected with first passages and ruin problems. It has 
become fashionable to relate such topics to the famous Wiener-Hopf theory, 
but the connections are not as close as they are usually made to appear. 
They will be discussed in sections 3a and XVIII,4. 

E. Spa.rre Andersen's discovery in 1949 of the power of combinatorial 
methods in fluctuation theory put the whole theory of random walks into a 
new light. Since then progress has been extremely rapid, stimulated also by 
the unexpected discovery of the close connection between random walks and 
queuing problems.1 

The literature is vast and bewildering. The theory presented in the follow
ing pages is so elementary and simple that the newcomer would never suspect 
how difficult the problems used to be before their natural setting was under
stood. For exa~ple, the elementary asymptotic estimates in section 5 cover 
a variety of practical results obtained previously by deep methods and 
sometimes with great ingenuity. 

Sections,6-8 are nearly independent of the first part. It is hardly necessary 
to say that our treatment is one-sided and neglects intere~ting aspects of 
random walks such as connections with potential theory and group theory.2 

1 The first such connection seems to have been pointed out by D. v. Lindley in t 952. 
He derived an integral equation which would now be considered of the Wiener-Hopf type. 

2 For other aspects see Spitzer'S book (1964), although it is limited to arithmetic distri
butions. For combinatorial methods applicable to higher dimensions see C. Hobby and 
R. Pyke., Combinatorial results in multidimensional fluctuation theory, Ann. Math. Statist., 
vol. 34 (1963) pp. 402-404. 
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1. BASIC CONCEPTS AND NOTATIONS 

Throughout this chapter Xl' X2 , • •• are independent random variables 
with a common distribution F not concentrated on a half-axis. , [For distri":' 
butions with F(O) = 0 or F(O) = 1 the topic is covered by renewal theory.] 
The induced random Il'alk is the sequence of random variables 

(1.1) So = 0, Sn = Xl + ... + X n ., 

Sometimes' we consider a section (XH1 , ... , Xk ) of the given sequence 
{Xj}; its partial sums 0, SH1-Sj, ... , Sk-Sj will be called a section of 
the random walk. The subscripts are treated in the usual manner as a time 
parameter. Thus an epoch n is said to divide the whole random walk 
in,to a preceding and a residual section. Because So = 0 the random walk 
is said to start at the origin. By adding a constant a to all terms we obtain 
a random walk starting at a. Thus S7I' Sn+l' ... is a random walk induced 
by F and starting at Sn. 

Orientation. Looking at the graph of a random walk one notiCes as a 
striking feature the points where Sn reaches a record value, that is, where 
Sn exceeds all previously attained values So, ... , Sn-1. These are th,e 
ladder points according to the terminology introduced in VI,8. (See fig. 1 
in that section.) The theoretical importance of ladder points derives from 
the fact that the sections between them are probabilistic replicas of each other, 
and therefore important conclusions concerning the random walk can be 
derived from a study of the first ladder point. 

In volume 1 we have studied repeatedly random walks in which the Xk 

assume the, values + 1 and -1 with probabilities p and q respectively. 
In such walks each record value exceeds the preceding one by +1, and the 
successive ladder points represent simply the first passages through 1, 2, .... 
In the present terminology we would say that the ladder heights are kno~n 
in advance, and only the waiting times between successive ladder points 
require study. These are independent random variables with the same 
distribution as the first passage time through + 1. The generating function 
of this distribution was found in 1; XI,(3.6) and is given by 

(1.2) [I - ~ 1 - 4pqs2 lj(2qs) 

where -J- denotes the positive root [see also 1; XIV,4; for explicit formulas 
see 1; XI,3(d) and 1; XIV,5]. When p < q the first passage t;mes are 
defective random variables since the probability that a positive value will 
ever be attained equals p/q. 

The same record value may be repeated several times before a new record 
value is reached. Points of such relative maxima are called 'weak ladder 
points. [In the simple binomial random ~alk th~ first weak ladder point is 
either (l, 1) or else it is of the form (2r, 0).] 
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After these preliminary remarks we proceed to a formal introduction of 
ladder variables repeating in part what was said in VI,8. The definition 
depends on an inequality, and there exist therefore four types of ladder 
variables corresponding to the four possibilities <, <, >, >. This leads 
to a twofold classification to be described by the self-explanatory terms 
ascending and descending, strict and weak. The ascending and descending 
variables are related by the familiar symmetry between plus and minus, or 
maxima and minima. The distinction between strict and weak variables, 
"however, puts a burden on description and notation. The simplest way out 
is to consider only continuous distributions F, for then the strict and weak 
variables are the same with probability one. Beginners are advised to 
proceed in this way and not to distinguish between strict and weak ladder 
variables, but this distinction is unavoidable for the general theory on one 
"hand, and for examples such as the coin-tossing game on the other. 

To introduce the necessary notations and conventions we consider the 
ascending strict ladder variables. We shall then show that the theory of 
weak ladder variables follows as a simple corollary of the theory of strict 
variables, Descending ladder variables require no new theory. We shall 
therefore take the ascending strict ladder variables 'as typical, and when no 
danger of corlfusion arises, we shall drop the qualifications "ascending" and 
"strict. " 

Ascending strict ladder variables. Consider the sequence of points (n, Sn) 
for n = 1, 2, ~ .. (the origin is. excluded). The ftrst strict ascending ladder 
point (.:11' £1) is theftrs! term in this sequence/or which Sn > 0., In other 
words, .:11 is the epoch of the first entry into the (strictly) positive half-axis 
defined by 

(1.3) {.:11 = n} = {Sl < 0, ... , Sn-l < 0, Sn > O}, 

and .Ye1 = S.r. The variable $"1 is called first ladder epoch, £1 the first 
1 ' 

ladder height. These variables remain undefined if the event (1.3) does not 
take place, and hence both variables are possibly defective. 3 

For the joint distribution of ($"1' £1) we write 

(1.4) 

The marginal distributions are given by 

(1.5) 

(1.6) 
co 

P{£1 < x} = 2, Hn(x) = H(x). 
n=1 ' 

n=1,2, ... 

The two variables have the same c;lefect, namely 1 - H( 00) > O. 

3 Problems 3-6 provide illustrative exercises accessible without gener'!l theory. 
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The section of the random walk following the first ladder epoch is a 
probabilistic replica of the whole random walk. Its first ladder point is the 
second point of the whole random walk with the property that 

(1.7) 

it will be called the second ladder point of the entire random walk. It is 
of the form (!Tl + crt., .JF1 + ~2) where the pairs (ffl' £1) and 
(.9""z.,Yez) are independent and identically distributed. (See ~also VI,8.) 
Proceeding in tbis way we define the third, fourth, ... ladder points of our 
random walk. Thus a point (n, Sn) is an ascending ladder point if it saiisfies 
(1.7). The rth ladder point (if it exists) is of the form (ffl + ... + ffr' 
.JF 1 + ... + :Yt'r) where the pairs (ff k' £ k) are mutually independent 
and have the common distribution (1.4). (See fig. 1 in VI,8.) 

For economy of notation no new letters will be introduced for the sums 
!IT 1 + ... + ffr and :Yt'1 + ... + :Yt'r. They form ·{possibly terminating) 
renewal processes with "interarrival times" .r~ and :Yt' k' • In the random 
walk, of cours~, only ffk is of the nature, of a time variable. The ladder 
points themselves form a two-dimensional renewal process. 

We shall denote by 

(1.8) 

the renewal measure-for the' ladder' height process. (Here HO* 'tpo.) Its 
. I 

improper distribution function _given by tp(x) = 1p{ -:- 00, x} vanishes 
when x < 0, while for 'x positive 'tp(x) equals one plus the expected number 

--; 
of ladder points in the strip 0, x (no limitation on time)~ We know from VI,6 
and ~I,1 that tp(x) < 00 for all x and in the ca~e of defective ladder 
variaQles 

(1.9) 
ex> 1 

tp( co) = 2, Hn( (0) = . . 
n=O . 1 - H( (0) 

Finally we iDtroduce the notation "Po for the atomic distribution with unit 
mass at the origin; thus for any interval I 

(1.10) 'Po {I} = 1 if x E I, lI'o{l} = b otherwise. 

Ascending weak ladder variables. The point (n, Sn) is a weak (ascending) 
ladder point iff Sn ~ Sk for k =0, 1, ... ,n. The theories of strict and 
weak ladder variables 'run par~lel, anti we shall systematically use the 

same letters, indicating weak variables by bars: thus ffl is the small
est index n such that SI < 0, .~ .. , Sft_l < 0, but Sn'~ 0. As was 
mentioned before, the' tedious distinction between strict and weak 
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variables becomes unnecessary when the distribution F is continuo~s. 
Even in the general situation it is easy to express the distribution n of 
weak ladder heights in terms of. the distribution H, and this will enable 
us to confine our attention to the single distribution defined in (1.6). 

The first weak ladder point is identical with die first strict ladder point 
except if the random walk returns to the origin having passed only through 

negativ~ yalues; in this case dF1 - 0 and we put { = P{dFl = O}. Thus 

co 

(1.11) { = ! P{SI < 0, ~ . ~ , Sn-l < O,-Sn = OJ. 
n=l 

(The event cannot occur if Xl > 0 and hence _ 0 < { .< 1.) With probability 
1 - { the first strict l~dder point coincides with the first weak ladder point 
and hence . " 

(1.12) n = {tpo + (l-0H.-

In words, the distribution of the first weak-ladder height is a mixture of the 
distribution H and the atomic distribution co~centrated at the origin .. '. 

_ Example. In the simple bino~al random" walk" the first weak ladder 
hei ght equals 1 iff the first step leads to + 1 .. If the prst step leads to -1 the 
(conditional) probability of a return to 0 equals 1 if P > q, a~d p/q 
otherwise. In the first case {= q, in the second {= p. The possible 
ladder heights are 1 and 0, and they have probabilities p and q'" if P < q, 

. while both probabilities equal p when p < q. In the latter case the ladder 
height is a defective variable.. ~ 

The probability that ptior to the first entry into 0, 00 the random walk 
returns to the origin ex"actly k times equals {k(1- {). The expectedqumber 
of such returns is 1/(1...:.. {) and this is also the expected multiplicity of each 
weak ladder height prior to the appearance of the next strict ladder points: . 
Therefore 

(1.13) 
_ 1 
tp . 1 - { tp. 

(See problem 7.) The simplicity of these relations enables us to avoid 
explicit use of the distribution n. 

Descending ladder variables. The strict and weak descending ladder variables 
are defined by symmetry, that is, by changing > into <. On the rare 
occasions where a special notation will be required we shall denote descending 
order by the superscript minus. Thus the first strict descending ladder point 
is (.:r~, dF;), and so on. 

It will be seen presently that the probabilities P{£l = O} and P{.;f\ = O} 
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are identical· because 

(1.14) P{SI > 0, ... , Sn-l > 0, Sn = o} = . 

P{SI < 0, ... , Sn-l < 0, Sn = O}. 

It follows that the analogue to (1.12) and (1.13) for the descending ladder 
'variables depend on the same quantity,. 

2. DUALITY. TYPES OF RANDOM WALKS 

The amazing properties of the fluctuations in c.oin tossing were derived in 
1; III by simple combinatorial arguments depending on taking the variables 
(Xl' ... ,Xn ) in reverse order. The same device will now lead to important 
results of great generality. 

For fixed n we introduce n new variables by X~ = X rp ••• , X: = Xl' 
Their partial sums are given by S: = Sn - Sn-k where k = 0, ... , n. 
The joint distributions of (So, '.' . ,Sn) and (S~, ... , S!) being the 
same, the correspondence Xk ~ X: maps any . event A defined by 
(So, ... ,Sn) into an event A * of equal probaqility. The mapping is easy 
to visualize because the graphs ~f (0, Sl' ... ,. Sn) and (0, Si, ... , S!) 
are rotations of each other through ISO degrees. 

Example. (0) If Sl < 0, ... , Sn-l < 0 but Sn = 0, then 

Si > 0, ... ,S:_I >0 and S: = 0. 

This proves the validity of the relation (l.l~) used in the preceding section. ~ 

We now apply the reversal procedure to the event Sn > So, ... , Sn > Sn-l 
defining a (ascending strict) ladder point. The dual relations are S: > S:_k 
for k = "1, ... : n. But. S: > S:_k is the saine ,as Sk > 0, and hence we --
have. for every finite interval leO, 00 .. 

(2.1) P{Sn > Sj for 1= 0, ... ,n-l and Sn E I} ~ . 
= P{Sj > ° for j= 1, ... ,n and Sn EI}. 

The left side is the probability tliat there exists a ladder point with abscissa 
n and ordinate, in 1. The right side is the probability of the" event that a visit 
to I at epoch n takes place without prior ~isit to the closed half-line 

:"'00,0. 
Consider then the result of summing (2.1) over all n. On the left we get 

?p{l} by the definition (1.S) of the renewal measure ?p. On the right we get 
the expected number of visits to the interval I prior to the first entry into 

~ 00, O. It is finite because ?p{I} < 00. We have thus proved the basic 
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Duality lemma .. The renewal ineasure "P admits of two interpretations. For 
. - ' 

every finite interval I cO, 00 the value "P{I} equals 
(a) the expected number or ladder points in I; 
(b) the expected number. of visits Sn E I such that Sk > 0 for 

k = 1, 2, . . . ,. n': 

- .. '. 

This simple lemma will enable us to prove in an elementary way theorems 
that would otherwise require deep analytic methods. In its analytic' form~
lation the lemma does not seem exciting, but it has immediate consequences 
that 'are most surprising and contrary to naive intuitions .. 

Example. (b) Simple random walk. In the random walk of the example 
in secti on 1 there exists a ladder point with ordinate k iff tJ?e evel)t {Sn = k} 
occurs for some n, and, we saw that the probability for .this is 1· or (p/q)1c. 
according as p > q or p < q. By the duality lemma this means th:at in a 
symmetric random "}1Jalk the expected number of.visits to k ~ 1 prior to the 
first return to the origin equals 1 for aJI k. The fantastic nature of this result 
appears clearer in the coin-tossing terminology. The assertion is that on the 
average Peter's accumulated gain passes once through every value k, however, 
large, before reaching the zero level for the first time. This statement usually 
arouses incredulity, but it can be verified 'by direct calculation (problem 2)~ 
(Our old result that the waiting time for the first return ~o 0 has infinite 
expectation follows by summation over k.) ~ 

In -the symmetric binomial random walk (coin tossing) each of the values 
±1 is attained with probability one, but the expected waiting time for each 
of these events is infinite. The next theorem shows that this is not a peculiarity 
of the coin tossing game since a similar statement is true for all random walks 
in which both positive and negative values are assHmed with probability one: 

Theorem 1. There exist only two types of rand am walks. 
(i) The, oscillating type. Both the ascending and the descending renewal 

processes are persistent, Sn oscillates with probability 1 between - 00 and 
co, and 

(2.2) 

(ij) Drift ··to - 00, (say). The ascending renewal process is terminating, 
the descending one proper. With probability one Sn drifts to .- 00 and 
reac/,es a finite maximum M > O. The relations (2.5) and (2~ 7) are true. 

[Walks of type (ii) are obviously transient, but type (i) includes both 
persistent and transient walks. s~ end of VI,10.] 
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Proof. The identity (2.1) holds also when the strict inequalities are 

replaced by weak ones. For I = 0, 00 it reduces to 

(2.3) P{Sn > Sk for 0 < k < n} = P{Sk > 0 

for 0<k<1l}=1-P{Y1 <n}. 

The left side equals the probability that (n, Sn) be a weak ascending ladder 
point. These probabilities add to ip( 00) < 00, and in view of (I .13) we have 
therefore 

(2.4) 
1 ,00 , 

-~. 1p(00) = III - P{Y1 < n}]. 
1 - ~ n=O ' 

. When the descending ladder process is defective the terms of the series are 
bounded away from zero and the series diverges. In this case tp( 00) = 00 

which means that the ascending process is persistent. We have thus an 
analytic proof for the intuitively obvious fact that it is impossible that both 
the ascending and the descending ladder processes terminate. 

If 5"-; is proper (2.4) reduces to 

(2:5) E(Y-)' 1 (') 1 
1 = 1 _ , 1p 00 . (1 _ ~)(l - H( 00» 

with the obvious interpretation w~en Il( 00) = 1. It follows that E(Y-;) < 00 

iff H( 00) < I, that is, iff the ascending variable .9'"'1 is defective. Thus 
either one of these variables is defective; or else (2.2) holds. 

If E(5"~) < 00 the ascending renewal process is te~minating. With 
probability ont( there occurs a last ladder poi,nt, and so . 

(2.6) 

is finite. Given that the nth ladder point occurred, the probability that it is 
the last equals 1 - H( 00), and so [see XI,(6.3)] 

00 

'(2.7) P{M <~} = [l- - H(oo)] I Hn*(x) --.: [1 - H(oo)] tp(x). 
n:fO 

In the following theorem we agree to write E(X) = + 00 if the defining 
integral diverges only at + 00 or, what amounts to the same, if P{X < t} IS 

integrable over - 00, O .. 

, Theorem 2 .. (i) If E(X1) = 0, then :Yt'l and .9'"'1 are proper,4 and 
E(.9'"'I) = 00. 

4iheorem 4 of VI,lO contains the, stronger result that the random walk is persistent 
whenever E(X1) = o. 
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(ii) If E(X1) is finite and positive, then '~1 and :-T 1 are proper, have 
finite expectations, and 

(2.8) 

The random walk drifts to + 00. 

(iii) If' E(X1) = + 00 then E(£ 1) = 00 and the random walk drifts to 
+00. 

(iv) Otherwise either the random walk drifts to - 00 (in which caseYl and 
£1 are defective}, or else E(£l) = 00, 

The identity (2.8) was discovered by A. Wald in a more general setting to 
be discussed in XVIII ,2. The following proof is based on the strong law of 
large numbers of VII,8. Purely analytic proofs will be given in due course. 
(See theorem 3 of section 7 and problems 9-11 as well as XVIII,4.) 

Proof. If n coincides with the kth ladder epoch we have the identi\y 

(2.9) 
Sn ($1+' . '+£k)/k 
-;;-= (or

1 
+ . .. +i'k)/k . 

We now observe that the strong law of large numbers applies also if F(XJ = 
= .+ 00 as can be seen by the obvious truncation. 

(i) LetE(X1) = O. As k -- 00 the left side in (2.9) tends to O. It follows 
that the denominator tends to infinity. This implies that .:7-1 is proper and 
E(ff1): 00. 

(ii) If 0 < E(X1) < 00 the strong law of large numbers implies that the 
random walk drifts to 00. In view of (2.5) this means that or1 is proper and 
E(ff1) < 00. Numerator and denominator in (2.9) therefore tend to finite 
limits, and (2.8) now follows from the converse to the law of l.arge numbers 
(theorem 4 in VII,8). 

(iii) If E(X1) = + 00 the same argument shows that E(yt 1) = 00. 

(iv) In the :emaining caseswe show that if £1 is proper and E(Jf\) < 00 

the randQm walk drifts to - 00. Considering the first step in the random 
walk it is clear that for x > 0 

(2.10) P{£l > x} > P{XI > x}. 

If £1 is improper the random walk drifts to - 00. If it is proper the 

integral of the left side extended over 0, co equals, E(£ 1)' If E(Jf'l) < co 
it follows that E(X1) is finite or - 00. The case E(X1) > 0 has teen tJ.ken 
care of, and if E(X1) < 0 (or - co) the random walk drifts to - 00. ~ 

It follows from (2.10) and the analogous irequality for x < 0 that if both 
£ 1 and .Yt;' are proper and have finite expectations, then P{IX1 1 > x} is 
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integrable and hence E(Xl ) exists (lemma 2 of V,6). With E(X1 ) =fi 0 
one of the ladder variables would be defective, and hence we have the 

Corollar)T. If both ,)11\ and JI[~ are proper and have finite expectations, 
then E(X l ) = O. 

The converse is not true. However, if E(Xl ) = 0 and E(X;) < 00 then 
£'1 and £~ have finite expectations. (See problem 10 .. A more precise 
result is contained in theorem 1 of XVIII,5 where SN and SN are the first 
entry variables with distributions ,ft'l and ff~.) 

3. DISTRIBUTION OF LADD~R HEIGHTS. 
WIENER-HOPF FACTORIZATION 

The calculation of the ladder height distributions H and Ii seems at 
first to present a formidable problem, and was originally considered in this 
light. The duality lemma leads to a simple solution, however. The idea is 

I 
that the first entry into, say, - 00, 0 should be considered together with the 
section of the random walk prior to this first entry. We are thus led to the 

. study of the modified random walk {Sn} which terminates at the epoch of 
I 

the first entry into - 00, O. We denote by "Pn the- defective probability 
distribution of the position at epoch n in, this restricted random walk; that 
is, for an arbitrary interval I and n = 1, 2, . .. we put 

(3.1) 

(Note that this implies "Pn{ - 00, O} = 0.) As before, "Po is the probability 
distribution concentrate~ at the origin. Now' it was shown in (2.1) that 
"Pn{I} equals the probability t~at (n, Sn) be a ladder point with Sn E [. 

Summing over n we get therefore 

(3.2) 

where "P is the renewal function introduced in (l.8). In other words, for an 
interval in the open positive half-axis "P{l} is the expected number of 
(strict asceriding) ladder points with ordinate in I. For [ in the negative 
half-axis we now define "P{I} = O. It follows that the series in (3.2) con-

verges for every bounded interval [ (though not necessarily for 1= 0, 00). 

It is this unexpected result that renders the following theory so incredibly 
simple. 

I 
Studyirig the hrst entry into - 00, 0 means studying the weak descending 

ladder process, and with the notations of section 1 the point of first entry 

is JIt'~) its di~tribution jJ-. For typographical convenience, however, we 



XII.3 LADDER HEIGHTS. WEINER-HOPF FACTORIZATION 399 

replace jj-- by P and denote by Pn{I} the probability that the first entry to 
--I 
- 00, ° takes place at epoch n and within the interval I. Formally for 
n = 1, 2) ... 

(3.3) Pn{I} = P{Sl > 0, ... , Sn-1 > 0, Sn < 0, Sn E I}. 

(This implies Pn{O, oo} = 0. The term Po remains undefined.) This time 
the series 

(3.4} 
11=1 

obviously converges and represents the possibly defective distribution of 
the point of the first entry. (In other words, p{l} = .}f'~{I}.) 

It is easy to derive recurrence relations for "Pn and Pn. Indeed, given the 
position y of Sn the (conditional) probability that Sn+1 E I equals 
F{I - y}, where I - y is the translate of I through -yo Thus 

(3.5a) Pn+1{I}=f~"Pn{dY}F{I-Y} if Ie -00?6 

(3.5b) if leo, 00 

(the origin contributing only when n = 0). For bounded intervals I the 
duality lemma assures the convergence' of 1 "Pn{I}, and 1 Pn{I} always 
converges to a number < 1. We have thus series representations for P 
and "P. It is clear that these sums satisfy . 

(3.6a) 

(3.6b) 

p{!} = r'l'{dY} F{l- y} 

"P{I} = f.: "P{dy} F{I - y} 

if I e - 00, ° 
if leO, 00 

with the proviso ~hat (3.6b) is restricted to bounded intervals l. We shall 
see that in practice the relations (3.6) are more useful than the theoretical 
series representations for P and 1p. It is sometimes convenient to replace 
the interval function P and 1p by the equivalent point functions 

---I I 
p(x) = p{ - 00, x} and "P(x) = "P{ - OC', x}. 

Clearly (3.6a) is equivalent to 

(3.7a) p(x) = f.: "P{dyJ F(x-y), x <0. 

From (3.6b) we get for x > 0 

"P(x) = 1 + "P{O, x} = 1 + ~(: tp{dy} [F(x-y)- F(-y)]. 
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Taking into account (3.7a) we see thus that (3.6b) is equivalent to 

(3.7b) "P(x) = 1 - p(O) +J.: lp{dy} F(x-y), x > O. 

To simplify notations we introduce the convolution 

(3.8) 
11=0 

J---
Since '1/-' is concentrated on 0, 00 the value "P * F{l} equals the sum of the 
two integrals in (3.6) and is therefore finite. As "P has a unit atom a.t the 
origin we can combine the two relations (3.6) into the single convolution 
equation . 

(3.9) p + 'tfJ = "Po + "P * F. 
---I 

In view of the fact that p and "P - "Po are concentrated on - 00, 0 and 

0, 00, respectively, the relation (3.9) is fully equivalent to the pair (3.6). 
We shall use (3.9) as an integral equation determining the unknown 

measures p and "P. A great many conclusions of theoretical importance 
can be derived directly from (3.9). We list the most remarkable such theorem 

. under the heading of an example in order to indicate that it will not be used 
in the sequel and that" we embark on a digression. 

Examples. (a) Wiener-Hopf type factorization. It follows from the 
definition 0.7) of 'tp that it satisfies the renewal equation 

(3.1J) 

Using this relation we show that (3.9) may be rewritten in the equivalent form 

(3.11) F= H + p - H* p . 

. Indeed, convolving (3.9) with H we get 

H * p + -1p -" "Po = H - F + "P * IF. 

Subtracting"this from'(3.9) yields (3.11). Conversely, convolving (3.11) 
with "P we get 

"P * F = "P - "Po + "P * P - ("P - "Po) * p = "P - "Po + p 

which is the same as (3.9). 
The identity (3.11) is remarkable in that it represents an arbitra:-y prob

ability distribution F in terms of two (possibly defective) distributions H 
I ___ I 

and p concentrated on 0, 00 and - 00, 0, respectively. The first interval 
is open to the second closed, but this asymmetry can be remedied by express

I 
lng the first entrance probabilities pinto - 00, 0 by the first entrance 
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probabilities [f- into - 00, O. The relationship between these prob
abilities is given by the analogue to (I .12) for x < 0,' namely 

p = ~1PO + (1.- ~)H-

with , defined by (1.1l) [which relation holds also with the inequalities 
reversed; see example 2(a)]. Substituting into (3.11) we get after' a trite 
rearrangement 

"(3.12) "Po - F = (1-~) [71'0 - H] * [71'0 - H-]. 

Of course, for a continuous distribution F the relations (3.11) and (3.12) 
are identical. 

Various versions of this formula have been discovered independently by 
different methods and have caused much excitement: . For a different variant 
see problem 19, and for the Fourier analytic ~quivalent see XVIII,3. The 
connection with the Wiener-Hopf techniques is discussed in section 3a. 
Wald's identity (2.8) is an easy consequence of (3.11). (See problem 11 as 
well as XVIII,2.) 

(b) Explicit expressioRs for H and H~ are usually difficult to. come by. 
An interesting distribution for which the calculations are particularly simple 
was found in example VI,8(b). If F is the convolution of two exponentials 

--" 
concentrated on 0, 00 and - 00, 0, respectively, then it has a density of the 
form 

We suppose b < a, 
given by be-bx and 
true. 

ab 

a + b 
eax x<o 

f(x) = 
ab -bx --e 

a + b 
x> 0. 

SQ that E(X) > 0. Then Hand H- h.1.ve. densities 
beax

• Here H * 1[- = (bja)F, and (3.11) is trivially 

(For further explicit examples see problem 9.) 
We now turn to the consideration of (3.9) as an integral equation for the 

unknown measures p and "P. It will be shown that in the present context 
the solution is unique. For brevity we agree to say that a pair (p, tp) is 
probabilisticalZv possible if p is a possibly defective probability distribution 

I , 
concentrated on - 00, 0, and 'It - 1jJo a measure concentratea on 0, 00 

such that for each bounded interval I the measures 1p{ r + (} remain 
bounded. (The last condition follows from the renewal theorems since 
71' = I Hn*.) 

Theorem 1. The convolution equation (3.9) [or, equivalently, the pair 
(3.6)] admits of exactly one probabilistically possible solutioll (p, 1jJ). 
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This implies that p is the distribution of the point of first entry into 
I 

- 00, ° and 1p = ~ Hn* where H is the distribution of the point of first 
entry into 0, 00. 

Proof. Let p # and 1p # be two non-negative measures satisfying (3.6), 
and 1p# > 1po. From (3.6b) we get by induction that 1p# > 1po + ... + 1pn 

for every n, and he rice our solution 1p is minimal in the sense that for any 
other solution 1p # with a unit atom at the origin 1p# {J} > 1p{J} for all 
intervals. In other words, b = 1p # - 1p is a measure. From (3.6a) it is 
now seen that the same is true of y = p # - p. Since both (p,1p) and 
(p #, 1p #) satisfy (3.9) we have 

(3.13) b + y = b * F. 

Let J be a fixed fillIte interval and put z(t) = b{J + t}. Two cases are 
possible .. If p is a proper distribution the fact that p # ~ P implies that 
p # = P and hence y = O. Then z is a bounded solution of the convolution 
equation z = F* z and hence by induction 

(3.14) 
f+ex> 

z(t) = J-ex> z(t-y) pn*{dy} 

for all n. Now z > 0 and z(t) = 0 for every t such that J + t is con
tained in the negative half-axis. For such t it is clear from (3.14) that 
z(t - y) = 0 for every y which is a point of increase for some Fn*. By 
lemma 2 of V,4a the set of such y is everywhere dense and we conclude that 
z vanishes identically. 

For a defective p we know only that y > 0, and then (3.13) implies only 
that z < F* z. In this case (3.14) holds with the equality sign replaced by 
~. But the random walk then .drifts to 00 and so the mass of F n* tends 
to concentrate near 00. Again, z(t-y) = 0 for all sufficiently large y 
and so z must vanish identically. Thus 1p # = 1p as asserted. .. 

3a. THE WIENER-HOPF INTEGRAL EQUATION 

To explain the connection between the integral equation (3.9) and the 
standard Wiener-Hopf equation it is best to begin by a probabilistic problem 
where the latter occurs. 

Example. (c) Distribution of maXima. For simpJicity let us assume that 
the distribution F has a density f ano a negative expectation. The random 
walk {Sll} drifts to - 00 and a finite-valued random variable 

(3.15) M = max [0, S1, S2' ... ] 
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is defined with probabili~y one. We propose to calculate its probability 
distribution M(x) = P{M < x} which is by definition concentrated On 
1-- . 
0, 00. the event {M S x} occurs iff 

Summing over all possible y we get 

(3.16) M(x) = '[:00 M(x-y)f(y) dy, x>O 

which is the same as 

(3.17) M(x) = LOO M(s)f(x-s) ds, x> O. 

On the other hand, we know from (2.7) that J\tf(x) = [l - H( 00)] 1p(x). 
We saw that "P satisfies integral equation (3.7b) where under the present 
conditions p(O) . 1. A simple integration by parts now shows that (3.7b) 
and (3.17) are actually identical. .. 

The standard form of the Wiener-Hopf integral equation is represented 
by (3.17) and our example illustrates the way in which it can occur in prob
ability theory. General references to the Wiener-Hopf techniques are 
misleading, however; because the restriction to positive functions and 
measures changes (and simplifies) the nature of the problem. 

The ingenious method5 used by N. Wiener and E. Hopf to treat (3.17) 
has attracted wide attention and has been adapted to various probabilisti..: 
problems, for example, by H. Cramer for asymptotic estimates for prob
abilities of ruin. The method involves a formidable anaiytic anparatus and 

"" .&." 

hence the ease with which these estimates are obtained from the present 
approach is almost disquieting. The deeper rea~I.."ln can hI! :.:TJd.:rstood a.s 
follows. The equation (3.17) represents~ at best, enly one of the two 
equations (3.7), and when p(O) < 1 even less. Taken by it,e1f d,l 7) 1S 
much more difficult to handle than the pair (3.7). F()i:' e.;(ampk~ the unique
ness theoremfilils for (3.17) even if only probability di5tributions are :tdmituxL 
In fact. the basic idea of the Wiener-Hopf technique (.onslsts in intWGLh:in; 
an auxiliary function which in the general theoty lacks an.Y nartlcular 
meaning. This tour de force in effect rcplace':-l t!1c individual equation 
(3.17) by a pair equivaleilt to (3.7) but the ~niqu,;,(~ss is !ost. We prz)ceeded 
in the opposite direction, starting from tlF~ obvwWo, recursior: system (3.5) 
for the oroba hilities connected with the two in~cfJarahle prc,blems: the . . -

f uating back to 1931. A huge literature followed [he first presentation In book form: 
E. Hopr, !vfathematical problems of radiative eqUilibrium, Cambridge tracts, No. 31, 1934. 
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first entry to - 00, 0 and the random walk restricted to x > 0 prior to 
this first entry. In this way we derived the integral equation (3.9) from 
the .:nown solution, and the uniqueness of the probabilistic solution was 
easy to establish. The convergence proof, the properties of the solutions, 
as well as the connection between the distribution M of the maxima and 
the renewal measure 1p depend On the duality lemma. 

The po~sibility of attacking the \\liener-Hopf equation (3.17) using the 
duality principle was noticed by F. Spitzer.6 The usual way of connecting 
the Wiener-'Hopf theory with probabilistic problems starts from formulas 
related to (9.3) below in their Fourier version to which we shall return in 
chapter XVIII. There exists now a huge literature relating Wiener-Hopf 
techniques to probabilistic problems and extending the scope of combi
natorial methods. Most of this literature uses Fourier techniques.7 

4. EXAMPLES 

Explicit formulas for the tirst entry distributions are in general difficult 
to obtain. By a stroke of good fortune there is a remarkable exception to 
this rule" discussed in example (a). At first sight the distribution F of this 
.example appears artificial, but the type turns up frequently in connection 
with Poisson processes, queuing theory; ruin proble~s, etc. Considering 
the extreme simplicity of our general results it is unbelievable how much 
ingenuity and analytic~t skill has been spent (often repeatedly) on individual 
special cases. 

Example (c) exhibits (in a rather pedestrian fashion) the complete cal
culations in the case of an arithmetic F with rati~nal generating functions. 
The calculations are giyen because the same method is used for rational 
Laplace or Fourier transforms. Another example is found in problems 3-6. 
Example, (b) deals with a general r~lationship of independent interest. 

We adhere to the notations of the preceding section.' Thus Hand p 
__ I 

are the distribu~ions of the point of first entry into 0, 00 and - 00, 0 
respectively. (In other words~ Hand p are the distributions of the first 
strict ascending and the first weak descending ladder heights.) Finally, 
1p = 2: Hn* is tbe renewal function corresponding to H. Our main tool 
is the equation (3.7a) stating that for x < 0 the distribution of the first 

6 The .Wienel"-}{op! equation whose kernel is a probability rhmsity, Duke Math. J., vol. 
24 (1957) pp. 327-343. 

7 A meaningful short sUr\:,ey of the literature is impossible on account of the unsettled 
state of affairs and because the methodology of many papers suffers under the influence of 
accidents of historical developments. Generalizations beyond probability theory are 
illustrated by G. B~xter, An operator identity, Pacific J. Math., vol. 4 (1958) pp. 649-663. 
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"'------II 
entry into -- 00, 0 is given by 

(4.1) p(x) = r ",{dy} F(x....:y). 

Examples. (a) Distributions with one e~ponential tail occur more frequently 
than might be expected. For example, in the random walk of example VI,8(b) 
and in the corresponding queuing process VI,9(e) both tails are exponential. 
Suppose, by way of introduction, that the left tail ofF is exponential, that is, 

. F(x) = qe{J~ for x < O .. WhateverV' is, (4.1) shows that p(x) = Ce{J~ 
for x < 0 where C is a constant. Having made this discovery we inter
change the role of the two ~alf-axes (partly to facilitate· reterence to Our 
formulas, partly with a view to the most important applications in queuing 
the_ory). Assume then that . 

(4.2) F(x) = 1 - pe-a~ for x >0 

without any conditions imposed for x < O. To avoid unnecessary compli
cations we assume that F has a finite expectation .", and that F is con
tinuous. It follows from the preliminary remark that the . ladder height 
distribution II has a density proportional to e-«:D. We nOw distinguish 
two cases. 

(i) If '" > 0 the distribution H is proper and hence for x > 0 

(4.3) H(x} = 1 - e-«~, 1p(x) = 1 + /Xx.· 

[The latter follows trivially from 'II' ~ 2: Hn* or the renewal equation 
(3.10).] From (4.1) we get 

(4.4) p(x) = F(x) + /X J:cx> F(s) ds, x < 0,. 

and thus we have explicit expressions for all desired probabilities. An easy 
calculation shows that 

(4.5) p(O) = 1 - a.ft. 

This is a special case of (2.8) because (1 - p(O))-l· E(.r1) by virtue of 
(2.5). 

(ii) If ft < 0, the relations (4.3) and (4.4) still represent a solution of the 
integral equation (3.9), but because of (4.5) it is probabilistically impossible 
when ft < O. For the correct solution we know that H has a density 
hex) = (Ci-K)e-ax where 0 < K < a. because H is defective. An easy 
calculation shows that 1jJ'(x) = (a.-K)e-KX for x > o. The unknown 
constant K is obtained from the condition that p(O) = 1. A routine cal
culation shows that K must be the unique positive root of the equation (4.6). 
Given the root of this transcendental equation we have again expl:,:it 
formulas for H, p, and 1jJ. 
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The rea~er will easily'verify that the same theory applies when the variables 
, Xl' X2, • •• of the random walk are integral-valued and the' distributio'n F 

has a geometric right tail, that is, if F attributes to the integer k > 0 the 
weight qpk. . ' 

(b) /J.ssociated random MJalks. Suppose that F has an expectation ft =F 0 
and that there exists- a number ~. ¢ ,0 such 'that . 

(4.6) 1
+00 " ' 

. elC~ F{dy} = 1., 
-00 

Given an arbitrary measure y on the line we asso~iate with it a new 
measure tly define~ by . . . 

. (4.7)- ay{~y} = e"~y{dy} . 

,The measure tI F associated with F is again a proper probability distribution 
and we say that the random walks generated by tlF and F are associated 
with' each' other.8 It is easily seen that the n-fold cQIlvolution of tI F wi$ 
itself is assQciated with Fn*. so that the. notatiOll tI Fn* is unambiguous. 
,furthermore, the recursion formulas (3.5) show that the transforms tI Pn 
and, o."Pn h'ave the same probabilistic meaning in the new ra~dom walk as 

. ." 

Pn.and V'n in the old one. It follows gene,rally that the tr~nsforms tip,' tlH, 
"Vi, "etc., have the obvious meaning for the random ,'walk 'associated with tI F. 
[This can be seen also directly from the integral equation (3.9).] 

The integral' . 

</>(1) = .co> eW
' F{dy} 

,exists for all t between 0 and K and in this interval cp inay be differentiated 
indefinitely. The se~ond derivative being positive, q; is a, convex function. 
if q;'{K) exists, the fact'that q;(0) = !p(K) implies that q;'(0) and q;'{K) 
have opposite signs. The ranc;lom walks induced by F and a.p have therefore 
drifts in opposite directions. (This remains obviously. true even' in the 
exceptional case that aF has no finite expectation.), 

We nave thu~ devi~ed a widely applicable method of translating facts 
about a random walk with ft < 0 into results fora random walk with 
positive expectation, and vice versa. 

If ft < 0 the ladder height distribution H is defective, but a H is a 
proper distribution. This means that . 

(4.8) 

8 This notion was used by A. Khintchine. (\. Wald, and others but was never fully 
exploited. The transformation (4.7) was used for renewal theory in XI,6 and (in a form 
disguised by the use ofgenerating functions) in theorem 1 (iii) of 1; XIII, 1 0 and will be 
used for Laplace transforms in XIII,(1.8). The equation (4.6) serves also in the Wiener
Hopf thepry. 
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The power of the method of associated random walks derives largely from 
this remark. Indeed, we know from XI,6 that excellent asymptotic estimates 
aie available for the ascending ladder process if one knows the root of the 
equation (4.8). These estimates would be illusory if they required a knowledge 
of H, but we see now that the roots of the two equations (4.6) and (4.8) are 
identical. 

(c) Bounded arithmetic distributions. Let a and b be positive integers 
and let F be an arithmetic distribution with span 1 and jumps fk at k = 
= -b, ... ,a. The measures "p and P are also concentrated on integers 
and we denote their jumps at k by "Pk and Pk' respectively. The first 

I 
entry into - 00, 0 occurs at an integer > -b and so Pk = 0 for k < -b. 
We introduce the generating functions 

a a:) o 
(4.9) <1>( s) =. L fksk, 'Y(s) = L "PkSk, R(s) = L PkSk. 

k=-b k=O k=-b 

They differ from those of 1; XI in that <I> and R involve also negative 
powers of s, but it is clear that the basic properties and rules remain 
unchanged. In particular, fl = <1>'(1) is the expectation of F. To a con
volution of distributions there corresponds the product of the generating 
functions, and· so the basic integral equation (3.9) is equivalent to 
'Y + R = 1 + 'Y<I> or 

(4.10) 

The numerator and denominator are polynomials of degrees band 
a + b, respectively. The power series ori the left is regular, for lsi < 1, 
and so all roots of the denominator located within the unit circle must 
cancel against roots of the numerator. We proceed to show that this require
ment uniquely determines Rand 'Y. 

For concreteness suppose fl = O. (For fl '# 0 see problems 12-13.) 
Then s = 1 is a double root of the equation <1>(s) = 1. For lsi::!: 1 we 
have 1 <1>(s) 1 < <1>(1) = 1 where the inequality sign holds only if Sk = 1 for 
every I k such that fk > O. As the distribution F is assumed to have span 1 
this is true only if s = 1, and hence no other roots of <I>(-s) = 1 are located 
on the unit circle itself. To discover how. many roots are located in the 
interior we consider the polynomial of degree a + b defined by . 

pes) = Sb[<I>(S) - q], 

For lsi = 1 we have IP(s)1 > q - 1 > 0 and 

IP(s) + qsbl ~ 1<D(s)1 < 1 < q lsbl· 

q > 1. 
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By Rouche's theorem9 .this implies that the polynomials pes) and qsb have 
the s~me number of zeros located inside the unit circle. It follows that P 
has exactly b roots with lsi < 1 and a roots with lsi > 1. Now P(O) = 0 
and P(l) = 1 - q < 0 while pes) > 0 for large s; and so P has two 
real roots s' < 1 < s". As q ~ 1 the roots of P tend to the roots of 
cI>(s) = 1. Thus we conclude finally that the denominator in (4.10) has 1 
as a double root., and furthermore b - 1 roots S1,'" , sb_1with ISjl < 1 
'and a-I roots 0'1, ... , O'a-1 with IUil > I: Then the denominator is 
of the form 

(4.11) s~(cI>(s)- 1) , C(s-I)2(s-s1).··· (S-Sb_1)(S:""'0'1) ... (S-O'a_1)' 

The roots Sb"" Sb-l must cancel against those of the numerator, and 
since the' codficients "Pn remain bounded the same is true of one root 

Cs = 1. 'This'determines 'Y up to a multiplicative constant. But by definition 
'Y(O) = 1 and hence we h~ve the desired explicit formula 

__ (4.12) 
. 1 

- _ 'Y(s) = _ . 
- (l-s)(I--s'/(11) ... (l-s/0'~_1) 

. , 

Expansion into partial fractions leads to e~plicit expressions for "Pn, the 
-great' advantage- of this method beirig that the knowledge of the dominant 
root leads to teasona,ble asymptotic estimates (see 1; XJ,4). , 
- For the gener:ating function R - of the first entran~ probabilities Pk we ' 
get fr?m (4JO) and (4;12)' 

- . 
(4.13) R(s) = I+C'{;";"I)a-10'1'" O'a':"1(l-I!s)(l'-:'s1!s) r •• (l,-:-,Sb-1!S). . ,'. 

' __ [The coefficient ·C is d~fined in (4.11) and depends only on the giveq 
distrib~tio~ {lie}'] Again a partial fraction expans,ion leads to asymptotic 

, 'esti~ates" (Continued ,in problems 12-15.) 

'5. ~PLICATIONS 

-It was sh~wn in VI,9 that a basic problem of'queuing theory consists 
in finding the distrib,ution M of 

(5.1) - M = rnax,[O;'Sh' .. J 

in'arandom walk with variables Xle such that ft = E(X~) <-D. Examples 
VI,9(a) to (e) show that the same'problem tunis up in other contexts, 
for example in con-nection with ruin problems in compound Poisson 

9 See, for_example, E. Hille, AnalytiC fUllction -theory, vol. I, section 9.2. (Ginn and Co., 
1959.) 
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processes. In this 'case, as well as in queuing theory, the underlying distri-
bution is of the. form . . 

(5.2) 

where A is concentrated on 0, 00 and B on - 00, O. We suppose that A 
and B have finite expectations a and -b, so that F has expectation 
fl = a-b. We suppose also that F is continuous so as to avoid the tedious 
distinction between strict and weak ladder variables. 

As ·in the preceding two sections we denote the ascending and descending 
ladder height distributions by Hand p respectively. (For consistency we 
should write H- for p) In other words, Hand p are the distributions 

of the point of first entry into 0, 00 and - 00, 0 (and also into corre
sponding closed intervals). It was shown in example 3(c) and in (2.7) that 
iffl<O 

" 

(5.3) 

Example 4(a) contains an explicit formula10 for this distribution if one of the 
tails of F is exponential, that is, 

(5.4) F(x) ...:.... 1 - pe-ax for x> 0, 

or else F(x) = qeaX for x < O. 
By e~treme good luck the condition (5.4) holds if F is of the form (5.2) with 

(5.5) A(x) = 1 - e-ax for x > O. 

Then 

(5.6) 

OUf simple results are therefore applicable in queuing theory whenever 
either the incoming traffic is Poissonian or the service time is exponential. 
Furthermore, the ruin problem in compound Poisson processes is covered 
by the present conditions. There exists an immense. applied literature 
treating special problems under various assumptions on the distribution B, 
50metimes, as in ruin problems, in a disguised form. As it tUrns out, greater 
generality and much greater simplicity can be achieved by using only the 

10 Another explicit formula is contained in example 4(c) for the case of an ar~,nnl fic 
distribution F with finitely many atoms. This explicit formula is too unwieldy t·: C 

pra'ctical, but an expansion into partial fractions leads to good asymptotic estimates if the 
dominant root of the denominator is known. The same m~thod applies to Fourier transforms 
whenever the characteristic function of F is rational . . This remark covers many special 
cases treated in the literature. 
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condition (5.4) instead of the combination (5.5) and (5.2). We see here a 
prime example of the economy of thought inherent in a general theory where 
one's view is not obscured by accidents of special'cases. 

Examples. (a) The Khintchine-Pollaczek formula. Suppose that F is of 
the form (5.2) with A given by (5.5) and fl = l/rx - b > O. The random 
walk drifts to 00 and we have to replace the maximum in (5.1) by the 
minimum. This means replacing H in (5.3) by the distribution p gIven In 

(4.4). A simple integration' by parts shows that for x < 0 

(5.7) p( x) = 'Y. 1x

oo B(y) dy. 

Hence p(O) = rxb and so for x < 0 
00 

(5.8) P{ min (So, S1' ... ) < x} = (1 - rxb) L pl1*(X). 
o 

This is the celebrated Khintchine-Pollaczek' formula, which has been 
rediscovered time and again in special situations, invariably using Laplace 
transforms [which method is inapplicable for the more general distributions of 
the form (5.4)]. We return to it in problems 10-11 of XVIII,7. 

(b) The dual case. Consider the same distributions as in the last example 
but with fl < O. As was shown in the second part of example 4(a) in this case 

(5.9) P{max (So, Sl, ... ) < x} = ~ tp(x) = 1 - (1 - ~)e-KX 
rx rx 

where K is the unique positive root of the "characteristic equation" (4.6). 
[This result can be obtained also by the method o( associated random walks 
recalling the fact that when ft > 0 one has tp(x) = 1 + rxx for x > 0.] 
In queuing theory (5.9) implies that at a server with exponential servicing 
times the distribution of the waiting iimes tends to an exponential limit. 

(c) Asymptotic estimates. The method of associated random walk 
described in section 4b leads easily to useful estimates for the tail of the 
distribution 

(5.10) . M(x) = P{max (So, Sb ... ) < x}. 

The following silJ1ple method replaces many complicated calculations used 
for special problems in the applied literature. It represents a special case of 
the general theory in XI,6, but for convenience the following exposition is 
self-contained. 

The distribution ltl is given by (5.3). In it tp stands for the renewal 
measure corresponding to the defective distribution H. To the associated 
proper distribution a H there corresponds the renewal measure a1p given by 
!ltp{dx} = eKxtp{dx}, with K given by (4.6) or (4.8). Hence (5.3) may be 
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rewritten in the form 

~5.11) M{dx} = [l-H(oo)]e~"~' "1p{dx}. 

By the basic renewal theorem of XI , 1 the renewal measure a1p is asymptotically 
uniformly distributed with a density {J-I where 

fJ == r xe>"H(dx}. 

Integrating (5.11) between t and 00 we see therefore that as t -+- 00 

(5:13) 1 - M(t) _1 - fJ~( (0) e~' 

provided only that {J < GO. [Otherwise 1 - M(t) = o(e-Kt).] 

The constant {J depends on the distribution H· which is usually not known 
explicitly, but the exponent K depends only on the given distribution F. 
At" worst therefore (5.13) represents an estimate involving an unknown 
factor, and even this result is not easily obtained by other methods. The 
next example illustrates important applications. 

(~) Cramer's estimate/or probabilities o/ruin. We now apply the preceding 
result to example (a). Here the drift is toward + 00, and hence the roles of 
the positive and negative half-axes must be interchanged. This means that 
Ie < 0, and the distribution H is to be replaced by the distribution (5.7) 
of the first entry into - 00, O. Thus (5.12) takes on the form 

(5.14) ]

'0 

fJ =oc -00 e-I"I~ Iyl B(y) dy. 

We saw that p(O) = rx.b~ and so (5.13) is equivalent to the statement that as 
x-+- 00 

(5.15) P{ . (8 8 ) <} 1 - rxb l"lx 
mm 0' I"" - x ,....... lie/ f3e . 

This formula has many applications. In queuing theory the left side represents 
the limit distribution for the waiting time of the nth customer (see the t~eorem 
in VI,9). In exatmple VI,9(d) it was shown that the basic ruin problem of 
VI,5 may be reduced to this queuing problem. With different notations the 
same problem ~s treated in example XI,7(a).11 It is therefore not surprising 
that the estimate (5.15) has been derived repeatedly under special circum
st:lnces, but the problem becomes simpler in its natural general setting. 

11 To our defective Qistribution p, which is conce~trated on - co, 0, there corresponds 

ill XI,7 the defective distribution L with density (a./c)(l - F(x» concentrated on 0, co. 
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From the point of view of the general theory (5.15) is equivalent to a famous· 
estimate for the probability of ruin in the theory of risk due to H. (:ramer.12 ~ 

6. A COMBINATORIAL LEMMA 

The distribution of ladder epochs depends on a simple combinatorial 
lemma, and the probabilistic part of the argument wili appear clearer if we 
isolate this lemma. 

Let Xl, ..• ,Xn be n numbers, and consider their partial sums 

So = 0, ... , Sn = Xl + ;. .. + X n • 

We say that v > 0 is a ladder index if Sv >- So, ••• , Sv > Sv-l, that is, if 
Sv exceeds all preceding partial SUms. There are n ladder indices if all X,i 

are positive, whereas there are none if all X
J
' are negative. 

Consider the n cyclical reorderings (Xl"'" X n ),· (X2' ••• , X n , Xl), ... , 
(Xn' XI, ... ,xn- l ) and number them from 0 to n - 1. The partial sums 
skV

) in the arrangement number v are given by 

(6.1 ) S ty) -
k -

Sv+k - Sv for k = 1, ... , n - 'V 

Sn - Sv + Sk-7I+V for k = n-v+l, ... , n. 

Lemma 1. Suppose sn > O. Denote by r the number of cyclical re
arrangements in l-vhich n is a ladder index. Then r > 1, and in each such 
cyclical arrangement there are exactly r ladder indices. 

Examples. For (-1, -1, -1, 0, 1, 10) we have r = 1: the given order 
is the only one in which th~ last partial sum is maximal. For (-1,4,7,1) 
we have r = 3; the permutations number 0, 2. and 3 yield 3 ladder indices 
each. ~ 

Proof. Choose v so that Sv is maximal, and if there are several such 
indices choose v as small as possible. In other words, 

(6.2) 

It is then seen from (6.1) that in the vth permutation the last partial sum 
i's strictly maximal and so n is a ladder index. Thus r > 1. Without loss 
of generality we· now suppose that n is a ladder index in the original 
arrangement, that is, S71 > S; for all j. The quantities in the first line in 
(6.1) are then < S7l' ~nd the second line in (6.1) shows that 11 is a ladder 
index also in the vth permutation iff s.; > Sl, ..• , Sv > Sv-l, that is, 
iff v is a ladder index in the original arrangement. Thus the number of 

i2 For a newer derivation by Wiener-Hupf techniques in the complex plane see Cramer's 
paper cited in VI,S. Our (S.1S) is Cramer's (S7). 
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permutations in which n is a ladder index equals the number of ladder 
indices, and the lemma is proved. ~ 

Weak ladder indices are defined analogously except that the strict 
inequality > is replaced by >. The preceding argument applies to them 
and leads to 

Lemma 2. If Sn > 0, lemma 1 applies also to weak {adder· indices. 

7. DISTRIBUTION OF LADDER EPOCHS 

In the preceding sectic;ms we have focused our attention on the ladder 
height, but now we turn to the ladder epochs. Let 

(7.1 ) Tn = P{SI .< 0, ... ,S'n-l < 0, Sn > O}. 

This is the probability that the first entry into 0, 00 occurs at the nth step, 
and so {~n} is the (possibly defective) distribution of the first ladder epoch 
.r1• We introduce jts generating function 

00 

(7.2) T(S) = ~ TnS
n

, O~s~1. 
71=1 

The foHowing remarkable theorem shows that the distribution {'T n} is 
completely determined by the probabilities P{Sn > O} and vice versa. It 
was discovered by E. Sparre Andersen whose ingenious but extremely com
plicated proof was gradually simplified by several authors. We derive it as a 
simple corollary to our combinatorial lemma. [A stronger version is 
contained in (9.3) and will be treated by Fourier methods in chapter XVIII.] 

Theorem 1: 

(7.3) 
1 00 sn 

log = I -P{Sn > O}. 
1 - T(S) n=1 n . 

Note: The theorem and its proof remain valid if in (7.1) and (7.3) the signs 
> and < are replaced by > And <, respectively. In this case {Tn} 
stands for the distribution of the first weak ladder epoch. 

Proof. For each sample point consider the n cyclical permutations 
(Xv, ... , X n , Xl' ... ,Xv-I) and denote the corresponding partial sums by 
S~v), ... , S~v). Fix an integer r and define n random variables y<v) as 
follows: Y<v) =] if n is the rih ladder index for (Siv), ... , S~v)) and 
y<v) = 0 otherwise. To v = 1 there corresponds the unpermuted sequence 
(So, ... ,Sn) and hence 

(7.4) 
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where {r;)} is the distribution of the rth ladder epoch. This epoch is the 
sum ofr independent random variables distributed as !II' and hence 
r~~) is the coefficient of sn in the rth power rT(s). 

For reasons of symmetry the variables Y(v) have a common distribution; 
since they assllIp.e only the values 0 and 1 we conclude from (7.4) that 

(7.5) r;) = E(YO» = 1 E(Yw+, .. + yIn»~. 
n 

By our last lemma the sum yw + .. , + YIn) can assume only the values 
o or r, and hence 

(7.6) ! r;) _,1 P{y(O) + ... + yIn) = r}. 
r n 

For fixed nand r = 0, 1, ... the events on the right are mutually exclusive 
and their union is the event {Sn > O}. Summing over r we get .therefore 

(7.7) 

On multiplying by sn and summing over n we obtain 

(7.8) 

which is the same as the assertion (7.3). 

Corollary. If F is continuous and symmetric, then 

(7.9) res) = I-v'l - s. 

Proof. All the probabilities occurring in (7.3) equal and so the right side 

equals log o Iv' 1 - s ). flo-

It is of interest to generalize this result assuming only that 

(7.10) P{Sn > o} -to 
Such is the case whenever 'the distribution of Snlan tends to the normal distribution m. 
We shall assume a ttifle more than (7.10), namely that the series 

00 1 L - [P{Sn > o} - t] = C 
n=1 n 

(7.10 

converges (not necessarily absolutely). It will be shown in XVIII,S that (7.11) hoids when
ever F has zero expectation and a finite variance. 

The following thl Of' m is given not only because of its intripsic interest, but also as an 
illustration for the use of refined Tauberian theorems. 
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Theorem lao If(7.11) holds tlien 
1 I 

(7.12) P{Y1 > n} '-' -= e-C -=. 
v 7T Vn 

rhus when F has zero expectation and a finite variance the distribution {Tn} is very 
similar to the one encountered in the binomial random walk. 

Proof. From (7.3) we see that as s -- 1 

vI - s 00 sn 
log 1 ( ) = L - [P{Sn > O} - !J -- c. 

- T S n=l n 
(7.13) . 

It follows that 

(7.14) 
1 - T(S) 1 
---,....., e-C ---=== 
l-s vl-s 

On the left one recognizes the generating function of the probabilities in (7.12). These 
decrease monotonically, and hence (7.12) is true by the last part of the Tauberian theorem 
5 in XIII,S. ~ 

Theorem 2. The random walk dr(fts to - 00 iff 

(7.15) 
00 1 
L - P{Sn > O} < 00. 

n=l n 

This criterion remains valid13 with {Sn > O} replaced hy . {Sn > O}. 

Proof. Drift to - 00 takes place -iff the ascending ladder processes are 
terminating that is, iff the distribution of !T 1 is defective. This is the same 
as 7(1) < 1, and in this case the two sides in (7.3) remain bounded as 
s -- 1. The condition. (7.15) is seen to be necessary and sufficient. The 
same argument applied to weak ladder epochs justifies the concluding 
assertion. 

We know that drift to - CX) takes place if F has an expectation ft < 0, but it is not 
analytically obvious that ft < 0 implies (7.15). The verification of this fact provides an 
excellent technical exercise of methodological- interest. (See prqblem 16.) 

This theorem has surprising implications. 

Examples. (a) Let F be a strictly stable distribution with F(O) = <5 < i. 
Intuitively one would expect a drift toward 00, but in fact the random walk 
is of the oscillating type. Indeed, the series (7.15) reduces to (1-<5) L n-1 

and diverges. Thus !Tl is proper. But the same argument applies to the 
negative half-axis and shows that also the descending ladder variable !T-; 
is proper. 

(b) Let F I)tand for the symmetric Cauchy distribution and consider the 
random, walk generated by the variables X: .. = Xn + 1. The mediclU of the 

13 We shall see that L n-1p{Sn = O} < IX> under any circumstances [see 9(c):J. 
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sums S~ = Sn + n lies at n, and intuitively one should expect a strong 
drift to 00. Actually the probabilities P{S~ > O} are again independent of 
11, and as in the preceding example we conclude that the random walk is of 
the oscillating type. ~ 

Theorem 3. The ladder epoch Y1 has a finite expectation (and is proper) 
iff the random walk drifts to 00. In this case 

(7.16) 

(The series diverges in all other cases). 

Proof. Subtracting the two sides of (7.3) from log (1-S)-l we get for 
O<s<1 

(7.17) log 1 - T(S) = I sn [1 - P{Sn > O}]. 
1 - S n=l 11 

As s -+ 1 the left side converges iff .r1 is proper and has a finite expectation. 
The right side tends to the right side in (7.16), and by theorem 2 this series 
converges iff the random walk drifts to 00. ~ 

In conclusion we show that the generating function occurring in theorem i 
has an alternative probabilistic interpretation which will lead directly to the 
amazing arc sine laws. 

Theorem 4. The generating function of the probabilities 

(7.18) 

is given by 

(7.19) 

that is, 

(7.20) 

Pn = P{Sl > 0, S2 > 0, ... , Sn > O} 

1 
p(s) = 1 _ T(S) 

C() sn 
log p(s) = I - P{Sn > O}. 

11=1 11 

For reasons of ~ymmetry the probabilities 

(7.21 ) 

have the gene_rating function q given by 

(7.22) 
C() sn 

log q(s) =:2 - P{Sn < O}. 
n=l 11 

(Cf. problem 21.) 
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Proof. \Ve use the duality lemma of section 2. From the theory of 
recurrent events it is clear that (7.19) is the geuerating function of the 
probabilities Pn that 1l is a ladder epoch, that is 

(7.23) Pn = P{Sn > So, . '.' : Sn > Sn-l}' 

Reversing the order of the variables Xj we get th~ dual interpretation (7.18). 

[This is really contained in. (2.1) when I = 0, co.] ~ 

8. THE ARC SINE LAWS 

One of the surprising features of the chance fluctuations in coin tossing 
finds its expression in the two arc sine laws (l; 111,4 and 8). One of them 
implies that the number of positive terms in the sequence Sl"'" Sn is 
more likely to be relatively close to ° or n than to n/2 as one would naIvely 
expect. The second implies the same for the position of the maximal term. 
We show now that these .laws are valid for arbitrary symmetric and for many 
other distributions. This discovery prov,es the general relevance and applic
ability of the discussions of 1; III. 

In the following we have to cope with the nuisance that the maximum may 
be assumed repeatedly and that partial sums may vanish. Th,ese .possibilities 
can be disregarded if F is continuous, for then the probability is zero that 
any two p':lrtial sums are equal. (Readers are advised to consider only this 
case.) For the general theory we agree to consider the index of the first 
maximum, that is, the index k such that 

(B.I) 

Here n is fixed and k runs through the values 0, 1, ... ,n. The event (B.1) 
must occur for some k < n, and so we may define the (proper) random 
variable Kn as' the index of the first maximum; that is, the index where 
(B.1) occurs. Here (So = 0). 

The event (8.1) requires the simultaneous realization of the two events 
{Sk > So, ... , Sk > Sk-l} and {Sk+l - Sk < 0, ... , Sn - 'Sk < o}. The 
first involves only Xl'.'" Xk, the second. only Xk+l"'· ,Xn , and hen«:e 
the two events are independent. But these are the events occurring in the last 
theorem and so we have proved 

Lemma 1. For all k, n 

(8.2) P{Kn = k} = Pkqn-k· 

Suppose now that P{Sn > o} = P{Sn < o} =! for all n. The right 
sides in (7.15) and (7.17) then reduce to :\-log (l-s)-l, and hence 

p(~) = q(s) = I/JI - s. 
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Thus 

(8.3) 

and this may be 'HILL, "the more pleasing form 

(2k) (2n - 2k) 1 
(8.4) Pkq n-k = k n -k 22n ' 

This expression was used in 1; III,(4.1) to define the discrete arc sine distri
bution which was found in 1; III A and 8 to govern various random variables 
connected with coin tossing; its limiting form was derived in 1; III,(4.4). 
Using in particular the arc sine law of 1;UI,8jwe can state 

Theorem 1. If F is symmetric and continuous, the probability distribution 
of K1I (the index oj the first maximum in So, 8 1 , .•• , 8 n ) is the same as in 
the coin tossing game. It is given by (8.3) or (8.4). For fixed 0 < II < 1 as 
n -+ 00 

(8.5) 
1 -

P{K n < nll} -+ 2 - arc sin ~ll. 
7T 

The limit distribution has the density l/[7TJ ll(l-ll)] which is unbounded 
at the endpoints 0 and 1 and has its minimum at the midpoint!. This shows 
that the reduced maximum Knln is much more likely to be close to 0 or 1 
than to!. For a fuller discussion see 1; III,4 and 8. For an alternative form 
of the theorem see problem 22. 

This theorem can be generalized just as theorem 1 of the preceding section. 

Theorem llil.14 If the series 

(8.6) 
C() 1 
2: ~ [P{Sn > o} -!] = C 

n=l 

converges, then as n -+ 00 and n - k -+ 00 

P{Kn = k} "" (2k) (2n - 2k) _1 . (8.7) k n _ k 22n 

and hence the arc\sine law (8.5) holds. 

It will be shown in XVIII,5 that the series (8.6) converges whenever F has zero expecta
tion' and finite variance. The arc sine laws therefore hold for such distributions. 

Proof. From (7.20) and the elementary theorem of Abel on power series we conclude 
that as s ~ I 

(8.8) 
__ ,C()' sn 

log (P(s)v'l - s) = ~ - [P{Sn > o} - !] -+ c, 
. k n . "-I 

14 This theorem ~as proved by laborious calculations by Sparre-Andersen. The 'remark 
that the Tauberian theorem removes all trouble, is due to Spitzer. For a generalization 
see 9.d. 
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and so 

(8.9) 

By the defini tion (7.18) the Pn decrease monotonically, and hence the last part of the 
Tauberian theorem 5 of XIII,5 implies that coefficients of the two power series in (8.9) 
exhibit the same asymptotic behavior. Thus 

(8.10) n -+- 00 

For qn we get the same relation with c replaced by -c, and hence the assertion (8.7) 
follows from (8.2). The derivation of the arc sine law depends only on the asymptotic 
relation (8.7) and not on the identity (8.4). ~ 

Theorem 1 and its proof carryover to arbitrary strictly stable distributions. If 
P{Sn > O} = 15 is independent of n we get from (7.20) and (7.22) 

(8.11) q(s) = (l-s)cl-1 

and hence 

(8.12) (
-15) (15-1) P{Kn = k} = Pkqn-k = (_1)n k 'n-k' 

The limit theorem (8.5) holds with the arc sine distribution on the right replaced by the 
distribution with density 

(8.13) 
sin '7T15 1 

'7T x1- cl(l-x)cl' 
O<x<l. 

Theorem la carries over to distributions belonging to the domain of attraction of a stable 
distribution. 

In 1; III we had to prove the two arc sine laws separately, but the next 
theorem shows that they are equivalent. Theorem 2 (for continuous 
distributions) was the point of departure of the investigations by E. Sparre
Andersen introducing the new approach to fluctuation theory. The original 
proof was exceedingly intricate. Several proofs are now inexistence, but the 
following seems simplest. 

Theorem 2. The number TIn of strictly positive terms among Sl"'" Sn 
has the same distribution (8.2) as Kn , the index of the first maximal term in 
So = 0, Sl' ... , Sn' 

(See problem 23.) 
This theorem will be reduced to a purely combinatorial lemma. Let 

Xl, ... ,Xn be n arbitrary (not necessarily distinct) real numbers and put 

(S.14) So = 0, 

The maximum among so, . .. ,Sn may be assumed repeatedly and we must 
therefore distinguish between the' index of the first and the last maximal term. 

Consider now the n! permutations Xi , ••• 'Xi (some of which may have 
. 1 n 
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the same outer appearance). With each we associate the sequence of its 
11 + 1 partial sums 0, Xi , .•• ,Xi + ... + X ... 

I I on 

Exa,mple. (a) Let Xl = X2 = 1 and X3 = X4 = -1. Only 6 rearrange
mehts (XiI'.'.' Xi.) are distinguishable, but each repr-esents four permu
tations of the subscripts. In the arrangement (l, 1, -1, -1) three partial 
sums are strictly positive" and the (unique) maximum occurs at the third 
place. In the arrangement (-1, -1, 1, 1) no partial sum is positive, but 
the last is zero. The first maximum has index 0, the last index 4. ~ 

Theorem 2 will be shown to b~ a· simple ~onsequence of 

Lemma 2. Let r be an. integer 0 < r < n. The number Ar' of permuta!ions 
with exactly r strictly positive partial sums is 'the aame as the number Br 
of perm'!tations in which the first' maximum among these pa,rtial sums 'o'ccurs 
at the place r. ' 

(See problem 24.) 

. Proof.15 We ,.proceed by induction., The assertion IS tr~e for n= 1 
since Xl > 0 implies Al = Bl = 1 and Ail ='Bo = 0 while, Xl < 0 
implies Al = Bl = 0 and Ao = Bo = 1. Assume the lemma true whenn 
is replaced by 'n - 1 Z 1. Denote by A~k) ,and B:~) the numbers corre
sponding to Ar and Br when the n-:-tuple . (XI, ~: .. ,xn) 'is repla~ed by the 
(n - I)-tuple obtained by omitting xk.The induction_hypothesis then 
states that A~k) , B~k) for' 1 < k ~ iz and r = 0, ... , n - 1. ' This 'is 
true also for r = n since trivia~ly A~k) == .iJ~k.) = O. . ' 

(a) Suppose Xl + ... + xn ,~O. The n! permutations or (Xl;'" , Xn) 
are obtained by 'choosi!1g the e!ement X k at the last place an~ permuting the 
remaining n - 1 elements. The nth partial sum being ,~O, it is clear that' 
the number of positive partial suIT\s and theihdex .of the fir'st .mCl:xi.mal term . 

, depend only on the first n - 1 elements. Thus . 
I 

(8.15) 
n 

A = "" A(k) r .£... r , 
. k-l 

-n 

Br = 2B~k), 
k-l . 

and henceA r L Br. by the induction hypothesis. 

,15 The following proof is due to 'Mt-. A. W. Joseph of Birmingham (England). Its 
extreme simplicity comes almost as a 'shock if one remembers that in 1949 Sparre 
Andersen's discovery of theorem 2 was a sensation greeted with incredulity, and the original 
proof was of an extraordinary intricacy and complexity. A .reduction to the purely com
binatorial lemma 2 and an elementary proof of the latter was given by the author. ' (See 
the first edition of'the present book:.) Josq>h's proof is not only simpler, but is the first 
constructive proof establishing a one-to-one correspondence between the two type:s of 
permutations. Our discussion of this aspect in lemma 3 exploits an idea of Mr. M. T. L. 
Bizleyof London (England). The author is grateful to Messrs. Joseph and Bizley fOf 
permission to use their unpublished results (communicated when the typescript was alread~ 
at the printers). 
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(b) Assume Xl + ... + xn > O. The nth partial sum IS then positive 
and the preceding argument shows that now 

(S.16) 
n 

A = ~A<kl 
r k r-l' 

k=l 

To obtain an analogous recursion formula for B,. consider the arrangements 
(Xk' X;l' ... ,X;71_) starting with Xkr The nth partial sum being positive 
the maximal terms of the partial sums have positive subscripts. Clearly the 
first maximum occurs at the place r (1 ~ r ~ n) iff the first maximum of 
the partial SUIJlS for (X;I' .... ' X;71_) occurs at the place r - 1.. Thus 

(S.17) 
n 

B = "'" B<kl r £. r-l 
k=l 

A comparison of (8.16) and (S.17) shows again that Ar =' Br, and this 
completes· the proof. ~ 

We shall presently see that this argum~nt yields further results, but first 
we return to the 

Proof of theorem 1. ,We proceed as in the proof of theorem 1 in section 7. 
Consider the n! pennutations (xi'" '. , Xi) and number them so that the 

I " • 

natural order (Xl"'" x 1J counts as number one. For a fixed integer 
o < 'r < n define y~"l = 1 if the permutation number ." has exactly r ~ 
positive partial Sums, and Y<II) = 0 otherwise. For reasons of symmetry the 
n! random variables have ,a common distribution, and henc~ 

(S.lS) 

Similarly 

(S.19) 

P{ Un = r}= P{y{l) = I} = E(yUl) = ~ ! E(y<Yl). 
.. n. 

where Z<IIl = 1 if in the pennutation number ." t4e first maximal partial 
sum has index' r, and Z<I'l = 0 otherwise. By the lastJemma the sums 
! y<I'l and ! Z<I'l are identkal, and hence the IPr~babiliti~s in (8.i 8). ~nd 
(S.19) are the same.' .. 

Note on Sparre Anderse~ t~ansformations. It follows from lemma 2 that 
there exists a transformation such that each n-tuple (Xb"" xn) of real 
numbers is mapped into a rearrangement (X~l"'" Xi) in such a way that: 
(i) if exactly r (0 ~ r ~ n) among the partial sums Sk in (8.14) are strictly 
positive, then a maximum of the partial sums of (Xii"" ,Xi)' occurs for 
the first time with index r, and (ii) the transformation is invertible (or 
one-to-one). Such transformations will De called after E. Sparre Andersen 
even though he was concerned with independent random variables without 
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being aware of the possibility to reduce Ldeorem 2 to the purely com
binatorial lemma 2. A perusal of thl:? proof of lemma 2 reveals that it 
contains implicitly a prescription for a construction of a Sparre Andersen 
transformation. The procedure is recursive, the first step being given by the 
rule: if Sn < 0 leave the n-tuple (x}, ... , xn) unchanged, but if Sn >.0 
replace it by the cyclical rearrangement (Xn' Xl' ••. ,xn- l ). The next step 
consists in applying the same rule to the (n - 1 )-tuple (ttl"'" x n_ l ). The I 

desired rearrangement (Xi"'" Xi ) is obtained after n - 1 steps. 
. 1 71 

Examples. (b) Let (X}, ••• , X6) = (-1,2, -1,1,1, -2). No change 
occurs at the first step while the second leads to (1, -1, 2, -1, 1, -2). 
As S4 = 1 the third step yields (1, 1, -1, 2, -1, -2), and the fourth 
step introduces no change because Sa = O. Since S2 = 1 the final step 
leads to the arrangement (1, 1, 2, ~ 1, -1, -2). The unique maximum or' 
the partial sums occurs at the third place, and in the original arrangement 
exactly three partial sums are positive. 

(c) Suppose that Xj <'0 for all j. The initial and the final arrangement of 
the Xj are identical. No partial sum is positive, and So = 0 represents a 
maximum (which is repeated if Xl = 0). ~ 

It is preferable to replace the recursive construction by a direct description 
of the final result. We give it in the following lemma; because of its intrinsic 
interest a new proof is given which is independent of the preceding lemma. 
(See also problem 24.) 

Lemma 3. Let (Xl"" ',xn ) be an n.:.tuple of real numbers such that the 
partial sums SVI"'" sv; are positive and all others negative.. or zero: here 
VI > V 2 > ... > Vr > O. Write down XVI'" • , xvrfollowed by the remaining 
Xj ill their original order. (If al/ partial sums are <0 then r = 0 and the 
order remains unchanged.) Among the maxima of the partial sums in the new 
arrangemen t the first occurs at the rth place, and the transformation thus 
defined is one-to-one. 

Proof. Denote the' new arrangement by (~l"'" en) and its partial sums 
by 0'0"'" O'~. To every subscript j ~ n there corresponds a unique 
subscript ok such that ~j = X k• In particular, ~}, ... , ~r agree with 
Xv , ••• ,XV in that order. 

I r 

Consider first a j such that Sic < O. It is clear from the construction that 
j > k and the elements ~i-k+b"" ~i represent a permutation of XI~ .•• , 

X k• Thus O'j == O'i-k + Sk < O'i-b and so O'j cannot be the first maximal 
partial sum. ' 

If r = 0 it follows that the first maximum among the O'j is assumed- for 
j = O. When r > 0 the first maximum occurs at one among the places 
0,1', ... ,r, and we show that only r is possible. Indeed, if i < r it 
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follows from the construction that the Vj elements ~j, ••• , ;j-1+>" 

coincide with some rearrangement of (xl> ... , xv). Thus O"j-1+lIi ' 

= O"j_1 + SlIj > O"j_b and hence no maximum can occur at the place j - 1. 
To complete the proof of the lemma it remains to show that the trans

formation is one-to-one. As a matter of fact, the inverse to ~1' •.. , ~ n may 
be constructed by the following recursive rule., If all O"j < ° leave the 
arrangement unchanged. Otherwise let k be the largest subscript such that 

O"k > 0. Replace (~1'···' ~n) by (~2'···' ~k' ~1' ~k+1' .•• '~n)' and 
apply the same procedure to the (k-l)-tuple (~2'·.· , ~k). ~ 

. Note on exchangeable variables. It should be noticed that the proof does not depend on 
the independence of the variables Xi but only the identity of the joint distribution for each 
of the n! arrangements (Xi l' ••• ,Xi,). In other words, theorem 2 remains valid for ev'ery 
n-tuple of exchangeable variables (VII,4) ,although naturally the common distribution of 
Kn and nn will depend on the joint distribution of the Xj' As an interesting example let 
Xl' X2, • •• be ind~ndent with a common distribution F, and put Y k = X k - Sn/n 
(where k ~ 1, ... ,n). The variables Y], ... , Yn are exchangeable and their partial 
sums are 

(8.20) k = 1, ... ,n - 1. 

With reference to the graph of (So' SI' ... ,S~ we can describe 1:k as the vertical distance 
of the vertex St from the chord joining the origin to the endpoint (n, Sn). 

We now suppose that F is continuous (in order.to avoid the necessity of distinguishing 
between t,he first and the last maximum). With probability 1 there is a unique maximum 
among the terms 0, 1:1 , ••• ,1:n-1. To the cyclical rearrangement (Y2,··., Yn , Y1) 

there correspond the partial sums 0,1:2 - 1:1, ... , 1:n-] - 1:1, ":"'1:1, and it is clea'r that 
the location of the ~aximum has moved one place ahead in cyclical order: (If the original 
maximum was at the zero place then 1:k < ° for k = 1, ... , n-l, and the new maximum 
is at theplace n - 1.) In the n cyclical permutations the maximum is therefore assumed 
exactly once· at each' place, and its position is uniformly distributed over 0, 1, ... , n-1. 
We have thus the following theorem due to Sparre-Andersen and related to the theorem 
3 of 1; 111,9 in coin tossing. 

. Theorem 3. In any random walk with continuous F and for any n the number of vertices 
among 81, ... ,Sn-1 that lie above the chord from (0, 0) to (n, Sn) is uniformly distributed 
over 0,1, ... ,n-~. 

(The same is true of the index of the vertex with greatest maximal ·distance.) 

9. MISCELLANEOUS COMPLEMENTS 

(a) Joint Distributions 

The argument leading to theorem 1 of section 7 req uires only notational 
changes to yield the joint distribution of the ladder variables. Adapting the 

notation of section 1, let l be an interval in 0, 00 and denote by H~r){I} 
the probability that 11 be the rth ladder epoch and Sn E I. PlIt 

00 

(9.1) H{l, s} = 2 snHn{l}, 
n=l 
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It is seen by induction for fixed s 
<Xl 

(9.2) HT*{I, s} = 2 s~H~){l}. 
n=l 

The argument leading to (7.3) now yields without difficulty the following . . 
result due to G. Baxter which reduces to (7.3) when 1= 0, 00. 

Theorem. For I G 0, 00 and ° <. s < 1 

(9.3) 
<Xl 1 <Xl sn 
I - HT*{J, s} = 2 - P{Sn E l}. 

T=l r n=l n ' 

A simpler and more tractable form will be derived in XVIII). 

(b) A l\1ortality Interpretation for Generating Functions 

The' following interpretation may help intuition and simplify formal 
calculations. For fixed s with 0 < s < 1 consider the defective random 
walk which at each .step has probability 1 - s to terminate and otherwise 
subject to the distribution sF. Now sn Fn*{I} is the probability of a position 
in I at time n, the defect 1 - sn representing the probability of a prior 
termination. All considerations carryover without change, except that all 
distributions become defective. In particular, i!1 our random. walk with 
mortality, (9.1) is simply the first ladder height distribution, and (9.2)· the 
analogue to HT* of sections 2-3. The generating function 7'(s) now 
equals the probability that a ladder index will occur. 

(c) The Recurrent Event 

(9.4) 

. represents a return to the origin without previous visits to the right half-axis. 
It was considered in section 1 in the definition of weak ladder variables. 
Denote by Wn ¢e probability of the first occurrence 6( the event (9.4) at 
epoch n, that is; 

(9.5) W7/ = P{Sl < 0, ... , Sn-1 < 0, Sn = O}. 

If w(s) = L wrST
, then w T is the generating function for tpe rth occurrence 

and so l/[l-w(s)] is the generating function for the probabilities (9A). 
A simplified version of the proof of (7.3) leads to the basic id~ntity 

I 00 sn 
(9.6) log) == 2 - P{Sn = O}. 

I - w(s 11=1 n 

Comparing this with (7.3), (7.16), (7.22)., etc., one sees how easy it is to 
pass from weak to strict ladder variables and vice versa. Formula (9.6) 
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confirms also the remark of section I that the probabilities of (9.4) remain 
unchanged if all inequalities are rev~rsed. 

(d) Generalization to Arbitrary Intervals 

The theory of section 3 generalizes with trite notational changes to the 

situation in which 0, 00 is replaced by an arbitrary interval A, and - 00,0 
by the complement A'. In particular, the Wiener-Hopf integral equation 
remains unchanged. The reader is invited to work out the details; they 
are fully developed in XVIII,I. (See also problem IS.) 

10. PROBLEMS FOR SOLUTION 

1. In the binomial random walk [example 2(b)] let ek be the expected number 
of indices n > ° such that Sn = k, SI > 0, ... ,Sn-l > ° (visits to k preceding 
the first negative value). Denote 9Y f the probability of ever reaching -1, 
that is, f = 1 if q > p and f = q/p otherwise. Taking the point (1, 1) as new 
origin prove that eo = 1 + pfeo and eTc = p(ek_l + le,~) for k > 1. Conclude 
that for k > ° 

2. Continuation. For k > 1 let ak be the expected number of indices n > 1 
such ·that Sn = k, SI > 0, ... ,Sn-ol > ° (visits to k preceding the first return 
to the origin). Show that al.. = pek_l and hence 

ak = 1 if P > q, ak = (p/q)k if P < q. 

This gives a direct proof of the paradoxical result of example 2(b). 

Note. The following problems 3-6 may serve as introduction to the problems 
of this chapter and can be solved before studying it. They present also examples 
for explicit solutions of the basic integral equations. Furthermore, they illustrate 
the power and elegance of generating functions [try to solve equation (1) directly!]. 

3. The variables Xk of a random walk have a common arithmetic distribution 
attaching probabilities 11> f2' . .. to the integers 1, 2, . .. and q to -1 (where 
q + 11 + f2 + ... = O. Denote by Ar (r = 1, 2, ... ) the probability that the 
first positive term of the sequence SI' S2' ... assumes the value r. (In other 
words, {AT} is the distribution of the first ladder height.) Show that: 

(a) The }~T satisfy the recurrence relations 

(1) 

(b) The generating functions satisfy 

(2) A(s) = 1 _ [ts) + qs-l - 1 
Al q + qs-l - 1 ' 

o<s<1. 

(c) If E(X,.) = fl =['(1) - q > 0, th~e exists a unique root, 0 < (J < 1, of 
the equation 

0) /(s) + q/s = 1. 
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From the fact that A must be monotone and < 1 in O,T conclude that 

(4) A(s) = s ~ I(s) - I(a) . 
Cf s-a 

This is equivalent to 
[ f a + r , a2 + ... ] 1 __ r J r~I 

r'r - . (5) 
q 

(d) If E(Xk ) < 0 the appropriate solution is obtained letting Al = (l,q)!q 
in (2). Then (4) and (5) hold with a'= 1. 

4. Adapt the preceding problem to weak ladder heights. ID other words, 
instead of Ar consider the probability that the first non-negative term of 8 1,52, ••. 

assumes the value r (r = 0, 1, ... ). Show that (1) and (4) are replaced -by 

(la) I'r = fr + 1 q I'r+l 
- 1'0 

(4a) ?/(S) = 1 - f1 + sf(s) - f(a) . 
a s - a 

5. In the random walk of problem 3 (but without using this problem) let x 
be the probability that 8n < 0 for some n. Show that x satisfies the equation 
(3) and hence x = a. 

6. Cominuation. Show that the probability that Sn $ 0 for some n > 0 is 
q + f(a) = 1 - q(a-1-l). Verify that ).'(1) = ,ua[q(l-a)]-l, which is a special 
case of relation (2.8) (or Wald's equation). 

7. Derive (1.13) by straight calculation from (1.12). 

8. Hitting probabilities. For t > 0 and ; > 0 denote by G(/, ~) thepro-bability 
that the first sum Sn exceeding t will be <I +'~. Prove that G satisfies the 
integral equation -

G(I,o) = F(IH) - F(I) + r: G(t-y, <) F{dy}, 

In case of non-uniqueness, G is the minimal solution. The ladder height -dis
tribution H is uniquely determined by H(~) = -G(O, ~). 

9. Let H be a continuous probability distribution concentrated on 0, 00 and 
H- a possibly defective continuous distribution concentrated on - 00, O. Suppose 
that 

(6) 

is a probability distribution. From the uniqueness theorem in section 3 it follows 
that, Hand H- are the distributions of the points of first entry .1f' and J'('

in the random walk generated by F. In this way it is possib1e to find distributions 
F admitting of an explicit representation of the form (6). Such is the case if 
o < q ~ 1 and Hand H- have densities defined by either 

(a) be-bX for x > 0, q for -1 < x < 0 

or 

(b) b-1 for 0 < x < b, q for -1 <x<O, 
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In case (a) the distribution has a density given by 

(b - q)e-bX + qe-b(x+l) for x > 0, and qe-b(X+l) for -1 < x < O. 

In case (b) if 6 > 1 the density of F is given by qb-1(1 + x) for -1 < x < 0, 
by qb- l for 0 < ;t < b - 1, and by qb-1(b - x) for b - 1 < x < b. In either 
case F has 0 expectation iff q = 1. 

10. From p.11) con~lude: If Hand H- are proper and have variances then 
E(X l ) = 0 and E(Xf) = -2E(Jt"1)E(Jt"1"). 

11. Analytic proof of Wald's re/ation (2.8). From (3.11) conclude 

(0+ 
1 - F(x) = [1 ..... p(O)][I -H(x)] + )-00 p{dy}[H(x -y) - H(x)] 

F(x) = J:oop{dY}[l - H(x -y)] 

for .l; > 0 and x < 0, respectively. Conclude that F has a positive expectatio/ l 

Jl iff H has a finite expectation v and p(O) < 1. Conclude by integration OVt;f 

- OJ, OJ that Jl = [1 - p(O)]v, which is equivalent to (2.8) .. 
12. To example 4(c). If ft > 0 the denominator has a positive root So < 1. 

exactly b - 1 complex roots in lsi < so' and a-I complex roots in lsi' > 1 
The situation for ft < 0 is described by changing s into lis. 

13. The generating function of the ascending ladder height distribution ir: 
example 4(c) is given by 

Xes) = 1 - (1 -s)(1 -sial) ... (1 -s/aa-l)' 

For descending ladder heights change sterk into skis. 
14. To example 4(c). Suppose that the Xj assume the values -2, -1,0, 1, :: 

each with probability t. Show that the ascending Jadder height distribution i5 
given by 

1 + v'5 
A.l =---

3 + v'5 ' 
2 

A.2 = -----:-= 

3 + v'S 

For the weak heights ~o = T~(7 - v'5), J.l = 110 (1 + v'5), 12 = t· 
15. In example 4(c) denote by tpjn) the probability that the first n steps do nc~ 

I I 
lead out of the interval -B, A and that the nth step leads to the position ( 
(Thus tp(k) =0 for k > A and k < -B. As usualtpLO) equals 1 when k = \' 
and 0 otherwise.) Let tpk = L tpkn ) be the expected number of visits to k pri(~ 

I I 
to leaving -B, A. Show that 

and that for k > A and k < -B 
.A 

PI> = L tpvfk-v 
v=-B 

-B ~ k < c 

I I . 
is the probability that the/!rst rxit from the interval -B, A leads to the ~omt. ' 
[This problem is import~nt in sequential analysis. It illustrates the sItuatll'" 
described in 9(d).J 
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16. Theorem 2 of section 7 implies that if It < 0 then I n-1P{Sn > O} < 00. 

Fill in the following direct proof It suffices to show (Chebyshev) that 

I r F {dy} < if.; , 2 !2 in !/2 F {dy} < if". 
J1Y1>n -n 

The first is obvious. To prove the second relation write the integral as a sum of n 
integrals over k - 1 < Iyl < k, k = 1, ... ,n. Reverse the order of summation 
and conclude that the whole series is <2E(IXI). 

17. For the coin-tossing game show that 

sn 2 I -2 P{Sn = o} = log -:----;:=~ 
1 + VI - S2 

Hint: Easy by observing that the left side may be written as the integral on 
[(1 -.c2)-l - 1 ]x- l from 0 to s. 

18. Suppose that the random walk is transient, that is U{I} = I; Ftt*{I} < 00 

for every bounded interval. In the notation of section 3 put <1) = L; l'·*. Prove 
the truth of the renewal equation 

U = <1) + U*H. 

If 'Ip- is the analogue of tp for the negative half-line then tp- = (1 - {)<1) as in 
(1.13). 

19. Conclude that 

U = -:-1-- tp * 'Ip, 
and show this to be equivalent to the Wiener-Hopf decomposition (3.12). 

20. Derive Wald's identity E(.~I) = E(.rl )E(X}) directly from t!Ie renewal 
equation in problem 18. 

21. To theorem 4 of section 7. The probabilities p: = P{SI > 0, ... ,Sn > o} 
and q~ = P{SI < 0, ... ,S~ < O} have generating functions given by 

00 sn 00 sn 
logp*(s) = 2 - P{SlI ~ O} and logq~ = 2 - P{Sn < O}. 

n=1 n n=l n 

22. On the last maximum: Instead of the varia'ble Kn of Section 8 consider the 
index K! of the last maximum of the partial sums So, .. _ ,Sn- With the notations 
of the preceding problem; prove that 

P{K: = k} = P:q:-k' 
23. Alternative form of theorem 2, section 8. The number n: of non-negative 

terms among' So, ... ,Sri has the same--distribution as the variable K: of the 
preceding problem. Prove this by applying theorem 2 to (-Xn - Xn _ l , ... , -Xl)' 

24. The combinatorial lemma 2 of section 8 remains valid if the first maximum 
of So, ... ,Sn is replaced by the la~t maximum, and the number of positive partial 
sums by the number of non-negative terms in SI" _ . ,SlI (exclud;.ng So = 0). 
The proof is the same except for the obvious changes of the inequalities. In like 
manner lemma 3 carries over. 



CHAPTER XIII 

Laplace Transforn1s. 

Tauberian TheorelTIs. Resolvents 

The Laplace transforms are a powerful practical tool, but at the same time 
their theory is of intrinsic value and opens the door to other theories such as 
semi-groups. The theorem on completely monotone functions and the basic 
Tauberian theorem have rightly been considered pearls of hard analysis. 
(Although the present proofs ~re simple and elemel)tary, the pioneer work 
in this direction required originality and power.) Resolvents (sections 9-10) 
are basic for semi-group theory. 

As this chapter must cover diverse needs, a serious effort has been made 
to keep the various parts as independent of each other as the subject permits, 
and to make it possible to skip over details. Chapter XIV may serve for 
collateral reading and to provide examples. The n"d'laining part of this book 
is enti,rely independent of the present chapter. 

,Despite the frequent appearance of regularly varying functions only the 
quite elementary theorem 1 of VIn,8 is used. 

1. DEFINITIONS. THE CONTINUITY THEOREM 

Definition 1. If F is a proper or defective probability distribution con
I 

centrated on 0, 00, the Laplace transform cp of F is the function definedfor 
A >0 by 

(1.1) <peA) = J.oo e-J.x F{dx}. 

Here and In the sequel it is understood that the interval of integration is 

closed (and may be replaced by - 00, 00). Whenever we speak of the 
Laplace transform of a distrib:ution F it is tacitly understood that F is 

I 
concentrated on 0, 00. As usual we stretch the language and speak of "the 

429 
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Laplace transform of the random variable X," meaning the transform 
of its distribution. With the usual notation for expectations we have then 

(1.2)tp(A,) = E(e-i.x). 

Example. (a) Let X assume the values 0, 1, . .. with probabilities 
Po, 'PI' . . .. Then <peA) = .L Pne- u). whereas the generating function is 
pes) = 2.. P"S". Thus 91(}.) = pee-A) and the Laplace transform differs 
from the generating function only by the change of variable s = e-i.. This 
explains the close analogy between the properties of Laplace transforms and 
generating functions. 

(b) The gamma distribution with density fAx) = (xOr:-ljr(o:))e-X has the 
transform 

(1.3) 0: > o. 

The next theorem shows that a distribution is recognizable by its transform; 
without this the usefulness of Laplace transforms would be limited. 

Theorem 1. (Uniqueness.) Distinct probability distributions have distinct 
Laplace transforms. 

First proof. In VlIl,(6.4) we have an explicit inversion formula which 
permits us to calculate F when its transform is known. This formula will be 
derived afresh in section 4. 

Second proof. Put y = e-X
• As x goes from 0 to 00 the variable y goes 

from 1 to O. We now define a probability distribution G conce,ntrated on 
--I 
0,] by letting G(y) = 1 - F(x) at points of continuity. Then 

(1.4) <peA) = (roe-AX F{dx} = eyi. G{dy} 
Jo . Jo 

as is obvious from the fact that the Riemann sums 2.. e-).O(k[F(Xk-'_l)- F(xk)] 
coincide with the Riemann sums L y~[G(Yk)-G(Yk+1)] when Yk ~ e-Xk

• 

We know from VII,3 that the distribution G is uniquely determined by its 
moments, and these are given by <p(k). Thus the knowledge of qJ(I), 
T(2), ... determines G, and hence F. This result is stronger than the 
assertion of the theorem.l ~ 

The following basic result is a simple consequence of theorem 1. 

1 More generally, a completely monotone function is uniquely determined by its values 
at a sequence {an} of points such that 2: a;:1 diverges. However, if the series converges 
there exist two distinct completely monotone functions agreeing at all points an' For an 
elementary proof of this famous theorem see W. Feller, On Muntz' theorem and completely 
monotone functions, Amer. Math. Monthly, vol. 75 (1968), pp. 342-350. 
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Theorem 2. (Continuity theorem.) For n = 1, 2, ... let Fn be a probability 
distribution with transform qJn' 

If Fn ~ F where F is a possibly defective distribution with transform qJ 

then qJn(1) ~ qJ(1) for 1 > o. . 
Conversely, if the sequence {qJn(1)} converges for each 1 > 0 to a limit 

qJ(1), then qJ is the transform of a possibly de/ectivedistribution F, and 
Fn~F. . 

The limit F is not defective iff qJ(1)..-+ 1 as 1..-+ O. 

Proof. The first part is contained in the basic convergence theorem of 
VIII,!. For the second part we use the selection theorem 1 of VIII,6. Let 
{Fn,t} be a subsequence con.verging to the possibly defective distribution F. 
By the first part of the theorem the transforms converge to the Laplace 
transform of F. It follows that F is the unique distribution with Laplace 
transform qJ, and so all convergent subsequences converge to the same limit 
F. This implies the convergence of Fn to F. The last assertion of the theorem 
is clear by inspection of (1.1). ~ 

For clarity of exposition we shall as far as possible' reserve the letter F 
for probability distributions, but instead of (1.1) we may consider more 
general integrals of the form 

(1.5) m().) . J.~ e-A• U {dx }. 

where U is a measure attributing a finite mass U{/} to the finite interval /, 
but may attribute an infinite mass to the positive halfaxis. As usual, we 
describe this measure conveniently in terms of its improper distribution 

1--/ 
function defined by U(x) = U{ 0, x}. In the impoctant special case where 
U is defined as the integral of a function u > 0 the integral (l.5) reduces to 

(1.6) £0(1) = J.oo e-lz u(x) dx 

Examples. (c) If u(x) = XCI with a > -1,· then £0(1) = r(a+ I)/1cx+1 for 
all 1 > O. 

(d) If u(x) = eClZ then w(1) = II(A-a) for 1 > a > 0, but the integral 
(1.6) diverges for 1 ~ a. 

(e) If u(x) = ~z the integral ~1.6) diverges everywhere. 
(I) By differentiation we get from (1.1) 

(1.7) -qJ'(1) = Jooo e-lzx F{dx} 

and this is an integral of the form (1.5) with U(dx} = x F{dx}. This example 
illustrates how integrals of the form (1.5) arise naturally in connection with 
proper probability distributions. ~ 
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We shall be interested principally in measures U derived by simple 
operations from probability distributions, and the integr~l in (1.5) will 
generally converge for all ). > O. However, nothing is gained by excluding 
measures for which convergence takes place only for some ).. Now w(a) < 00 

implies w().) < 00 for all ). > a, ancl so the values of ). fPT which the 

integral in (1.5) converges fiJI an interval a, 00. 

Definition 2. Let U be a measure concentratea on 0, 00. If the integral 
in (1.5) converges for). > a, then the function w defined/or)' > a is called 
the Laplace transform of U. . 

If U has a density u, the Laplace transform (1.6) of U is also called the 
ordinary Laplace transform of u. 

The last convention is introduced merely tor conv~nience. To be systematic one should 
consider more general integrals of the form 

(1~8) fo
oo 

e-lx vex) U{dx} 

and call them "Laplace transform of v with respect to the measure U." Then (1.6) would 
be the "transform of u with respect to Lebesgue measure" (or ordinary length). This 
would have the theoretical advantage that one could consider functions u and v of variable 
signs. For the purposes of this book it is simplest and least confusing to associate Laplace 
transforms only with measures, and we shall do SO.2 

If U is a measure such that the integral in (1.5) converges for ). = a, 
then for all ). > 0 

(1.9) w().+a) = foooe-;'x 'e-UX U{dx} = J.ooe-;':l! U#{dx} 

is the Laplace transform of the bounded measure U#{dx} = e-ax U{dx}, 
and w().+a)jw(a) is the transform of a probability distribution. In this 
way every theorem concerning transforms of probability· distributions 
automatically generalizes to a wider class of measures. Because the graph 
of the new transform w().+a) is obtained by translation of the graph of OJ 

we shall refer to this extremely useful meth04 as the translation principle. 
For example, since U is uniquely determined by U#, and U# by w().+a) 
for ). > 0, we can generalize theorem 1 (;is follows. 

Theorem la. A measure U is uniquely determined by the values o/its Laplace 
transform (1.5) in some interval a < ). < 00. 

2 The terminology is not well establishe~, and in the literature the term "Laplace trans
form of F" may refer either to (1.1) or to (2.6). We would describe (2.6) as the "ordinary 
Laplace transform of the distribution function F," but texts treating principally such 
transforms would drop the determinative "ordinary." To avoid ambiguities in such 'cases 
the transform (1.1) is then called the Laplace-Stieltjes transform. 
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Corollary. A contilluous function u is uniquely determined by the values 
0/ its ordinary Laplace fransform (1.6) in some inlen-,al a < .~ < 00. 

Proof. The transform determines uniquely the integral U of u, and two 
distinct (;Ontinllous3 functions cannot have identical integrals. ~ 

[An explicit formula for 1I in terms of (J) is given in Vn,(6.6).J 
The continuity theorem generalizes similarly to sequences of arbitrary 

measures UTI with Laplace transforms. The fact that Un has a. Laplace 
transform impiies that lIn{l} < 00 for finite intervals l. \Ve recall from 
VIII, 1 and VIl1.6 that a sequence of such .measures is said lo converge to 
a measure U iff Un{l} -~ U{l} < 0':) for every finite interval of continuity 
of U. 

Theorem 2~. (Extended continuity theorem.) For n = 1,2, ... let Un be 
a measure Hlith Laplace trallsform (1)71' If wn(A.) -+ w().) for }. > a, then w 
is the Laplace transform of a measure U and Un -+ U .. 

ConL'erse~v, (f Un -+ U ad the sequence {(vn(a)} is bounded, then 
WI/C)') -- w(}.) for }. > a. 

Proof. (li) Assume that Un -,. U and that wn(a) < A. If I > 0 IS a 
point of continuity of U then 

( 1.10) 

and the left side differs from (ljnU+a) by at most 

( 1.11) JcrJe--U .. iU)X U,,{dx} < Ae- At 

which can be made < E by choosing t su1ficiently large. This means that 
the upper and lower limits tJt' (,,)}.+a) Jif1.:!( by less than an arbitrary €, 

and hence for every A > 0 the sequence {o'n(J.+a)} converges to a finite 

limit. 
(b) Assume then that (;in(A)-~(t)(J.) for ). > a. For"f1xed i'1) > a the 

function O.i.fI(A+~o}!(:)It(Ao) is the Laplace transform of the proba!:liIity 
di~tribution U; {d.r}- = (l /l'/.i. t)orW-J

·n:t UrI {d.e;' By the (;ontinuity theorem 
therefore U:! com ...:rg:~~ to fl. pessibl) defr::cti':e distributicn (fir, and this 
implies that U" converges to a mea-;ure U such that U{dx} = 
= ;:')(}r.o)e"ox U#{dr:}. ~ 

Ifhe following ex.am pIe show"i the ne(;cssity or the condition that {rfJn(a)} 
remain bounded. 

:l fhe same argument shows that in general u is determined up to ':a1ues on an arbitrary 
set of measure zero. 
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, Example. (g) Let Un attach weight enz . to' the point n, 

complement. Since Un{O, n} = 0 we have Un ~ 0, 
. en(n-).) -- 00 for all A. > o. 

and zero to the 

but wn(A.) = 
... 

One speaks sometimes of the bilateral transform of a distribution F with two tails, 
namely 

(1.12) ptA) = L+",OO ,-Ax F{dz}, 

but this function need not exist for any. A. ¢ O. If it exists,qJ( -A) is often called the 
moment generating !un.ct;on, but in reality it is the generating function of the sequence 
{Ilnln!} where Iln is the nth moment. 

2. ELEMENTARY PROPERTIES 
. ~ 

In this section we list the most frequently used properties of the Laplace 
transforms; the parallel to- generating functions is conspicuous. 

(i) Convolutions. Let F and G be probabil,ity distributions and U their 
cpnvolution, that is, 

(2.1) . U(x) = f.2: G(x-y) F{dy}. 

The corresponding Laplace transforms obey the multiplication rule 

(2.2) OJ = ({JY. 

This is equivalent. to the assertiol) that for independent random variables 
'E(e-A(x+y») . E(e-AX) E(e-lY

), which is a special case of the multiplication 
rule for expectations.' 

If F and G have densities f and g, then U has a density u given by 

(2.3) u(x) = f.2: g(x-y)f(y) dy 

and the multiplication rule (2.2) applies to the "ordinary" Laplace trans
forms (1.6) of f, g, and u . 
. We now show that the multiplication rule can be extended as follows. 

Let F and G be arbitrary measures with Laplace transforms cp and, Y 
converging for A. >- O. The convolution U has then a Laplace transform W 

given by (2.2). This implies in particular that the mUltiplication rule applies 
to the "ordinary" transforms of any two integrable functions f and g and 
their convolution (2.3). 

, The converse is false: two variables may be dependent and yet such that the distribution 
of their sum is given by the convolution formula. [See II,4{e) and problem 1 of llI,9.] 
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To prove the assertion we introduce the finite measures Fn obtained. by 
truncation of F as follows: for x ~ n we put Fn(x) = F(x), but for 
x > 11 we let Fn(x) = F(n). Define Gn . similarly by tflincating G. For 
x < 11 the convolution Un = Fn * Gn does not differ from U9 and hence 
not only Fn ~ F and Gn ~ G, but also· Un ~ U. For the corresponding 
Laplace transforms we have Wn = 'PnYn and letting n ~ ~ we get the 
assertion W = 'PY. 

Examples. (a) Gamma distributions. In example l(b) the familiar con
volution rule frx * J;'t = fa.+fJ is mirrored in the obvious relation 'Pa. 'Pp = 'Pa.+p' 

(b) Powers. To ua.(x) = x,x-l/f(lJ..) there corresponds the ordinary 
Laplace transform wa.(A) = A-a. . . It follo'Ys that the convolution (2.3) of 
Ua. and uft is given by ua.+p' The preceding example follows from this by the 
translation principle since 'Prx(A) = Wa.(A+ 1). 

(c) If a > 0 then e-a).w(A) is the Laplace transform of the measure with 
distribution function U(x-a). This is obvious from the definition, but may 
be considered also as a special case of the convolution theorem inasmuch as 
e-a). is the transform of the distribution concentrated at the point a. ~ 

(ii) Derivatives and moments. If F is a probability distribution and 
'P its Laplace transform (1.1), then cp possesses derivatives of all orders given 
by 

(2.4) (-1)" 'P(n~A) = f.oo e-).zxn F{ dx} 

(as always, A > 0). The differentiation under the integral is permissible 
since the new integrand is bounded and continuous. 

It follows in particular that F possesses a finite nth moment iff a finite 
limit <p(n)(o) exists. For a random variable X we can therefore write 

(2.5) E(X) = - 'P' (0), E(X2) = qJ" (0) 

with the obvious conventions in case of divergence. The differentiation 
rule (2.4) remains valid for arbitrary measures F. 

(iii) Integration by parts leads from (1.1) to 

(2.6) f.oo .-Ax F(x) dx = 'P~J.) , A> O. 

For probability distributions it is sometimes preferable to rewrite (2.6) iIi 
terms of the tail 

(2.7) e-),X[l - F(x)] dx = - qJ • 100 1 (A) 

o A 

This corresponds to formula 1; XI,(1.6) for generating fun~tions. 
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(iv) Change of scale. From (1.2) we have E(e-a).X) = (j?(aA) for each 
fixed a > 0, and so (j?(aA) is the transform of the distribution F{dx/a} [with 
distribution function F(x/a)]. This relation is inconstant use. 

Example. (d) Law of large numbers. Let Xh X2, • •• be independent 
random variables with a common Laplace transform (j? Suppose E(Xj) = fl. 
The Laplace transform of the sum Xl + ... + Xn is (j?n, and hence the 
transform of the average [XI +' "+Xn]/n is given by (j?n(A/n). Near the 
ongm (j?(A) = I - flA + O(A) [see (2.5)] and so as n -- 00 

(2.8) lim 'I'n(~) = lim (1 - :;J= e-". 

But e-P). is the transform of the distribution concentrated at fl' and so 
the dis~ribution of [Xl + ... + Xnl/n tends to this limit. This is the weak law 
of large numbers in the Khintchine version, which does not require the 
existence of a variance. True, the proof applies directly only to positive 
variables, but it illustrates the elegance of Laplace transform methods. ~ 

3. EXAMPLES 

(a) Uniform distribution. Let F stand for the uniform distribution. 

concentrated on 0, 1. Its Laplace transform is given by <p(A.) = (l-e-).)/).. 
Using the binomial expansion it is seen that the n-fold convolution Fn* has 
the· transform 

(3.1) 

As A-n is the transform.corresponding to U(x) = xn/n! example 2(c) shows 
that e-kAA-n corresponds to (x';"" k),+ !n ! where· x+ denotes the function 
that equals 0 for x ~ 0 and x for x ~ O. Thus 

(3.2) Fn*(x) = .!.i( _l)k(ri)(x~k)~. 
n!k=o k . 

This formula was derived by direct calculation in 1,(9.5) and by a passage 
to the limit in problem 20 of 1; XI. 

(b) Stable distributions with exponent t, The distribution function 

(3.3) G(x) = 2[1-91(1/J;)], x>O 

(where 91 is the standard normal cMstrib£tion) has the Laplace transform 

(3.4) y(A) = e-vil. 
This can be verified by elementary calculations. but they are tedious and we 
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prefer to derive (3.4) from the limit theorem 3 in 1; III, 7 in which the 
distribution G was first encountered. Consider a simple symmetric random 
walk (coin tossing), and denote by T the epoch of the first return to the 
origin. The cited limit theorem states that G is the limit distribution of the 
normalized sums (Tl + .. '+Tn)/n2 , where Tb T 2,. • are independent 
random variables distributed like T. According to 1; XI,(3.14) the 

generating function of T is given by f(s) = 1 - .J 1- 52, and therefore 

(3.5) y(A) = lim [1-..)1 - e-'/ft']" = lim [1 - ~r = e-v2i. 

We have mentioned sev~ral times that G is a stable distribution, but 
again the direct computational verification is laborious. Now obviously 
yn(A) = y(n2A) which is the same as Gn*(x) = G(n-2x) and proves the 
stability without effort. 

(c) Power series and mixtures. Let F be a probability distribution with 
Laplace transform <p(A). We have repeatedly encountered distributions 
of the form 

(3.6) 

where {Pk} is a probability distribution. If pes) = ~p~k stands for the 
generating function of {Pk}' the Laplace transform of G is ob v'iously given 
by 

OCJ 

(3.7) yeA) = lpk<pk(A) = P(<p(A)). 
k:..O 

This p'rinciple can be extended to arbitrary power series with positive coeffi
cients. We turn to specific applications. 

(d) Bessel function densiti(;,J'. In example II,7(c) we saw that for r = 1, 
2, .... the density 

(3.8) 

corresponds to a distribution of the form (3.6) where F is exponential with 
cp(A) = 1/(A+ 1), and {p,J is the distribution of the first-passage epoch 
through the point r > 0 in an ordinary symmetric random walk. The 
generating function. of this distribution is 

--
(3.9) P( s) = C - ~ 1 ~ 5')' 
[see 1; XI,(3.6)]. Substituting s = (1 + A)-1 we conclude that the ordinary 
Laplace transform of the probability density (3.8) is given by 

(3.10) [A + 1 - ~(A+l)2 - 1 r. 
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That l'r is a probability density and (3.10) its transform has been proved 
only for r = 1, 2, . . .. However, -the statement is trueS for all r > O. It 
is of probaHilistic interest, because it implies the convolution formula' 
l'r * VB = Vr+B and thus the infinite divisibility of vr. (See section 7.) 

(e) Another Bessel density. In (3.6) choose for F the exponential distri
bution with <p(A,) = l/(A+ 1) and for {Pk} the Poisson distribution with 
P(s) = e-t+ t8

• It is easy to calculate G explicitly, but fortunately this task 
was already accomplished in example JI,7(a). We saw there that t~e density 

(3.11) 

defined in II ,(7.2) is the convolution of our distribution G with a gamma 
density fl,p+l' It follows that 'the ordinary Laplace transform of w p is 
the product of our y with the transform of fl,p+l' namely (A+ 1)1>+1. 
Accordingly, the probability density (3.ll) has the Laplace transform 

(3.12) 1 e-t+t/(l+l). 
(A + l)P+l 

, For t = 1 we see using the translation rule (1.9) that v~ /p(2.J;) has the 
ordinary transform A-P-lel/l. 

(f) Mixtures of exponential densities. Let the density f be of the form 

n ,., 
, (3.13) f( x) = I Pkake-akZ, Pk > 0, Ipk = 1 

k=1 1:=1 

where for definit~ness we assume 0 < a1 < ... < ,an' The corresponding 
Laplace transform is given by 

(3.14) 

where P is a polynomial of degree n with~roots -ak , and Q is a poly
nomial of degree n"": 1. C<?nversely, for ariy polynomial 'Q of degree 
n :.- 1 the ratio Q(A)/P(~) admits of a partial fraction e"pans~on of the form 
(3.14) with 

(3.15) 

[see 1; XI,(4.5)]. For (3.-14) to correspond to a mixture (3.13) itis necessary 
aqd sufficient that p; > D and that Q(O)/P(O) = 1; From the graph of P 
it is, clear thatP'( -ar ) and P'( -l!r+l) are of opposite signs, and hence 
the same must be true of Q( -ar) and Q{ -ar+l)' In other words, it is 
necessary that Q has a root -br between -ar and -ar+l' But asQ 

S This result is due to H. Weber.' The extremely difficult' analytic proof is now replaced 
by an elementary proof in J. Soc. Industr. Appl. Math., voL 14 (1966) pp. &64-1H5., 
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cannot have more than n - 1 roots -br we conclude that these must satisfy 

(3.16) 

This guarantees that all Pr are of the same sign, and we reach the following 
'conclusio'n: Let P and Q be polynomials of degree nand n - I, 
respectively, and Q(O)/R(O) = 1. In order that Q().)/P().) be the Laplace 
transform of a mixture (3.13) of exponential densities it is necessary and 
sufficient that the roots -ar of P and -br of Q He distinct and (with proper 
numbering) satisfy (3.16). ~ 

4. COMPLETELY MONOTONE FUNCTIONS. 
INVERSIOM FORMULAS 

As we saw in 'VII,2 a function f In 0, 1 is a generating function of a 
positive sequence {f~} iff f is absolutely monotone, that is, if f possesses 
positive derivatives f(n) of all orders. An analogous theorem holds for 
Laplace transforms, except that now the derivatives alternate in sign. 

Definition 1. A function r:p on 0, 00 is completely monotone if it possesses 
derivatives r:p(n) of all orders and 

(4.1) ). > 0. 

As ). -+ ° the values r:p(n)().) approach finite or infinite limits which we 
denote by r:p(n) (0). Typical examples are 1/). and 1/(1 +).). 

The following beautiful theorem due to S. Bernstein (1928) was the 
starting point of much research. and the proof has been simplified by si.ages. 
We are able to give an extremdy simple proof because the spade work was 
laid by the chara.cterization, of generating functions derived in theorem 2 of 
VII,2 as a consequence of the law of large numbers. 

Theorem 1. A function r:p on 0, 00 is the Laplace transform of a prob
ability distribution F, iff it is completely monotone, and r:p(0) = 1. 

We shall prove a version of this theorem which appears more general in 
form, but can actually be derived from the restricted version by an appeal 
to the translation principle explained in connection with (1.9). 

Theorem 1a. The function cp on 0, 00 is completely monotone iiI it is of 
the form 

(4.2) cp(A) = LX> e-;'X F{ dx}, }. > 0, 

where F is nor a necessarily finite rneasure on 0, 00. 
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(By our initial convention the interval of integration is closed: a possible 
atom of F at the origin has the effect that <p( (0) > 0.) 

Proof. The necessity of the condition follows by formal differentiation 
as in (2.4). Assuming <p to be completely monotone consider <p(a-as) 
for fixed a > 0 and 0 < s < 1 as a function of s. Its derivatives are 
evidently positive and by theorem 2 of VII,2 the Taylor expansion 

ex> (_a)n<p(n)(a) n 

<p(a-as) = ~ S 
n=O n! 

(4.3) 

IS valid for o ~ s < 1. Thus 
ex> ( )ft (n)( ) 

(1) ( -lIa) ~ -a qJ a -nlla qJa I\. = qJ a-ae =£.. e 
n=O n! 

(4.4) 

is the Laplace transform of an arithmetic measure attributing mass 
(-a)ftqJ(ft)(a)!n! to the point n/a (where n = 0, 1, ... ). Now qJa(A) -+ qJ(A) 
as a -+ 00. By the extended ,continuity theorem there exists therefore a 
measure F such that. Fa -+ F and qJ is its Laplace transform. ~ 

We have not only proved theorem la, but the relation Fa -+ F may be 
restated in ~e form of the important 

Theorem 2. (Inversion formula.) If(4.2) holds for A > 0, Ihp.n at all points 
0/ con tinuity 6 

(4.5) f(x) = lim ~ (-a)n qJ(n)(a). ' 
a .... ex>n$a:l: n! 

This formula is of great theoretical interest and permits various conclusions. 
The following bounded ness criterion may serve as an example of particu~ar 
interest for semi-group theory. (See problem 13.) 

Corollary. Fo,' qJ io be of the form 

(4.6) qJ(A) = f.or: e-).~ f(x) dx where 0 <f< C 

it is necessary and sufficien t that 

(4;7) 

for all a > o. 

6 The inversion formula (4.5) was derived in VII,(6.4) as a direct consequence of the law 
of large numbers. In VII,(6.6) we have an analogous inver.r;ion formula for integrals of the 
form (4.6) with continuous f (not necessarily positive). 
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Proof. Differentiating (4.6) under the integral we get (4.7) [see (2.4)]. 
Conversely, (4.7) implies that rp is completely monotone and hence the 
transform ofa measure F. Substituting from (4.7) into (4.5) we conclude that 

F(x2) - F(x l ) ~ C(X2-XI ) 

for any pair Xl < X 2• This means that F has bounded difference ratios 
and hence F is the integral of a function / < C (see V ,3). ~ 

Theorem I lead.s to simple tests that a given function is the Laplace trans
fonn of a probability distribution. The standard technique is illustrated by 
the proof of 

Criterion 1. If rp and 1p are completely monotone so is their product lP1p. 

Proof. We show by induction that the derivatives of lP1p alternate in 
sign. Assume that for every pair rp,1p of completely monotone functions 
the first n derivatives of CfJ1p a1te~nate in sign. As - rp' and -1p' are com
pletely monotone the induction hypot~esis applies to the products - rp'1p 
and - rp1p', and we conclude from - (rp1p)' = - rp'1p - rp1p' that in fact the 
first n + 1 derivatives of rp1p alternate in sign. Since the hypothesis is 
trivialIy true lor n = 1 the criterion is proved. ~ 

The same proof yields the useful 

Criterion 2. If rp is completely monotone and 1p a positive function with a 
completely monotone derivative then rp(1p) is completely monotone. (In 
particular; e-'P is completely monotone.) 

Typical applications are given in section 6 and in ~e following example, 
which occurs frequently in the literature with unnecessary complications. 

Example. (a) An equation occurring in branching processes. Let rp be 
the Laplace transform' of a probability distribution F with expectation 
o < Jt < 00', and let c > O. We prove that the equation 

(4.8) /l().) = rp(A+C-cfJ().» 

has a unique root P(A) < 1 and fJ is the Laplace transform of a distribution 
B which is proper iff pc < I, defective otherwise. 

(See XIV,4 for applications and references.) 

Proof. Consider the equation 

(4.9) tp(A+C-:-CS) - s = 0 

for fixed ). > 0 and 0 S s S l. The left side is a convex function which 
assumes a negative value at s = 1 and a positive value at s = O. It foIIows 
that there exists a unique root. 
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To prove that the root flO.) is a Laplace transform put flo = 0 and 
recursively fln+l = <p(A+e-cfln)· Then flo < fli < 1 and since q; is 
decreasing this implies fli < fl2 < 1, and by induction fln < fln+l < l. 
The limit of the bounded monotone seq uence {flrJ satisfies (4.8) and hence 
{3 = lim fl1l" Now fll(}.) = cp(}.+e) is completely monotone and criterion 
2 shows recursively that fl2' fl3, . .. are completely monotone. By the 
continuity theorem the same is true of the limit fl, and hence fl is the 
Laplace transform of a measure B. Since flU.) < 1 for all ). the total 
mass of B is {3(0) < 1. It remains to decide under what conditions /3(0) = 1. 

By construction s = {leO) is the srnallest root of the equation 

(4.10) (p(e-cs) - s = o. 

Co'nsidered as a function of .s: the left side is convex; it is positive lor s = 0 
and vanishes for s = 1. A second root s < 1 exists therefore iff at s = 1 
the derivative is positive, that is iff - cq;' (0) > l. Otherwise fl(O) = 1 and 
fl is the Laplace transform of a proper probability distribution B. Hence 
B is proper iff -ecp'(O) = ep < 1. ~ 

5. TAUBERIAN THEOREMS 

Let U be a measure concentrated on 0, 00 and such that its Laplace 
transfoml 

(5.1) 

exists for A > O. It will be convenient to describe the measure U in terms 
----l 

of its improper distribution function defined for x >0 by V{O, x}. We 
shall see that under fairly general conditions the behavior of w near the 
origin uniquely determines the asymptotic behavior of 'U(x) as x' -+ 00 and 
vice versa. Historically any relation describing the asymptotic behavior of 
U in terms of w is called a Tauberian theorem, whereas theorems describing 
the behavior of, W in terms of U are usually called Abelian. We shall make 
no distinction between these two classes because our relations will be 
symmetric. _ 

To avoid unsightly formulas involving reciprocals we introduce two 
positive variables t and T related by 

(5.2)' tT = 1. 

Then T -+ 0 when t -+ 00. 

To understand the background of the Tauberian theorems note that 
for fixed t the change of variables x = ty in (5.1) shows that w( TA) is the 
Laplace transform corresponding to the improper distribution function 
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U(ty). Since w decreases it is possible to find a sequence Tb T Z, ••• __ 0 
such that as T runs through it 

(5.3) w( TA) __ y( A) 
W(T) 

withy(A) finite at least for A > 1. By the extended continuity theorem the 
limit y is the Laplace transform of a measure G and as t runs through the 
reciprocals tk = l/Tk 

(5.4) U(tx) __ G(x) 
W(T) 

at all points of continuity of G. For x = 1 it is seen that the asymptotic 
behavior of U(t) as t -- 00 is intimately connected with the behavior of 
w(t-1). 

I n principle we could formulate this fact as an all-embracing Tauberian 
theorem, but it would be too clumsy for practical use. To achieve reasonable 
simplicity we consider only the case where (5.3) is valid for any approach 
T -- 0, that is, when w varies regularly at O. The elementary lemma7 1 of 
VIII,S states that the limi.t y is necessarily of the form y(A) = A-P with 
p > O. The corresponding measure is given by G(x) = xP/r(p+ 1), and 
(5.4) implies that U varies regularly and the exponents of wand U are 
the same in absolute value. We formulate this important result together 
with its converse in 

Theorem 1. Let U be a measure with a Laplace transform w defined for 
A > O. Then each of the relations 

(5.5) .co(TA) __ L T __ 0 
w( 'T) A,P , 

and 

(5.6) 
U(tx) __ xP 
U(t) , 

implies the other as well as 

(5.7) w( T) "-' U(t) f(p+ 1). 

Proof. (a) Assume (5.5). The left side is the Laplace transform corre
sponding to U(tX)/W(T) , and by the extended continuity theorem this implies 

U(tx) xP 
(5.S) ------

W(T) f(p+l) 

For x = I we get (5.7), and substituting this back into (5.S) we get (5.6). 

7 This lemma is used only to justify the otherwise artificial form of the relations (5.5) and 
(5.6). The theory of regular variation is not used in this section [except for the side remark 
that (5.18) implies (5.16)]. 
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(b) Assume (5.6). "Taking Laplace transforms we get 

(5.9) 
W(TA) r(p+l) 
-- ---+ 
Vet) AP 

prorided the extended continuity theorem is applicable, that is, provided 
the left-side remains bounded for some A. As under (a) it is seen that (5.9) 
implies (5.7) and (5.5), and to prove the theorem it suffices to verify that 
W(T)/U(t) remains bounded. 

On partitioning the domain of integration by the points t, 2t, 4t, ... 
it, is clear that 

(5.10) 

In view of (5.7) there exists a to such that U(2t) < 2pH U(t) for t > to' 
Repeated application of this inequality yields 

(5.11) WeT) < I2n (PHle-2"-1 

Vet) - 0 

and so the left side indeed remains bounded as 1 ---+ 00. 

Examples. (a) U(x) "-' log2 x as x -~ 00 iff' W(A) "-' log2 A as A ---+ O. 

Similarly U(x) "-' v' x iff W(A) "-' tv' 7T/A. 
(b) Let F be a probability distribution with Laplace transform q;. The 

measure U{dx} = x F{dx} has the transform - ep'. Hence if - ep'(A) "-' f-tA- P 

as A ---+ 00 then 

L
x p 

U(x) = y F{dy} "-' ' xP
, 

o rep + 1) 

and vice versa. This generalizes the differentiation rule (2.4) which is con
tained in (5.7) for p = O. ~ 

It is sometimes useful to know to what extent the theorem remains valid 
in the limit p - 00. We state the result in the form of a 

Corollary. If for some a > 1 as t ---+ 00 

(5.12) either 
U(ta) 

or --- ---+ 00 
U(t) 

then 

(5.13) 

Proof. The first relation in (5.12) implies that W(TA)/W(T) ---+ 0 for A > a 
and by the extended continuity theorem U(tx)jw( T) ---+ 0 for all x > O. The 
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second relation in (5.12) entails (5.13) because 

J.
at 

WeT) ~ 0 e-a:/t U{dx} > e-a U(ta). 

In applications it is more convenient to express theorem I in terms of slow 

variation. We recall that a positive function L defined on 0, 00 varies 
slowly at 00 if for every fixed x 

(5.14) L(tx) -+ 1 
L(t) , 

t -+ 00. 

L varies slowly at Oif this relation holds as t -+ 0, that is, if L(I/x) varies 
slowly at 00. Evidently U satisfies (5.6) iff U(x)/xp varies slowly at 00 

and similarly (5.5) holds iff APCO(A) varies slowly at 0. Consequently 
theorem 1 may be rephrased as follows. 

Theorem 2. If L is slowly varying at infinity and ° < p < 00, then each 
of the relations 

(5.15) T -+ 0, 

and 

(5.16) ) 
1 

U(t I'.J tP L(t), 
. r(p+l) 

implies the other. 

Theorem 2 has a glorious history. The implication (5.16) - (5.15) (from the measure 
to the transform) is called,an Abelian theorem; the converse (5.15) - (5.16) (from trans
form to measure), a Tauberian theorem. II). the usual setup, the two theorems are entirely 
separated, the Tauberian part causing the trouble. In a famous paper G. H. Hardy and 
J.E. Littlewood treated the case 00(1) """" ),-P by difficult calculations. In 1930, J. Karamata 
created a sensation by a simplified proof for this special case. (This proof is stilI found in 
texts on complex variables and Laplace transforms.) Soon afterwards he introduced the 
class of regularly varying functions and proved theorem 2; the. proof was too complicated 
for textbooks, however. The notion of slow variation was'introduced by R. Schmidt about 
1925 in the same connection. Our proof simplifies and unifies the theory and leads to the 
little-known, but useful, corollary. 

A great advantage of our proof is that it applies without change when the, 
roles of infinity and zero are interchanged, that is, if T -+ 00 while t -+ 0. 
In this way we get the dual theorem connecting the behavior of co at infinity 
with that of U at the origin. [It will not be used in this book except to 
derive (6.2).J 

Theorem 3. The last two theorems and :he corollary remain valid when 
the roles of the origin and infinity are interchanged, that is, for T -+ 00 and 
t -+ 0. 
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Theorem 2 represents the main result of this section, but for completeness 
we derive two useful complements. First of all, when U has a density 
U' = u it is desirable to obtain estimates -for u. This problem cannot be 
treated in full generality, because a well-behaved distribution U can have an 
extremely ill-behaved density u. In most applications, however, the density 

u will be ultimately monotone, . that is, monotone in some interval xo, 00. 

For such densities we have 

Theorem 4.8 Let 0 < p < 00. If U has an ultimately monotone derivative 
u then as A -+ 0 and x -+ 00, respectively, 

(5.17) W(A) ~ )~P L (1) iff u(x) ~ _1_ x p - 1 L(x). 
r(p) 

(For a formally stronger version see problem 16.) 

Proof. The assertion is an immediate consequence of theorem 2 and the 
following 

Lemma. Suppose that U has an ultimately monotone density u. If 
(5.16) holds with p> 0 then 

(5.18) u(x) ~ pU(x)jx, x~ 00. 

[Conversely, (5.18) implies (5.16) even if u is not monotone. This is 
contained in VIII,(9.6) with Z = u and p = 0.] 

Proof. For 0 < a < b 

(5.19) U(tb) - U(ta) = rb 
u(ty)t dy. 

U(t) Ja U(t) 

As t ~ 00 the left side tends to bP - aP• For sufficiently large t the inte
grand is monotone, and then (5.16) implies that it remains bounded as 
t ~ 00. By the selection theorem of VIII,6 there exists therefore a sequence 
th t2 , ••• ~ 00 such that as t runs through it 

(520) u(ty)t ( ) 
U(t) ~ 11' Y 

at all points of continuity. It follows that the integral of 11' over a, b equals 
bP - aP, and so lp(y) = pyP-l. This limit being independent of the sequence 
{tk } the relation (5.20) is true for an arbitiary approach t ~ 00, and for 
y = 1 it reduces to (5.18). ~ 

8 This includes the famous Tauberian theorem of E. Landau. Our proof serves as a 
new example of how the selection theorem obviates analytical intricacies. 
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Example. (c) For a probability distribution F with characteristic 
function q; we have [see (2.7)J 

(5.21) f.oo e-).X[1 - F(x)] dx = fl - q;(A)J/k 

. Since 1 - F is monotone each of the relations 

(5.22) 
1 1 - q;(A) I'.J A1

- PL(I/A) and 1 - F(x) I'.J - xP-1L(x) 
, rep) 

(p > 0) implies the other. The next section will illustrate the usefulness of 
this observation. ~ 

The use of this theorem is illustrated in the next section. In conclusion 
we show how theorem 2 leads to a Tauberiantheorem for power series. 
[It is used in XII,(8.10) a'nd in XVII,5.] 

, Theorem 5. Let q n > 0 and suppose that 
00 

(5.23) Q(s) = L qnsn 
n=O 

converges for 0 ~ s < 1. If, L varies slowly at infinity and 0 < p < 00 

then each of the two relations 

(5.24) . 1 (1) 
Q(s) I'.J (l-s)P L 1 _ s ' s-l-

and 

(5.25) q ' + q + ... + q _ I'.J 1 nP L(n) 
o 1 n 1 r(p+ 1) , 

implies the other. 
Furthermore, if the sequence {qn} is monotonic and 0 < p < 00, then 

(5.24) is equivalent to 

(5.26) 
1 

q I'.J - nP- 1 L(n) 
n r(p) , 

n- 00. 

Proof. Let U be the measure with density u defined by 

(5.27) u(x) = qn for n < x < n + 1. 

The'left side in (5.25) equals U(n). The Laplace transform w of U is 
given by 

(5.28) 

It is thus seen that the relations (5.24) and (5.~5) are equiva,lent to (5.15) 
and (5.16), respectively, ~.ld henc\! they imply each other by virtue of theorem 
2. Similarly, (5.26) is an immediate consequen~e of theorem 4. ~ 
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Example. (d) Let q n = nP- 1 loga n where p > 0 and a is arbitrary. The 
sequence {qrJ is ultimately monotone and so (5.24) holds with L(t) = 
= rep) loga t. ~ 

*6. STABLE DISTRIBUTIONS 

To show the usefulness of the Tauberian theorems we now derive the most 
. --

general stable distributions concentrated on 0, 00 and give a complete 
characterization of their domains of attraction. The proofs are straight
forward and of remarkable simplicity when· compared with the methods 

required for distributions not concentrated on 0, 00. 

Theorem 1. For fixed 0 < (X < 1 the junction YiA) = e-;.a is the Laplace 
transform of a distribution Grr. l·vith the followillg properties: 

Ga is stable,' more precisely, if Xl> ... ,Xn are independent variables with 
the d~st"ibution Ga, then (Xl + .. ,+Xn )/111/a has again the distribution Ga. 

(6.1) x ---+ 00, 

(6.2) x ---+ O. 

Proof. The function Ya is completely monotone by the second criterion 
of section 4, because e-·). is completely monotone and ).a has a completely 
monotone derivative. Since YiO) = 1, the measure Ga with Laplace 
transform Ya ,has total mass 1. The asserted stability property is obvious 
since y~(A) = y,lnl/a).). 

(6.1) is a special case of (5.22), and (6.2) is an immediate consequence of 
theorem 3 and the corollary to theorem 1 of the preceding section. ~ 

Theorem 2. Suppose that F is a probability distribution concentrated on 

0, 00 such that 

(6.3) 

(at points of continuity) H'her~ G is a proper distribution nol concentrated at 
a single point. Then 

(a) There exists a function L that varies slowly at infinity 9 alld a constant 
(J. with 0 < (X < 1 such that 

(6.4) x ---+ 00. 

* Except for (6.2) the results of this section are derived independently in chapters IX 
and XVII. Stable distributions were introduced in VI,]. 

9 That is. L satisfies (5,14). The norming factor rO-cx) in (6.4) is a matter of con
venience and affects only notations 
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(b) e ol1rerse~v, If F is of tlte form (6.4) it is possible to choose an such 
that 

(6.5) 

alld in this case (6.3) holds lrith .c = Gx. 

This implies that the possible limits G in (6.3) differ only by scale factors 
from some Gu.. It f( lOWS, in particular, that there are 110 other stable dis-

1--
tribations concentrated on 0, 00. (See lemma 1 of VIII ,2.) 

Proof. If cp ahd yare the Laplace transforms of F and G, then (6.3) is 
equivalent to 

(6.6) -/1 log cp(J.../a r,) -- -log y(,1). 

By the simple theorem of VIII,8 this implies that -log cp varies regularly 
at the origin, that is 

(6.7) -log cp(,1) ~ ,111. L(t / ,1), J. -+ 0, 

with L varying slowly at infinity and if. >0. From (6.6) then -log y(,1) = 
= ex:r. Since' G is not concentrated at a single point we have 0 < r/. < l. 

Now (6.7) implies 

(6.8) 1 - <p(,1) ~ ,1Cl-1L (1) 
,1 ,1 ' 

,1-+0. 

In view of (5.22) the two relations (6.4) and (6.8) imply each other. 
Accordingly, (6.4) is necessary for (6.1) to hold. 

For the converse part we start from (6.4) which was just sho\vn to imply 
(6.8). For fixed 11 define aT! as the lower bound of all x such that 
n[1 - F(x)] l/r(1 - r/.). Then (6.5) holds. Using this and the slow variation 
of L we conclude from (6.8) that 

(6.9) 

It follows that the left side ilJ (6.6) tends to },':t, and this concludes the proof. ~ 

(See problem 26 for the influence of the maximal term.) 

*7. INFINITELY DIVISIBLE DISTRIBUTIONS 

According to the definition in VI,3 a probability distribution U with 
Laplace transform w is infinitely divisible iff for n =·1, 2, ... the positive 
11th root (j) /I = (1)1/11 is the Laplace transform of a probability distribution. 

* Not used in the sequel. 
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Theorem 1. The function (I) is the Laplace transform of an infinitely 
dh1isible probability distribution iff (jJ = e -~' ~rhere 1p has a completely 
monotone derivative and '1p(O) = O. 

Proof. Using the criterion 2 of section 4, it is seen that when "1'(0) = 0 
and '1// is completely monotone rhen OJ,,! = e-Ip/n is the Laplace transform 
of a probability distribution. The condition is therefore sufficient. 

To prove the necessity of the condition assume that Wn = e-Ip/n is, for 
each n, the Laplace transform of a probability distribution and put 

(7.1) 1pn{A·) = /1[1 - wn(J.)]. 

Then 'lfJn -+ 'If! and the derivative 1p~ = -nw~ is completely monotone. 
By the mean value theorem 1pn(J.) = A1p~(eA) > bp~(A), and since 1pn ~ 1p 
this implies that the sequence {1p~(A)} is bounded for each fixed A > O. 
It is therefore possible to find a convergent subsequence, and the limit is 
automatically completely monotone by the extended continuity theorem. 
Thus 1p is an integral of a completely monotone function, and this completes 
the proof. ~ 

An alternative form of this theorem is as follows. 

Theorem 2. The function w is the Laplace transform of an infinitely 
divisible distribution iff it is of the form OJ = e-Ip where 

(7.2) 1p(A) =f.co 1 - e-lx 
P{dx} 

o x· 
and P is a measure such that 

(7.3) I. co X-I P{dx J < 00. 

Proof. In view of the representation theorem for completely monotone 
functions .the conditions of theorem 1 may be restated to the effect that· 
we must have 1p(0) = 0 and 

(7 . .1) 1p'(A) = f.coe-lX P{dx} 

where P is a measure. Truncating the integral at 
sign into >, and this implies that 

(7.5) '1'<1) > f _l_xe_-_
lx 

[/ix} 

a changes the equality 

for each a > 0 (the integrand being boUnded). It follows that (7.2) makes 
sense and the condition (7.3) is satisfied. Formal differentiation now shows 
that (7.2) represents the integral of (7.4) vanishing at zero. ~ 

[See problems 17-23 and example 9(a).] 
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Examples. (a) The compound Poisson distribution 

(7.6) 
00 n 

U = e-c L E- Fn* 
o n! 

451 

has the Laplace transform e-C+CIp and (7.2) is true with P{dx} = cx F{dx}. 
(b) The gamma density xa- 1 e-Xjr(a) has transform w().) = Ij().+ l)a. 

Here 

(7.7) - f.oo 1 - e-lx 

V'().) = a e-x dx 
o x 

because V"(il.) = a().+ 1)-1 = w'().)/w().). 
(c) Stable distributions. For the transform w().) = e- l

(1. of section 6 we 
have V'().) = Aft and 

(7.8) ).<X = dx 
. \l f.oo 1 - e-lx . 

r(1-\l) 0 xlt+1 

as is again seen by differentiation. 
(d) Bessel functions. Consider the density Vr of example 3(d) with 

Laplace transform (3.10). It is obvious from the form of the latter that vr · 

is the n-fold convolution of vr / n with itself, and hence infinitely divisible. 

Formal differentiation shows that in this case V"().) = rj~ ().+ 1)2 - 1 and 
it is easiiy shown (see problem 6) that this 11" is of the form (7.4) with 

P{dx} = re-X Io(x) dx. 

(e) Subordination. It is easily seen from the criteria in section 4 that 
if 11'1 -and 11'2 are positive functions with completely monotone derivatives, 
the composite function _ V'().) = V'1(V'2().» has the same property. The 
corresponding infinitely divisible distribution is of special interest. To 
find it, denote by Q~i) the probability distribution with I:aplace transform 
e-t'PiC l ) (where i = 1, 2), and put 

(7.9) Ut(x) = [00 Q~2)(x)Q?){ds}. 
• 0 

(The distribution U t is thus obtained by randomization of the parameter 
s in Q~2).) The Laplace transform of Ut is 

(7.10) 

Readers of X,7 will recognize in (7.9) the subordination of processes: 
U t is subordinated to Q~2) by the directing process QP). It is seen with 
what ~se we get the Laplace transforms of the new process although only 
for the special case that the distributions Q~2) are concentrated on the 
positive half-axis. 
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A special case deserves attention: if "PI (},) = }.!X and lP2(A) =)...P then 
'lp(i.) = i.!XP. Thus a stable IY.-process directed by a stable fJ-process leads to 
a stable rt..fJ-process. Readers should verify that this statement in substance 
repeats the assertion of problem 10. For a more general proposition see 
example VI,~ (11). 

(f) Erer)' mixture of exponential distributions is illfil1iteZv didsible. Io The 
most general sLlch distribution has a density of the form 

(7. t 1) f(X) = (Xl se-SX U {ds} 
",0 

where U is a probability distribution. In the special case where U is 
concentrated on finitely many points 0 < a I < ... < an it was shown in 
example 3(/) that- the Laplace transform is of the form 

(7.12) <pCA) = C . A + bI ... A + b n- I . 1 
). + aI A + an - I }. + an 

(7.13) _ ~ log A + bk _ 1 ___ 1 _ = bk - ak 

dA A + ak A + ak A +. bk (A + ak)(A + bk) 

is the product of two completely monotone functions, and therefore itself 
completely monoto-ne. It follows that each factor in (7.12) is infinitely 
divisible and therefore the same is true of <po For general mixtures the 
assertion follows by a simple pas~age to the limit (see problems 20-23). ~ 

*8. HIGHER DIMENSIONS 

. The generalization to higher dimensions is obvious: not even the definition 
(1.1) requires a change if x is interpreted as column matrix (Xl"'" xn) 
and A as row matrix (AI"" ,An). Then. 

AX = A X + ... + A X I Inn 

is the inner product of A and x. Within probability theory the use of 
,multidimensional transforms is comparatively restricted. 

Examples. (a) Resolvent equption. Let f be a continuous function in one 
dimension with ordinary Laplace traQsform <peA). Consider the function 

10 This surprising obserVation is due to F. W. Steutel, Ann. Math. Statist., vol. 40 (1969). 
pp. 1130-1131 and vol. 38 (1967), pp. 1303-1305. 

* Not used in the sequel. 
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/(s+t) of the two variables s, t. Its ~wo-dimensional transform is given by 

(8.1 ) (')(A, v) = f.oo f.oo e-AS-V~(s+t) ds lit. 

After the change of variables s + t = x and -s + I = Y the integral 
reduces to 

Thus 

(8.2) W(A, v) = _ <peA) - <p(v) . 
A-V 

We shall encounter this relation in more dignified surroundings as the basic 
resolvent equation for semi-groups [see (l0.5) and the concluding remarks 
to section 10]. 

(b) Mittag-Leffler functions. This example illustrates the use of higher 
dimensions as a technical tool for evaluating simple transforms. We shall. 
prove the following proposition: 

If F is. stable with Laplace transform e-J.r1., the distribution 

(8.3) x> 0, 

(t fixed) has as Laplace transform the Mittag-Leffler function 

(8.4) 
00 . (_A)k 
~ th. 

k=0,r(1 + kex.) 

This result is of considerable interest because in various limit theorems the 
distribution G. appears in company with F [see, for example, XI,(5.6)]. A 
direct calculation seems difficult, but it is easy to proceed as follows. First 
keep x fixed and take t as variable. The ordinary Laplace transform Yt(v) 

(with v as variable) of Gt(x) is obviously (l_e-Vaa;)/v. Except for the 
norming factor v this IS a distribution function in x, and its Laplace 
transform is evidently 

iJla-l 

A + va 
(8.5) 

This, then, is the bivariate transform of (8.3). In theory it could have been 
calculated by taking first the transform with respect to x, then t, and so 
(8.5) is the transform with respect to t of the transform which we seek. 
But expetnding (8.5) into a geometric series one sees that (8.5) is in fact the 
transform of (8.4) and thus the proposition is proved. 
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The Mittag-Leffler function (8.4) is a generalization of the exponential to 
which it reduces when (X = 1. ~ 

9. LAPLACE TRANSFORMS FOR SEMI-GROUPS 

The notion of Laplace integrals can be generalized to abstract-valued 
functions and integrals,ll but we shall consider only Laplace transforms of 
semi-groups of transformations associated with Markov processes.12 We 
return to the basic conventions and notations of X,8. 

Let L be a space (for example, the line, an interval, or the integers), and 
.se a Banach space of bounded functions on it with the norm llu 11 ~ sup lu(x)l. 
It will be assumed that if U E 2 then also lui E 2. Let {.Q(t), t > O} be a 
continuous semi-group of contractions on 2. In other words we assume 
that for U E.P there' exists a function .Q(t)u E 2 and that .Q(t) has' 
the following properties: 0 < U < 1 implies 0 < .Q(t)u < 1; furthermore 
.Q(t+s) = .Q(t) .0 (s), and .0 (h) -+ .0(0) = 1, the identity operator.13 

We begin by defining integration. Given an arbitrary probability distri-

bution F on 0, 00 we want to define a contraction operator E from 2 
to 2, to be denoted by 

(9.1) 

such that 

E = (00 .Q(s) F{ds}, 
... 0 

(9.2) n(t)E = En(t) = f.ro n(t+s) F{ ds}. 

(The dependence of E on the distribution F should be kept in mind.) 
For a semi-group associated with 8. Markov process with transition 

probabilities Q t(x, r) this operator E will ~e induced by the stochastic or 
substochastic kernel 

(9.3) r Q,(x, f) F{ds}. 

A natural (almost trivial) definition of the operator E presents itself if 
F is atomic and a simple limiting pro.cedure leads to the desired definition as 
follows. 

11 A fruitful theory covering transforms of the form (9.6) was developed by S. Bochner, 
Completely monotone functions in partially ordered spaces, Duke Math. J., vol. 9 (1942) 
519-526. For a generalization permitting an arbitrary family of operators see the book by 
E. Hille and R. S. Phillips (1957). 

12 The construction of the minimal solution in XIV,7 may serve as a typical example 
for the present methods. 

13 Recall from X,8 that strong convergence Tn --+ T of endomorph isms means 
\I Tnu - Tul! --+ 0 for all "t= ff'. Our "continuity" is an abbreviation for "strong 
continuity for t > 0." 
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Let Pi > 0 and PI + ... + Pr = 1. The linear combination 

(9.4) 

is again a contraction and may be interpreted as the expectation of .Q(t) 
with respect to the probability distribution attaching weight Pi to ti' 
This defines (9.1) for the special case of finite discrete distributions, and 
(9.2) is true. The general expectation (9.1) is defined by a passage to the 

limit just as a Riemann integral: partition 0, 00 into intervals lb'" , In, 
choose tj E Ij, and form the Riemann sum L: .0 (tk) F{Ik } which is a con
traction. In view of the uniform continuity property X,(S.7) the familiar 
convergence proof works without change. This define~ (9.1) as a special 
case of a Bochner integral. 

If the semi-group consists of transition operators, that is, if .Q(t)1 = 1 
for all t, then El = 1. The notation (9.1) will be used for E, and for the 
function Ew we shall use the usual symbol 

(9.5) Ew = I.~n(s)w' Ffds} 

(although it would be logically more consistent;, to write w outside the 
integral). The vaI"ue Ew(x) at a given point x is the ordinary expectation 
with respect to F of the 'numerical function .Q(s) w(x). ' 

In the special case F{ds} = e-J.8 ds the operator E is called the Laplace 
integral of the semi-group, or resolvent. It ,will be denoted by 

~(A) = I. co e-J.8 .Q'(s) ds, 
o . 

A> O. (9.6) 

In view of (9.2) the- resolvent operators 9t(A) commute ;with the operators 
n(t) of the ,semi-group. In order that A~(A)l = 1 it is necessary and 
sufficient that .0 (t)1 = 1 for all t, and thus the contraction A~(A) is a 
transition operator iff all .0 (s) are transition operators. 

Lemma. The knowledge of ~(A)W for all A > 0 'and w E !e uniquely 
determines the semi-group. 

Proof. The value 

'H(A) w(x) = I. co e-J.t.Q(t) w(x) . dt 

at a given point x is the ordinary Laplal. ... transform of the numerical function 
of t defined by .Q(t) w(x). This function being continuous, it is uniquely 
determined by its Laplace transform (see the corollary in section 1). Thus 
.Q(t)w is uniquely determined for all t and all w E !e. ~ 
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The Laplace transform (9.6) leads to a simple characterization of the 
infinitesimal generator ~ of the semi-group. By the definition of this 
operator in X,IO we have 

(9.7) .Q(h) - 1 or 
U --+ u-U, 

h 
--+ 0+, 

if mu exists (that is, if the norm of the difference of the two sides tends to 
zero). 

Theorem 1. For fixed A > 0 

(9.8) u = 9t(A)W 

iff u is in the domain of ~ and 

(9.9) ~u - ~u = w. 

Proof. (i) Define u by (9.8). Referring to the property (9.2) of expec
tations we have 

(9.10) U = - e-).s.Q(s+h)w . ds - - e-).s.Q(s)w . ds. .Q(h) -'- 1 1 leo 1 leo 
h h 0 h 0 

The change of variable s + h = t in the first integral reduces this to 

(9.11) u = e-)'t.Q(t)w . dt - - e).(h-t>.Q(t)w . dt .Q(h) - 1 e)./i - 1 f.eo 1 f.ll 
h h 0 h 0 

Since 1I.Q(t)w- w II --+ 0 as t --+ 0 the second term on the right tends 
in norm to 0, and the whoLe right side therefore tends to A(u-A-1W). 
Thus (9.9) is true. 

(ii) Conversely, assume that ~u exists, that is, (9.7) holds. Since A9t(A) 
is a contraction commuting with the semi-group, (9.7) implies 

(9.12) .Q(h) - 1 9t(A)U --+ 9t(A)~U. 
h 

But we have just seen that the left side tends to A9t(A)U - u, and the 
resulting identity exhibits u as the Laplace transform of the function w in 
(9.9). ~ 

Corollary 1. For given W E.P there exists exactly one solution u of (9.9). 

Corollary 2. Two distinct semi-groups cannot have the same generator ~. 
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Proof. The knowledge of the generator .Q permits us to find the Laplace 
transform ~(A)W for all W E.P and by the above lemma this uniquely 
determines all operators of the semi-group. ' ~ 

It is tempting to derive Tauberian theorems analogous ~o those of section 
5, but we s.hall be satisfied with the rather primitive 

Theorem 2. As A-+- 00 

(9.13) A9t(A) --+ 1. 

Proof. For arbitrary W E!l' we have 

(9.14) IIA9t(A)W - wll < f.ex) 1I.Q(t)w - wll . Ae-)·t dt. 

.As }. --+ ex) the probability distribution with density Ae-).t tends to the 
distribution concentrated at the origin. The integrand is bounded and tends 
to 0 as t --+ 0, and so the integral tends to 0 and (9. 13) is true. ' ~ 

Corollary 3. The generator ~ has a domain which is dense in !!. 
Proof. It follows from (9.I 3) that every W E !l" is the strong'limit of a 

sequence of elements A9t(A)W, and by theorem 1 these elements are in the 
domain of ~. ~ 

Examples. (a) Infinitely divisible semi-groups. Let U be the infinitely 
divisible distribution with Laplace transform w = ,e-tp described in (7.2). 

The distributions U t with Laplace tran~forms 

(9.15) f.® e-" U,{dx} = e-t,w = exp ( -/ f.® 1 - xe-" P{dX}) 

are again infinitely divisible, and the associated convolution operators U(t) 
form a semi-group. To find its generator14 choose a bounded continuously 
differentiable function v. Then clearly 

(9.16) U(t) - 1 () lex) v(x-y) - v(x) 1 U {d '} v x =. . - Y t y. 
toy t 

Differentiation of (9.15) shows that the measure t-1y Ut{dy} has the 
transform 1p'(A)e-ttp().) which tends to 'lf1'(A) as t --+ O. But "1" is the trans
form of the measure P, and so our measures tend to P. Since the fraction 
under the last integral is (for fixed x) a bounded continuous function of y, 

14 This derivation is given for purposes of illustration. The generatbr is already known 
from chapter IX and can be obtained by a passage to the limit from compound Poisson 
distributions. 
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we get 

~v(x) =10") v(x-y) - vex) P{dy} 
0, Y 

(9.17) 

and have thus an interpretation of the measure P in the canonical repre
sentation of infinitely divisible distributions. 

(b) S1:Jbordinated semi-groups. Let {.Q(t)} stand for an arbitrary Markovian 
semi-group, and let Ut be the infinitely divisible distribution of the preceding 
example. As explained in X,7 a new Markovian semigroup {.Q*(t)} may be 
obtained by randomization of the par~meter t. In the present notation 

(9.18) .Q*(t) = J.~.Q(s) ,Ut{ds}. 

Putting for ;;lpbreviation 

(9.19) 

w'e have 

(920) 

.Q(s) -: 1 
yes, x) = vex) 

s 

.Q*(t) - 1 10") l' 
-~- vex) = Yes, x)·- s Ut{ds}. 
tot 

For a function v in the domain of ~ and for x fixed the function V is 
• - f •• 

continuous everywhere including the ongm since yes, x) -+ ~v(x) as 
s -+ O. We saw in the last example that t-1s Ut{ds} -+ P{ds} if t -+ O. Thus 
the right side in (9.20) tends to a limit and hence ~*v exists and is given by 

(9.21) ~*v(x) = J.O") yes, x) P{ds}. 

The conclusion is that the domains of 2I and ~* coincide, and 

(9.22) '1(* = (0") .Q(s) - 1 P{ ds} 
Jo s . 

in the -sense that (9.21) holds for v in the domain of ~. 

10. THE IDLLE-YOSIDA THEOREM 

The famous a.nd exceedingly useful Hille-Yosida theorem characterizes 
generators of arbitrary semi-groups of transform~tions, but we shall 
specialize it to oilr contraction semi-groups. The theorem asserts that the 
properties of generators found in the last section represent ~ot only necessary 
but also sufficient conditions. 

Theorem 1. (Hille- Yosida.) An operator ~ with domain !£" c!£' is the 
g~nerato~ of a continuous semi-group of contractions .Q(t) on !£' (with 
.0(0) = 1) iff il has the following properties. 
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(i) The equation 

(10.l) AU - ~u = W 

has for each WE!£' exactly one solution .u; 
(ii) if 0 < W ~ 1 then 0 ~ Au ~ 1; 
(iii) the domain !£" of ~ is dense in !£'. 

, 
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A > 0, 

We know already that every generator possesses these properties, and 
so the conditions are necessary. Furthermore~ if the solution u is denoted 
by u = 91(A)W, we know that 91(A) coincides with the Laplace transform 
(9.6). Accordingly the conditions of the theorem may be restated ~s follows. 

(i') The operator 9t(A) s~tisfies the identity 

(10.2) A91(A) - ~91(A) = 1. 

The domain of91(A) is !£'; the range 'coincides with the domain !£" of ~ 
(ii') The operator ).9t(A) is a contraction. 

(iii') The range of 9t(A) is dense in !£'. 
From theorem 2 in section 9 we know that 9t(A) must satisfy the further 
condition 

(10.3) A9t(A) --+ 1, A --+ 00. 

This implies that every u is the limit of its own transforms and hence that 
the range !£" of 91(A) is dense. It follows that (10.3) can serve as replace
ment (or (iii'), and thus the three conditions of the theorem are fully equivalent 
to the set (i'), (ii~), (10.3). 

We now suppose that we are given a family of operatqrs 9t(A) with these 
properties and proceed to construct the desired semi-group as the limit of a 
family of pseudo-Poisson semi-groups. The construction depends on 

Lemma 1. If W is in domain !£" of ~ then-

(l0.4) ~91(A)W = 91(A)~W. 

The operators 9t(A) and 91(v) commute and satisfy the resolveht equation 

(10.5) 91(A) - 91(v) = (V-A)91(A)91(v). 

Proof. Put v = ~u. Since both u and ware in the domain !£" of 
'll it follows from (10.1) that the same is true of v and 

AV - ~v = ~w. 

Thus v = 91(A)'1(w which is the same as (10.4). 
Next, define z as the unique solution o( vz ~ ~z = lV. Subtracting this 

(rom (10.1) we get after a trite rearrangement 

A(U-Z) - m(u-z) = (v-A)Z, 
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which is the same as (10.5). The symmetry of this identity implies that the 
operators commute. ~ 

For the construction of our semi-group we recall from theorem 1 of X,9 
that to an arbjtrary contraction T and a > 0 there corresponds a semi
group of contractions defined by 

(10.6) 

The generator of this semi-group is a(T-1), which is an endomorphjsm. 
We apply this result to T = A~().)·. Put for abbreviation 

t'JlA (10.7) m:A = A[A9t(A) - 1] = Am:9t(A), nit) = e . 

These operators defined for A > 0 commute with each other, and for fixed 
). the operator. m:A generates thequasi-Poissonian semi-group of con
tractions nA(t) . 

. It follows from (1004) that m:Au --+ m:u for all u in the domain .P' o( the 
given operator m:. We can forget about the special definition of m:A and 
consider the remaining assertion of the Hille-Yosida theorem as a special 
case of a more general limit theorem which is useful in itself. In it A may 
be re~tri~ted to the sequence of integers. . 

Approximationlemma 2. Let {nit)} be a family of pseudo-Poisson ian 
semi-groups commuting with each other and generated by the endomorphisms 
m:J.. 

If m: AU --+ 'l(u for all u of a dense set !£", then 

(10.8) .0 ;.(t) --+ n(t), A --+ 00, 

where {n(t)} is a semi-group of contractions whose generator agrees with 
~( for all u E ..!£". 

Furtherm'ore, for u E .P' 

. (10.9) 

Proof. ·For two commuting contractions we have the identity 

sn _ Tn = (sn-l+ .. '+Tn-l)(S-T) 

and hence 

/ 

Applied to operators n~(tln) this inequality yields after a trite rearrangement 

nitln) - 1 nitln) - 1 
(10: 11) . IInit)u - n,,(t)u II < t u - I( 

tin tin 
Letting n'--+ 00 we get 

(10.12)"-
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This shows that for u E!£" the sequence. {,Q).(t)u} is uniformly convergent 
as A -- 00. Since !£" isdens~ in !£'. this uniform convergence extends to 
all u, and if we denote the limit by ,Q(t)u 'we h~ve a contraction .o(t) 
for which (10.8) is true. The semi-group property is obvious. Also, letting 
y -- 00 in (10.12) we get (10.9). Rewriting the left 'side as in (10.11) we have 

.o(t) - 1 .o;.(t) - 1 . 
(l0.13) u- u< lI~u - 'H).ull. 

t t 

Choose ). large ,enough to render the right side < E. For sufficiently 
small t the second difference ratio on the left differs in norm from ~).u 
by less than E, and hence from ~u by less than' 3E.,' Thus for u E !£" 

(10.14) .o(t) - 1 or 
U -- u-U 

t 
and this concludes the proof. 

Examples. Diffusion. Let !£' be the family of 'continuous functions on 
the line vanishing at ± 00. To use familiar riotations. we replace A by h-2 

and let h -- O. Define the difference operator V h, by, 

(10.15) o () - l[U(X+h) + u(x-h) - (),] 
v h,U x - h2 • U X • 

-2 

This is of the form h-2(T - 1) where T is a transition operator, and hence 
Yh generates a semi-group et'vit of transi~ion operators (a Markovian semi
group). The operators Yh commute with each other, and for functions 
with three bounded derivatives V hU -- !u" uniformly. The lemma implies 
the existence of a limiting semi-group {n(t)} generated by an operator ~ 
such that .ou = -lu" at least when u is sufficiently smooth. 

In this particular case we know that {.Q(t)} is the semi-group of con
volutions with normal distributions of variance t and we have not obtained 
new informati0n. The example reveals nevertheless how easy it can be' 
(sometimes) to establish the existence of semi-group with given generators. 
The argument applies, for example, to more general differential operators 
and 'also to boundary conditions. (See problems 24, 25.) ~ 

Note on the resolvent and complete monotonicity. The Hille-Yosida theorem emphasizes 
properties of the generator '2(, but it is possible to reformulate the theorem so as to obtain 
a characterizatjon of the family {~(A)}. 

Theorem 2. (Alternative form of the Hille- Yosida theorem.) In order that altzmily 
{1Jl(A); A > O} of endomorphisms be the resoi:Jent of a s€'mi-grollp {.a(t)} of contractions it is 
necessary and sufficient (a) that the resolvent equation 

(10.16) ~(A) - ~(V) = (V-A)9\(A)9i(V). 

be satisfied, (b) that A~(A) be a contraction, and (c) that ),~(A) -- 1 as A -- co. 
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Proof. (10.16) is identical with (10.5), while conditions (b) and (c) appear ahove as (ii') 
and (10.3). All three conditions are therefore necessary. 

Assllming the conditions to hold we define an operator ~( as follows. Choose some 
l' > 0 and define .!f' as the range of 9l(lJ), that is: u E.fe' iff u = ~(l')W for some 
wE .!f'. For such Ii we put ~u = Ali - w. This defines an operator ~( with domain 2' 
an~ satisfying the identity 

(10.17) 

We show that this identity extends to all J" that is 

(10.18) A~RU,) - ~19i(A) = 1. 

The left side may be rewritten in the form 

(10.19) (A- V)9i(A) + (V-'lI)9i(A). 

Using (10.16) and the fact that (v-'l{)~(v) = 1 we get 

(10.20) (J'-~I)~(A) = 1 + (v-J.)'.R(A). 

Using (10.19) the identity (10.18)follows. It shows that all conditions of the Hille-Yosida 
theorem are s~tisfied, and this accomplishes the proof. ~ 

The preceding theorem shows that the whole semi-group theory hinges on the resolvent 
equation (10.16), and it is therefore interesting to explore its meaning in terms of ordinary 
Laplace transforms of functions. It is clear from (10.16) that ~(A) depends continuously 
on A in the sense that ~(v) -- 9l(J,) as v -+ J .• However, we can go a step farther and 
define a derivative ~' (i.) by 

~(v) - ~(J.) 
(10.21) ~R'(J,) = lim .' = _~2(A). 

V-A v - A 

The same procedure now shows that the right side has a derivative given by -29l(A)~'(A). 
Proceeding by induction it is seen that ~(A) has derivatives ~(n)(A) of all orders and 

(10.22) (_l)n~(n)(A) = n!9ln+1(J.). 

Let now u be an arbitrary function in .fe such that 0 < u < 1. Choo~ an arbitrary 
point x and put w(J,) = ~(A)U(X). The right side in (10.22) is a positive operator of norm 
<n!/J.n-n and therefore w is completely monotone and Iw(n)(A)1 < n!/An+l. From the 
corollary in section 4 it follows now that w is the ordinary Laplace transform with va.lues 
lying between 0 and 1. If we denote this function by .Q(t) u(x), this defines .Q(t) as a 
contraction operator. Comparing the resolvent equation (10.16) with (8.2) it is now clear 
that it implies the semi-group property 

(10.23) .Q(l+s)u(x) = .Q(t).Q(s)u(x). 

We see thus that the essential features of the semi-group theory could have been derived 
from (10.16) using only the classical Laplace transforms of ordinary functions. In par
ticular, the resolvent equation turns out to be merely an abstract paraphrasing of the 
elementary example 8(a). 

To emphasize further that the present abstract theory merely paraphrases the theorems 
concerning ordinary Laplace transforms we prove an inversion furmula. 

Theorem 3. For fixed t > 0 as A -+ co 

( _l)n-l 
. 'j{(n-O(n/t )(n/t)n -+ .Q(t). 

(n-1)! 
( 10.24) 
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Proof. From the definition (9.6) of .1{(A> as a Laplace transform of .0(/) it follows 
that 

(10.25) (-l)n9i(n)(A) = fo<X)e-).ssn.Q(s) ds. 

The left side of (10.24) is the integral of .Q(s) with respect to the density [e-nm(ns/t)n-l/ 
t(n-l )!] n which has expected value 1 and variance t 2/n. As n -+ co, this measure tends to 
the distribution concentratec;l at I, and because of the continuity of .Q(s), this implies 
(10.24) just as in the case of functions [formula (10.24) is the same as VII,(1.6»). ~ 

11. PROBLEMS FOR' SOLUTION 

1. Let Fq be the geometric distribution attributing weight qpn t9 the point 
nq (n = 0, I, ... ). As q ~ 0 show that Fq tends to the e~ponential distribution 
1 - e-X and that its Laplace·transform tends to 1/(A + 1). 

2. Show that the ordinary Laplace transforms of cos x and sin x are A/(A2 + 1) 
and 1/02 + 1). Conclude that (1 +a-2)e-X(1-cos ax) is a probability density 
with Laplace transform (1 +a2)(A+1)-1[(A+l)2 + a2:11. Hint: Use eix = 
= cos x + i sin x or, alternatively, two successive integrations by parts. 

3. Let W be the transform of a measure U. Then w is integrable over 0, 1 
and I, co iff l/x is integrable with respect to U over l,co and 0, I, respectively .. 

4. Parseval relation. If X and Yare independent random variables with dis
tributions F and G, and transforms qJ and y, the transform of XY is 

J.<X) qJ(AY) G{dy} = fo<X) y(AY) F{dy}. 

5. Let F be a distribution with transform qJ. ,If a > b then qJ(A +a)/ qJ(a) 
is the transform of the dis,tribution e-a:c F{dx}/qJ(a). For ~xed t > 0 conclude 
from example 3(b) that1

!) exp [-t V 2A + a2 + at] is the transform of an infinitely 

divisible distribution with density V 2
/
"", exp [ - ~ ( ;x -a v';')'} 

6. From the definition 11,(7.1) show that the ordinary Laplace transform of Io(x) 

is roo( A) - 1/ v' J.' - I for A > I. [Recall the identity (~n) - ( ~t) ( -4)"-] 

7. Continuation. Show that I~ = II' and hence that· II has the ordinary 

Laplace transform W1(A) = Wo(A) R(A) where R(A) = A - V A2 - 1. 

8. Continuation. Show that 21~ = In-I + In+! for n = J " 2, . .. and hence 
by induction that IT} has the ordinary transform Wn{A) = Wo(A) RnO). 

9. From example 3(e) conclude by integration that el/). - 1 is the ordinary 
transform of /1(2 V;)/V;. 

10., Let X and Y be independent random variables with Laplace transforms 
rp and e-).'\ respectively. Then yxl/a has the Laplace transform qJoa). 

15 This formula occurs in applications and has been derived repeatedly by lengthy cal
culations. 



464 LAPLACE TRANSFORMS. T AUBERIAN THEOREMS XIII. 11 

11. The density f of a probability distribution is completely monotone iff it is 
a mixture of exponential densities [that is, if it is of the form (7.11)]. Hint: use 
pro~lem 3 . 
. 12. Verify the inversion formula (4.5) by direct calculation in the special cases 
<pO) = I/(A + 1) and <p(J,) = e-).. 

13. Show that the corollary in section 4 remains valid if f and <p(1I) are replaced 
by their absolute values. 

14. Assuming e-X1n(x) monotone at infinity, conclude from problem 8 that 

x -+ 00. 

,15. Suppose that 1 - cp(A)"""'" A1-p LO) as A -+ 0 where p > O. Using 
example 5(c) show that 1 - Fn*(x),......., nxp- 1 L(llx)/r(p) as x -+ 00. [Compare 
this with example VIII,8(c).] 

16. In theorem 4 of section 5 it suffices that u(x),......., vex) where v is ulti.mately 
monotone. 

'17. Every infinitely divisible distribution is the limit of compound Poisson 
distributions. 

, 18. If in the canonical representation (7.2) for infinitely divisible distributions 
P(x) f""oo.J xCL(x) as x -+ 00 with 0 < c < 1, prove that 1 - F(x) f""oo.J (ell - c)XC- 1 L(x). 
[Continued in example XVII,4(d).] 

19. Let P be the generating function of an infinitely divisible integral-valued 
random variable and cp the Laplace transform of a probability distribution. 
Prove that P( cp) is infinitely divisible. 

20. The infinitely divisible Laplace transforms CPn converge to the Laplace 
transform cP of a probability distribution iff the corresponding measure Pn in 
the canonical representation (7.2) converges to P. Hence: the limit of a sequence 
of infinitely divisible distributions is itself infinitely divisible. 

21. Let Fn be a mixture (7.11) of exponential distributions corresponding to a 
mixing distribution Un. The sequence {Fn} converges to :1 probability distribution 
F iff the Un' converge to a probability distribution U. In this case F is a mixture 
corresponding to U. 

22. A probability distribution with a completely monotone density is infinitely 
divisible. Hint: Use probl~ms 11 and 21 as well as example 7(f). 

23. Every mixture of geometric distributions is infinitely divisible. Hint: Follow 
the pattern of example 7 (f). 

24. Diffusion with an absorbing barrier. In the example of section 10 restrict 
x to x > 0 and when x - h < 0 put~(x-h) = 0 in the definition of VA' Show 
that the convergence proof goes through if :e is the space of continuous functions 
with u( (0) = 0, u(O) = 0, but not if the last condition is dropped. The resulting 
semi-group is given in example X,5(b). 

25. Reflecting barriers. In the example of section 10 restrict x to x > 0 and 
when x - h < 0 put u(x -h) = u(x +h) in the definition of V h' Then V h U 

converges for every u with three bounded derivatives such that u' (0) = O. T~e 
domain !t" of ~ is restricted by this boundary condition. The semi-group IS 

described in example X,5(e). 
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26. The influence of the maximal term in the convergence to stable distributions. 
Let Xl' X2 , • •• be iridependent variables with the common distribution F satis
fying (6.4), that is, belonging to the domain of attraction of the stable distribution 
Ga' Put Sn == Xl + ... + Xn and Mn = max [Xl' ... ,Xn]. Prove that the 
ratio Sn/Mn has a Laplace transform Wn(A) converging tol6 

(*) 

Hence E(Sn/Mn) - I/O-a:). 
Hint: Evaluating the integral over the region Xi ~ Xl one gets 

J~~ (J~~ )n4 
Wn(A) = ne-A 0 F{dx} 0 e-AlJ'x F{dy} . 

Substitute y = tx and then x = ans where an satisfies (6.5). 
is easily seen to be 

The inner integral 

I - - - 1 -e-- t + 0 -
I - F(ans) Ij'l A F{an dt} (1) 

n[l-F(an)] n 0 ( ) I - F(an) n 
= I _ S-a1p(A) _ o(~) 

n n ' 

where '!peA) stands for the denominator in (*). Thus 

J:
~ (X ds 

W (A) - e-;' e-s- lltp (A.) • -- = W(A). 
n sa+l 

o 

16 This result and its analogue for stable distributions with exponent r.( > 0 was derived 
by D. A. Darling in ternlS of characteristic functions. See Trans. Amer. Math. Soc., vol. 
73 (1952) pp. 95-107. 



CHAPTER XIV 

~pplications of 

Laplace Transforms 

This chapter can serve as collateral reading to chapter XIII. It covers 
several independent topics. ranging from practical problems (sections 1, 2, 
4, 5) to the general existence theorem in section 7. The limit theorem of 
section 3 illustrates the power of the methods developed in connection with 
regular variation. The last section serves to describe techniques for the 
analysis of asymptotic properties and first-passage times in Markov processes. 

1. THE RENE'VAL EQUATION: THEORY 

For the probabilistic background the reader is referred to VI,6-7. Although 
the whole of chapter XI was devoted to renewal theory, we give. here an 
independent and much less sophis6cated approach. A comparison of the 
"methods and results is interesting. Given the' rudiments of the theory of 
Laplace transforms, the present approach i8 simpler and more straightfor
ward,· but the precise result of the basic renewal theorem is at present not 
obtainable by Laplace"transforms. On the other hand, Laplace transforms 
lead "more easily to the 'Iimit theorems of section 3 and to explicit solutions 
of the type discussed in section 2. 

The object of the present study is the integral equatibn· 

(1.1) V(t) = G(t) + J: V(t-x) F{dx} 

in which F and G are given monotone'right continuous functions vanishing 
for t < "0. We consider them as improper distribution functions of measures 
and suppose F is not concentrated at the origin and that their Laplace 
transforms 

(1.2) <p(;') = r e-lt F{dt), 

466 
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exist for ). > O. As in the preceding chapter all intervals of integration 
are taken closed. It will be shown that there exists exactly one solution V; 
it is an improper distribution function whose Laplace transform tp exists 
for all ). > O! If G has a density g, then V has a density -v satisfying 
the integral equation 

(1.3) vet) = get) + J.tV(t-X) F{dx} 

obtained by differentiation from (1.1). 
Recalling the convolution rule we get for the Laplace transform tp of 

the distribution V (or the ordinary transform of its density) tp = y + tpqJ, 
wnence formally 

(1.4) 
A _ yeA) 

tp( ) - 1 - cp(J.) 

To show that this formal solution is the Laplace transform of a measure 
(or density) we distinguish three cases (of which only the first two are 
probabilistically significant). 

Case (a). F is a probability distribution, not concentrated at the origin. 
Then q;(O) = I and qJ(A) < 1 for A > O. Accordingly 

1 00 

(1.5) w = = .~ fPn 
1 - fP 0 

converges for A > O. Obviously w is completely monotone and therefore 
the Laplace transform of a measure U (theorem 1 of XIII,4). Now 
tp = wy is the Laplace transform of the convolution V = U * G, that is 

(1.6) V(t) = J.'G(t-X) U{dx} .. 

Finally, if G has a density g then V possesses a density v = U* g. We 
have thus proved the existence and the uniqueness of the desired solution of 
our integral equations. 

The asymptotic behavior of V at infinity is described by the Tauberian 
theorem 2 of XIII,4. Consider the typical case where G( (0) < 00 and F 
has a finite expectation fl. Near the origin ?peA) ("-..J ,u-1G( (0»).-1 which 
implies that 

(1.7) V(t)("-..J fl-lG(OO)· t, 

The renewal theorems in XI, 1 yield the more precise result that 

V(t+Iz) - Vet) -+ ,u,-lq( ooJh, 

t -+ 00. 

but this cannot be derived from Tauberian theorems. [These lead to better 
results when F has no expectation; (section 3).] 
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Case (b). F is a defective distribution, F( (0) < 1. Assume for simplicity 
that also G( (0) <- 00. Th~ preceding argument applies with the notable 
simplification that Q?(O) = F( (0) < 1 and so w(O) < 00: the measure V 
is now bounded. . 

Case (c). The last case is F( (0) > 1. For small vaiues of ). the de~ 
nominator in (1.4) is negative, 3:nd for such values w().) cannot be a 
Laplace transform. Fortunately this fact causes no trouble. To avoid 
trivialities assume that F has no. atom at the origin so that 97().) ~ 0 as 
). ~ 00. In this case there exists a unique root K > 0 of the equation 
97(K) = 1 and the argument under (a) applies without change for ). > K. 
In other words, there exists a unique solution V, but its Laplace tram;[orm 
w cQnverges only for)' > K. 'For such values w is still given by (1.4).1 

2. RENEWAL-TYPE EQUATIONS': EXAMPLES 

(a) Waiting times for gaps in a Poisson process. Let V, be the distri~ution 
of the waiting time to the cC'mpletion of the first gap of length ~ in a 
Poisson process with parameter c (that ~s, in a renewal process with 
exponential interarrival times). This problem was treated analyticaIiy in 
example XI,7(b). Empirical interpretations (delay ·of a pedestr~an or car 
trying to cross a stream of traffic, locked times in type II Geiger counters, 
etc.) are given in VI,7. We proceed to set up the renewal equation afresh. 

The waiting time commencing at epoch 0 necessarily exceeds ~. It 
terminates before t > ~ if no arrival occurs b.efore epoch ~ (proba,bility 

,e-Ce) or else if the first arrival occurs at an epoch x < ~ and the residual 
waiting time is < t - x. Because of the inherent lack of memory the 
proba~i~ity Vet) of a waiting time <t is therefore 

, (2.1) V(t) = e-" + fV(t-X)' e-'"c dx 

for t > ~ and Vet) = 0 for t < ~.Despite its strange appearance (2.1) 
is a renewal equationof the standard type (1.1) in which F has the density 
f(x) = ce-ez concentrated on 0 < x < ~, while G is concentrated at the 
point ~. Thus 

(2.2) 

1 The solution V is of the form V{dx} = eKzV#{dx} where' V# is the solution [with 
Laplace transform VJ#()') = VJ().+K)] of a standard renewal equation (lJ) with F 
replaced by the proper probability distribution F#{dx} = e-KZ F{dx} and G by 
G#{dx} = tr"Z G{d:c}. 
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and hence the transform tp of V is given by 

(2.3) 
). _ (c+).)e-(c+).)~ 

tp( ) - ). + ce-(c+).)~ 
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The expressions XI,(7.8) for the expectation and variance are obtained 
from this by simple differentiations2 and the same is true of the higher 
moments. 

It is instructive to derive from (2.3) an explicit formula for the solution. For reasons that 
will become apparent we switch to the tail 1 - V(t) of the distribution. Its ordinary 
Laplace transform is [1-tp().)]!). [see XIII,(2.7») which admits of an expansion into a 
geometric series 

(2.4) 

The expression within braces differs from the Laplace transform (l-e-).)!). of the uniform 
distribution merely by a scale factor ; and by the change from ). to ). + c. As was 
observed repeatedly, this change corresponds to a multiplication of the densities bye-ct. 

Thus 
00 

(2.5) 1 - V(t) = e-ct .2 cn-1;n-yn*(t!;) 
n=l 

where f n* is the density of the n-fold convolution of the uniform distribution with itself. 
Using 1,(9.6) we g~t finally 

(2.6) 00 (ct)n-l 00 (n)( ;)n-l 1 - V(t) = e-ct I _,.2 (_l)k 1 - k - . 
n=l (n 1). k=O k t + 

The relation to covering theorems is interesting. As was shown in 1,(9.9) the inner sum 

represents (for t, ; fixed) the probability that n - 1 points chosen at random in O,t 
partition this interval into n parts each of which is ~;. Now the waiting time exceeds t 

iff every subinterval of 0, t contains at least one arrival ami so (2.6) states' that if in a 

Poisson process exactly n - 1 arrivals occur in o,t their conditional distribution is uniform. 
If one starts from this fact one can take (2.6) as a consequence of the covering theorem; 
alternatively, (2.6) represents a new proof of the covering theorem by randomization. 

(b) Ruin problern in compound Poisson processes. As a second illustrative 
example we treat the integro-differential equation 

(2.7) R'(t) = (ct.jc)R(t) - (ct.jc) J.tR(t-~) F{dx} 

in which F is a probability distribution with finite expectation fl. This 
equation was de'rived in V1,5, where its relevance for collective risk theory, 
storage problems, etc., is discussed. Its solution and asymptotic properties 
are derived by different methods in example XI,7(a). 

2 It saves labor first to clear the denominator to avoid tedious differentiations of fractions. 
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The problem is to find' a probability' distribution R sat~sfying (2.7). 
This equation is related to the renewal equation and can be treated in the same 
way. Taking <!rdinary Laplace transforms and noticing that 

(2.8) peA) = f.~ e-" R(x) dx = A-' f.~ e-"R'(x; dx + A-'R(O) 

we get 
R(O) 1 

peA) = <X 1 -.- qJ(l) . ~ 
1-- ---

(2.9) 

C A 

where qJ i$ the Laplace trausform of F; Recall.ing that [1 ~qJ(A)]IA is the 
ordinary Laplace trans'form of 1 - F(x) we note that the first fractiop on 
the right is of the form (1.4) and hence the Laplace-Stieltjes transform of a 
measure R. The factor 11K indicates an integration, and hence peA) is the 
ordinary Laplace transform of the improper distribution function R(x) [as 
indicated in (2.8)].' Since R(x) -+ 1 as x -+ 00 it follows from theorem 4 
in XIII,5 that peA) ~ 1 as A -+ 0-: From (2.9) we get therefore for the 
unknown const~nt R(O) 

(2.10) R(O) = 1 - (<xlc)p,. 

Accordingly, our problem admits of a unique solution if <xp, < c and admits 
of no solution if <xp, > c. This result was to be anticipated from the prob-
abilistic setup. . 

Formul~ (2.9) appears also in queuing theory under the name Khintchine-Pollaczek 
formula [see example XII,5(a)] .. Many papers derive explicit expressions in special cases. 
In the case of the pure Poisson process, F is concentrated at the ,oi~t 1, and 9'(A) = e-J... 

"The expression for p is now almost the same as in (2.3) aDd the same method leads easily 
to the explicit solution 

(2.11) R(x) = (1 - ~).~ ( catx~~>t exp(~ ("-k)+ 

Although of no practical use, this formula is interesting because of the presence of positive 
. exponents which must cancel out in cl,Jrious ways. It has been known in 'connection with 
collective risk3 theory since 1934 but was repeatedly redisCovered. 

3. LIMIT THEOREMS INVOLVING ARC SINE 
DISTRIBUTIONS 

It has become customarj to refer to distributions concentrated on 0, 1 
with density 

(3.1 ) ( ) = sm 7T<X -/X( 1 _ )/X-l 
q/X X \ X x, 

7T 

3 An explicit solution for r4in before epoch t is given by R. Pyke, The supremum and 
infimum of the Poisson process, Ann. :~ath. Statist.,vol. 30 (1959) pp. 568-576. 
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as "generalized arc sine distributions" although they are special beta distri
butions. The special case <X = t corresponds to the distribution function 

21T-I arc sin -J~ which plays an important role in the fluctuation theory for 
random walks. An increasing number of investigations are concerned with 
limit distributions related to qa., and their intricate calculations make the 
occurrence of qa. seem rather mysterious., The deeper reason lies in the 
intimate connection of qa. to distribution functions with regularly varying 
tails, that is, distributions of the form 

(3.2) 1 .- F(x) = x-« L(x), 0<<x<1 

where, L(tx)/ L(t) -+ 1 as t -+ 00. For such fuqctions the renewal theorem 
may be supplemented to the effect that the renewal function U = ~ F n* 
satisfies . 

(3.3) 
1 t« 

U(t) "'" -. 
r(1-<x) r(1 +<x) L(t) 

t -+ 00. 

In other words, if F varies regularly, so does U. It is known (but not obvious) 
that the constant in (3.3) equals (sin ?r<X)/'T1'<X and so (3.3) may be rewritten 
in the form 

(3.4) [l-F(x)} U(x) -+ sm 7T<X , 

7T<X 

Lemma. If F is of Ihe form (3.2) Ihen (3.4) holds. 

Proof. By the Tauberian theorem 4 of XIII,S 

1 _0 qJ().) "'" r(1-<x»).« L(1/).) 

x -+ 00. 

A-+O. 

The Laplace transform-of U is ~ qJn = 1/(l-qJ) and (3.3) is true b) '"lrtue 
of theorem 2 ofXIII,5. • 

Consider now a sequerice of positive independent variables Xk . with the 
common distribution F and their partial sums Sn = Xl + ... + Xn· 
For fixed I > 0 denote by N, the chance-dependent index for which 

(3..5) 

We are interested iri the two subintervals 

Y. = I - SN and Z # = SN - I. 
'. 1 ",+1 

They were introduced in VI,7 as "spenl waiting lime" and "residual waiting 
time" at epoch t. The interest attached to these variables was explained in 
various connections, and in XI,4 it was proved that as t -+ 00 the variables 
Y t and Zt have a common proper limit distribution iff F has a finite 
expectation. Otherwise, however, P{Y t < x} -+ 0 for each fixed x > 0, 
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and similarly for- Zt. The following interesting theorem emerges as a by
product,of our results, hut the original proof presented formidable analytical 
difficulties. ' 

Theorem. If. (3.2) is true, then the normed variable Yt/t has the limit 
density qa. of (3.1), and Z,/t has the limit density given by 5 

(3.6) sin 'ITa 1 
p«(x) = 'IT . X«(1 +x) , X> O. 

Proof. The inequality tXl <' Y t < IX2 occurs iff Sn = ty and 

Xn+l :> t(l-y) 

for some combination n, y such that 1 - X 2 < y < 1 - Xl' Summing 
over all n an~ possi ble y we get 

. (3.7) . P{lx, < Y, < IX.} = f.::'U - F(I(I-1I»] U{I d1l} 

and hence using (3.4) 

(3.8) P{tx
l 
< Y

t 
< tX2} r-..J sin 7T~f.l-:l:l1 - F(t(l-y». U{t dy} 
- 'IT~ 1-:1:1 1 - F(t) . U(t) . 

Now U(ty)/U(t) -+ ya. _ and so the measure U{t dy}/U(t) tends to the 
measure with density ~ya.-l while the first factor approaches (l_y)-a.. 
Because of the monotonicity the approach is uniform, and so 

(3.9) 
sin 'IT~f.l-:l:l P{txl < Y, < tx2 } ~ y«-l(1_y)-« dy, 

'IT 1-:1:. 

which proves the first assertion. For P{Z, > Is} we get the same integral 
between the limits 0 and 1/(1 +s) and by differentiation one gets (3.6). • 

It is a remarkable fact that the density qa. becomes infinite near the 
endpoints 0 and 1. The most probable values for Yd! are therefore near 
o and 1. 

It is easy to amend our argument to obtain converses to the lemma and 
the theorem. The condition (3.2) is then seen to be necessary for the 
existence ofa limit distribution for Y,/t. On the other hand, (3.2) character
izes the domain of attraction of stable distributions, and this explains the 
frequent occurrence of qa. in connection with such distributions. 

4 E. B. Dynkin, So~ limit theorems for ~ums of independent random variables with infinite 
mathematical expectations. See Selected Trans. in Math. Statist. and Probability. vol. 1 
(1961) IMS-AMS, pp. 171-189. 

6 Since SNt+l = Zt + t the distribution of Z,ISNt+l is obtained from (3.6) by the 
c~ange of variable z = y/(I-y). It is thus seen that also ZJSN,+1 has the limit. density q«. 
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4. BUSY PERIODS .AND RELATED BRANCHING PROCESSES 

It was shown in example XlII,4(a) that, if T is the Laplace transform 
of a probability distribution F with expectation ft, the equation 

(4.1) (J().) = T(). + c - c{J().», 

possesses a unique solution {J: furthermore (J is the Laplace transform of a 
distribution B which is proper if cp; < 1 and defective otherwise. This 
simple and elegant theory is being applied with increasing frequency and it is 
therefore worthwhile to explain the probabilistic background of (4.1) and its 
applications. 

The derivation of (4.1) and similar equations' is simple if one gets used 
to expressing probabilistic relations directly in terms of Laplace trans
forms. A typical situation is as follows. Consider a random sum SN = 
= Xl + ... + XN where the X; are independent with Laplace transform 
y()'), and N is an independent variable with generating function pes). 
The Laplace transform of SN is obviously P(Y(A» [see example XIlI,3(c)]. 
For a Poisson variable N this Laplace transform is of the form e-CX[l-y(A)]. 

As we have seen repeatedly, in applications the parameter rx is often taken 
as a random variable subject to a distribution U. Adapting the terminology 
of distribution functions we can then say that e-cx[l-Y(A>] is the conditional 
Laplace transform of SN given the value rx of the parameter. The absolute 
Laplace transform is obtained by integration with respect to U. Due to the 
peculiar form of the integrand the result is obviously w(I-y()'» where w 
stands for the Laplace transform of U. 

Examples. (a) Busy periods.6 Customers (or calls) arrive at a server 
(or trunkline) in accordance with a Poisson process at a rate c. The 
successive service times are supposed to be independent variables with 
the common distribution F. Suppose that at epoch 0 a customer arrives 
and the server is free. His service time commences immediately: the 
customers arriving during his service time join a queue, and the service 
times continue without interruption as long as a queue exists. By busy 
period is meant the interval from 0 to the first epoch when the server again 

6 That (4.1) governs the busy periods was pointed out by D. G. Kendall, Some problems 
in the theory of queues, J. Roy. Statist. Soc. (8), vol. 13 (1951) pp. 15J~185. The elegant 
reduction to branching processes was contributed byI.'J. Good. Equation (4.1) is equivalent 
to 

B(t) = L e-C
3; -,- Bn*(t-x) F{d.c} i t (cx)n 

o n. 

which is frequently referred to as Takacs' integral equation. The intrinsic simplicity of the 
theory is not always understood. 
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becomes free. Its duration is a random variable and we denote by Band f3 
its distributiC?n and Laplace transform, respectively. 

In the terminology of branching processes the customer initiating the busy 
period is the "ancestor," the customers arriving during his service time are 
his direct descendents, and so on. Given that the progenitor departs at 
epoch x the number N of his direct descendants is a Poisson variable with 
expectation cx. Denote by Xi the total service time of the jth direct 
descendant and all of his progeny. Although these service times are not 
necessarily consecutive their total duration has clearly the same distribution 
as the busy period. The total service time req uired by all (direct and indirect) 
descendants is therefore SN = Xl + ... + XN where the Xi have the La
place transform (J and all the variables are independent. For the busy period 
we have to add the service time x of the ancestor himself. Accordingly, 
given the length of the ancestor's service time the busy period x + SN has 
the (conditional) Laplace transform e-xu+c-cP().)l. The parameter x has 
the distribution F and integration with respect to x yields (4.1). 

If B is defective the defect 1 - B( (0) represents the probability of a 
never-end}ng busy period (congestion). The condition cft < 1 expresses 
that the expected total service time of customers arriving per time unit must 
not exceed unity. It is easy from (4,,1) to calculate the expectation and 
variance of B. 

In the special case of exponential service times F(t) = 1 - e-at and 
T(I.) = CJ./(J..+ (1.). In this case (4.1) reduces to a quadratic equation one of 
whose roots is unbounded at infinity. The solution f3 therefore agrees with 
the other root, namely 

(4.2) (3(i.) = J; [}. + CJ. + c _ 1 (J.. + CJ. + C)2 - 1J. 
c 2~ CJ.c \j 2~ CJ.C 

This Laplace transform occurs in exam pie XIII,3(c). Taking into account 
the changed scale parameter and the translation principle we find that the 
corresponding 'density is given by 

(4.3) ~CJ./c e-(a+c>xx-l JI(2~CJ.c x). 

The same result will be derived by another method iaexample 6(b); it was 
used in example VI,9(e). 

(b) De1avs in tra.ffic.7 Suppose that cars passing a given point of the:: 
road conform to a Poisson process at a r'ate c. Let the traffic be stopped 
(by a red light or otherwise) for a duration D. When traffic is resumed K 
cars will \vait in line, where K is ~ Poisson variable with parameter co. 

I 

7 This example is inspired by J. D. C. Little's treatment of the number of cars delayed. 
[Operations Res., vol. 9 (1961) pp. 39-52.] 
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Because the rth car in the line cannot move before the r - 1 cars ahead of it, 
each car in the line causes a delay for all following cars. It is natural to 
assume that the several delays are independent random variables with a 
common distribution F. For the duration of a waiting line newly arriving 
cars are compelled to join the line, thus contributing to the total delay. The 
situation is the same as in the preceding example except that we have K 
"ancest<:>rs." The total delay caused by each individual car and its direct and 
indirect descendants has the Laplice transform f3 satisfying (4.1), and the 
total "busy period"-the interval from the resumption of traffic to the 
first epoch where no car stands waiting-has the Laplace transform 

(CO)k 
- e-cIJ ~ T! f3k().) = e-cMI-PU)1. 

It is easy to calculate the expected delay and one can use this result for the 
discussion of the effect of successive traffic lights, etc. (See problems 
6, 7.) ~ 

S. DIFFUSION PROCESSES -

In the one-dimensional Brownian motion the transition probabilities are 
normal and. the firs~ passage times have a stable distribution with index ! 
[see example VI,2(e)]. Being in possession of these explicit formulas we must 
not expect new information from the use of Laplace transforms. The reason 
for starting afresh from the diffusion equation is that the method is instructive 
and applicable to the most general diffusion equation (except that no explicit 
solutions can be expected when the coefficients are arbitrary). To simplify 
writing we take it for granted that the transition probabilities . Q, have 
densities q, (although the method to be outlinc:d would lead to this result 
without special assumptions). 

We begin with the special case of Brownian motion. For a given bounded 
continuous function f put 

(5.1) u(t, x) = f_+oooo qe(x, y)f(y) dy. 

Our starting point is the fact derived in example X,4(a) that (at least for f 
sufficiently smooth) u will satisfy the diffusion equation 

ou(t, x) = ! 02U(t, x) 

ot 2 ox2 (5.2) 

with the initial condition u(t, x) -+ f(x) as t -+ O. In terms of the ordinary 
Laplace transform 

(5.3) 
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we conclude from (5.2) that8 

(5.4) 

and from (5.1) that 

(5.5) i+OO 

w;.(x) = -00 K;.(x, s)f(s) ds 

where K;,.(x, y) is the ordinary Laplace transform of qt(x, y). In 'the theory 
of differential equations K;,. is called the Green function of (5.4). We shall 
show that 

(5.6) 
1 -K (x y) = - e-y2 ;"lx-1I1 

)., .J2A . 

The truth of this formula can be verified by checking that (5.5) represents the' 
desired solution of the differential equation (5.4), but this does not explain 
how the formula was found. 

We propose to derive (5.6) by a probabilistic argument applicable to more 
general equations and leading to explicit expressions for the basic first 
passage times. (Problem 9.) We take it as known that the path variables 
X(t) depend continuously On t. Let X(O) = x and denote by F(q x, y) the 
probability that the point y will be reached before epoch t. We call F 
the distribution of the first-passage epoch from x to. y and denote its 
Laplace transform by (j?;.(x, y). 

For x < y < z the event X(t) = z takes place iff a first passage through 
y occurs at some epoch T < t and is followed by a transition from y to z 
within time t - T. Thus qt(x" z) represents the convolution of F(t, x, y) 
and qt(y, z), whence 

(5.7) x < y < z. 

Fix a point y and choose for f a function concentrated on y, 00. Multiply 
(5.7) by fez) and integrate with respect to z. In view of (5.5) the result is 

(5.8)w;,.(x) = (j?;,.(x, y) w;,.(y), x > y, 

while (5.4) requires that for y fixed (j?;,.(x, y) satisfy the differential equation 

1 02(j? Am - __ ;,. = 0 
'1';" 2 OX2 ' 

(5.9) x < y. 

A solution which is bounded at - 00 is necessarily of the form C;,.e-Y2 ;"x. 

8 Readers of the sections on semi-groupfo will notice that we are concerned with a 
Markovian semi-group generated by the diff~rential operator ~ = !d2/dx2 • The differential 
equation (5.4) is a special case of the basic equation XIII,(10.1) occurring in the Hille
y osida theorem. 
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Since (5.8) shows that ({J;,.(x, y) ~ 1 as x -- y, we have ({J;,.(x, y) = eV2;"(x-lI) 
provided x< y'. A similar argument applies when x > y and it is clear that 
for reasons of symmetry the Laplace transform of the first-passage time from 
x to y is given by 

(5.10) 

Letting z = y in (5.7) ~e see therefore that 

K;..(x, y)=e-V2AJx~tfIK;,.(Y, y), 

and since K must depend symmetrically on x and Y' it follows that 

K(y, y) reduces to a constant· C;. depending only on A. We have thus 

determined K;,. up· to a multiplicative constant C;,..s that .J2AC;,. = 1 
follows easily from the fact· that to f = 1 there corresponds th~ solution 
w;,.(x) ....:. l/A. This proves the truth of (5.6). . 

The following examples show how to calculate the probability that a point 
Yl > x will be reached before another point. Y2 < X. At the same time they 
illustrate the treatment of boundary conditions. 

Examples. (a) One absorbing barrier. The J:1rownian motion on 0, 00 

with an absorbing barrier at the origin is obtained by stopping an ordinary 
Brownian motion with· X(O) = x > 0 when it reaches the origin. We 
denote its transition densities by q~bS(x, y) and adapt similarly t.he other 
notations. 

In the unrestricted Brownian motion the probability density of a passage 
from x > 0 to y > () with an intermediate passage through 0 is the con
volution of the first p~ssage from x to 0 and q t(O, y). The corresponding 
Laplace transform is ((J;"(x,.O) K;,.(O, y) and hence we must have 

(5.11) K~bS(X, y) = K;..(x, y) - ({J;..(x, 0) K;,.(O, y), 

where x > 0, y > O. This is equivalent to 

(5.12) 

or 

(5.13) 

in agreement with the solution X,(5.5) obtained by the reflection principle. 
The argument leading to (5.7) applies without change to the absorbing 

barrier process and we conclude from (5.12) that for 0 < x < y 

(5.14) 
VUx -Y/2;"x 

abs ) e - e ({J;,. (x, y = I • / • 

e y 2;"11 _ e-V 2;"11 
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This9 is the Laplace transform of the probability that ill an unrestricted 
Brownian motion with X(O) = x the point y > x is reached before epoch t 
and before a passage through the origin. Letting A ~ 0 we conclude that 
the probability that y will be reached before the origin equals x/yo just as in 
the symmetric Bernoulli random walk (see the ruin problem in 1; XIV,2). 
(Continued in problem 8.) 

(b) Two absorbing barriers. Consider now a Brownian motion starting 

at a point x in 0, I and terminating when either 0 or I is reached. It is 
t;asiest to derive this process from the preceding absorbing barrier process 
by introducing an additional absorbing barrier at I so that the reasoning 
leading to (5.11) applies without change. The transition densities qf(x, y) 
of the new process have therefore the Laplace transform Kf given by 

(5.15) K1(x, y) = K~b~(X, y) - 9?~bs(X, 1) K~bS(l, y) 

with x ar:td y restricted to 0,1. [Note that the boundary conditions 
Kf (0, y) . Kf (I, y) arc satisfied.] Simple arithmetic shows that 

-v 2l IX-III + -v 2).(2-lx-IIP - v"2,1,(x+lI) - VU(2-X-II) 
# e e -e -e 

(5.16) Kl(x,y)= _ / 
.J2}.(1-e-2\ 2A) 

Expanding 1/[l-e-2V2l] into a geometric series, one is led to the alternative 
representation 

(5.17) K1 (x, y) = 1 ~ [e-V 2llz-II+2nl ~ e-V 2l lx+II+2n I1, 
.J2A n=-~ 

which IS 

principle. 
equivalent to the solution X,(5.7) obtained by the reflection 

~ 

The same argument applies to the more general diffusion equation 

ou(t, x) = l.a(x) (}2U(t, x) + b(x) ou(t, x) , a > 0, 
(5.18) at ~ ox2 ox 
in a finite or infinite interval. Instead of (5.4) we get 

(5.19) AWl - taw~ - bw~ = / 

and the solution is again of the form (5.5) with a Green function KJ. of 
the form (5.7) where (;::Il(X, y) is the transform of the first-passage density 
from x to y > x. For fixed y, this function must satisfy the differential 
~quation corresponding to (5.9) namely 

(5.20) A9?l - !a9?~ - b9?; = O. 

9 For y fixed, 9?~bS represents the solution of the differential equation (5.9) which 
reduces to 0 when x = 0 and to 1 when x :-.= y. In this form the result applies to arbitrary 
triples of points a < x < b and a > x > b and to more general differential equations. 
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It must be bounded at the left endpoint and gJ;,CY, Y) = 1. These conditions 
determine gJ.). uniquely except if (5.20) possesses a bounded solution, in 
which case (as in the above examples) appropriate boundary conditions 
must be imposed. (See. problems 9, 10.) 

6. BIRTH-AND-DEATH PROCESSES AND RANDOM 
WALKS 

In this section we explore the connection between the birth-and-death 
processes of 1; XVII,S and the randomized random walk of II,7. The main 
purpose is to illustrate the techniques involving Laplace transforms and the 
proper use of boundary conditions. 

Consider a simple random walk starting at the origin in which the individual 
steps equal 1 or -1 with respective probabilities p and q. The times between 
successive steps are supposed to be independent random variables with an 
exponential distribution with expectation l/e. The probability P n(t) of 
the position n at epoch t was found i~ II,(7.7); but we start afresh from a 
new angle. To derive an equation for P net) we argue as follows. The position 
n ~ 0 lit epoch t is possible only if a jump has occurred before t. Given that 
the first jump occurred at t - x and led to 1, the (conditional) probability 
of the position n at epoch t is Pn-1(x). Thus for n = ±1, ±2, .... 

(6Ja) 
I.

t ' 

P nCt) = 0 ce-c<t-,-x)[pP n-1(X) + qP n+1(x)] dx: 

For n = 0 the term e-ct must be added to account for the possibility of no 
jump up to epoch t. Thus 

(6.th) Po(t) = e-ct + I.tce-c<t-X)[PP _l(X) + qP1(x)] dx. 

Accordingly, the P n must satisfy the infinjte. system of convolution 
equations (6.1). A simple differentiation leads to the infinite system of 
differential equations10 

(6.2) 

together with the initial conditions PoCO) = 1, P nCO) = 0 for 11 ~ O. 
The two systems (6.1) and (6.2) are equivalent, but the latter has the 

formal advantage that the special role of n = 0 is noticeable only in the 
initial conditions. For the use of Laplace transforms it does not matter 
w here we start. 

10 They are a special case of the equations 1; XVII,(5.2) for general birth-and-death 
processes and may be derived in like manner. 
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We pass to Laplace transforms putting 

(6.3) 7Tn(A) = f.CXl e-).t Pn(t) dt, 

Since convolutions correspond to multiplication of Laplace transforms and 
e-CX has the transform Ij(C+A) the system (6.1) is equivalent to 

(6.4a) 
C 

7T n(A) = . [p7T n-l(A) + q7T n+1(A)], 
C+A 

nrfO 

(6.4b) 7To(A) = 1 + C [p7T -iO.) + Q7Tl(A)], 
C+A C+A 

[The same result could have been obtained from (6.2) since 

f.CXl e-;'tP~(t) dt = -Pn(O) + A7Tn(A) 

which follows on integration by parts.] 
The system oflinear equations (6.4) is of the type encountered in connection 

with random walks in 1; XIV, and we .solve it by the same method. The 
quadratic equation 

(6.5) cqs2 - (C+A)S + cp = 0 

has the roots 

(6.6) C + A - .J(t+A)2 - 4c2pq d ( j ) -1 
S;. = an (f;. = p q S;. • 

2cq 

I t is easily verified that with arbitrary constants A;., B;. the linear com
binations 7Tn (A) = A;.s;.z + 'B;.(f1 satisfy (6.4a) for n = 1,2, ... , and the 
coefficients can be chosen so as to yield the correct values for 7To(}.) and 
7T1(A). Given 7To and 7Tl it is possible ftom (6.4a) to calculate recursively 
"2' 7T3' ... , and so for n > 0 every solution is of the form 7T T/O.) 
= A;.s1 + B;.u'J.. Now s;. -- 0 but (J;. -- 00 as A -- 00. As our 7T71(A) remain 
bounded at infinity we must have B;. = 0, and hence 

(6.7a) n = Ot 1, 2, .... 

For n ~ 0 we get analogously 

(6.7b) 7Tn{l) = 7To{l)(J~ = (p/q)n7To{A)s"in, n = 0, -1, - 2, .... 

Substituting into (6.4b) we get finally 

1 . 
(6.8) 1To(l) = -;=====:== 

~(C+).)2 - 4c2pq 

and so all 7T n().) are uniquely determined. 
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Much information can be extracted from these Laplace transforms without 
knowledge of explicit formulas for the solution itself. For example, since 
multiplication of Laplace transforms corresponds to convolutions, the form 
(6.7) suggests that for n > 0 the probabilities P n are of the form P n = 
= Fn* * Po where F is a (possibly defective) probability distribution with 
transform s)..' That this is so can be seen probabilistically as follows. If at 
epoch t the random walk is at the point n, .the first passage through n 
must have occurred at some epoch T < t. In this case the (conditional) 
probability of being at epoch t again at n equals PO(t-T). Thus P n is 
the convolution of Po and the distribution Fn of the first passage time 
through n. Again, this first passage time is the sum of n identically dis
tributed independent random variables, namely the waiting times between 
successive pass~ges through I, 2, .... This explains the fonn (6.7) and shows 
at the same !ime that s1 is (for n > 0) the transform of the distribution En 
of the first passage time through n. This distribution is defective unless 
p = q = 1. for only in this case is So = l. 

In the present case we are fortunately able to invert the transforms S;.. 

lt was sh,own in example XIII,3(d) that (A - .J A2 - 1 Y is (for A > 1) 
the ordinary Laplace transform of (rjx)Ir(x). Changing A into Aj2c.Jpq 
merely changes a scal~ factor, and replacing A by A + c reflects multipli
cation of the density bye-ex. It follows that s1 (with n > 0) is the ordinary 
Laplace transform of a distribution Fn with density 

(6.9) fn(t) = .J (pjq)n nt- I In(2c.J pq t)e--ct • 

This is the density of the first passage time through n > O. This fact was 
established by direct methods in 11,(7.13) [and so the present argument may 
be viewed as a new derivation of the Laplace transform of X-I In(x)]. 

An explicit expression for the probabilities Pn(t) can be obtained similarly. 
In problem 8 of XlII,II we found the Laplace transform of In' and the 
adjustment of parameters just described leads directly to the explicit formulas 

(6.10) Pn(t) = .J(pjq)n e-ct In(2c.J pq t), n = o. ±1, ±2, .... 
Again, this result was derived by direct methGlds in II,(7.7). 

As we have seen in 1; XVII,7 various trunking and servicing problems 
lead to the same system of differential equations (6.2) except that n is 
restricted to 11 >0 and that a different equation corresponds to the 
boundary state 11 = O. Two examples wil~ show how the present method 
operate~ in such cases. 

Examples. (a) Single-server queues. We c~nsider a single server in which 
newly arriving customers join the queue if the server is busy. The state of the 
s~'stemis given by the number n > 0 of customers in the queue including 
the customer being served. The interarrival times and the service times' are 
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mutually independent and have the exponential densities le-).t and p,e-Ilt , 

respectively. This is a special case of the multi-server example (b) in 1; 
XVII,7, but we derive the differential equations afresh in order to elucidate 
the intimate connection with our present random walk model. 

Suppose that at present there are n > 1 customers in the queue. The 
next change of state will be + I if it is due to a new arrival, and -1 if it is 
due to the termination of the present service time. The waiting time T for 
this change is the smaller of the waiting times for these two contingencies 
and so P{T > t} = e-ct where we put c = l + p,. When a change occurs 
it is + 1 with probability p = Alc, and -1. with probability q = p,fc. In 
other words, as long as the queue lasts our process conforms to our random 
walk model, and hence the differential equations (6.2) hold· for n > 1. 
However, when no service is going on, a change can be caused only by new 
arrivals, and so for n = 0 the differential equation takes on the form 

(6.11) P~(t) = -cpPo(t) + cqP1(t). 

We solve these differential equations assuming that originally the server 
was free, that is PoCO) = L For n > 1 the Laplace transforms 7Tn {}·} 

again satisfy the equations (6.4a), but for n = 0 we get from (6.11) 

(6.12) (Cp+l)7TO(l) = 1 + Cq7Tl(l). 

As in the general random walk we get 7T n (l) = 7To(l )sl for n > 1, but in 
view of (6.12) 

(6.13) 
1 . 1 - S). 

7TO(~= -
cp + l - cqs). A 

Thus 

We found that sn is the Laplace transform of the distributi~n Fn with 
density (6.9); th~ factor III corresponds to integration, and so for n > 0 

(6.14) 

where Fn is the distribution with density (6.9). For n= O· the left side is, 
of course, unity. 

(b) Fluctuations during a busy period. We consider the same server, 
but only during a busy period. In other words, it is assun~ed that at epoch 
o a customer arrives at the empty server, and we let the process terminate 
when the server becomes empty. Analytically this implies that n is now 
restricted to 11 > J, and the initial condition is Pl (0) = 1. Nothing changes 

- I 

in the differential equations (6.2) for' n 2: 2, but in the absence of a zero 
state the term cpPo(t) drops out in equation number one. Thus the Laplace 
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transforms 1T n(A) satisfy (6.40) for n > 2 and 

(6.15) (A+C)7T1tA) = 1 + Cq7T2 (A). 

As before we get 7T n(A) = 7T1(A)s1-1 for n > 2, but 7TIO.) is to be 
determined from (6.15), A routine calculation shows that 71 1 (A) = s;,./(cp), 
and hence 7Tn ().) = s~/(cp). Using the preceding example we have thus the 
final result that Pn(t) = fn(t)/(cp) with fn given by (6.9). 

To ensure that the busy period has a finite duration we assume that 
p < q. Denote the duration of the busy period by T. Then P{T > t} = 
= P(t) = 2. Pn(t)· Now PI(t) = -cqP1(t) as can be seen summing the 
differential equations, or probabilistically as follows. Neglecting events of 
negligible probabilities the busy time terminates between t and t + h iff 
at epoch t there is only one customer in the queue and his service terminates 
within the next time interval of duration h. The two conditions have 
probabilities P1(t) and cqh + o(h), and so the density of T s~tisfies the 
condition -P'(t) = cqP1(t). Accordingly, the duration of the busy period 
has the density 

(6.16) 

This result was derived by a different method in example 4(0) and was used 
in the queuing process VI,9(e). See problem 13. ~ 

7. THE KOLMOGOROV DIFFERENTIAL EQUATIONS11 

We return to the Markovian processes restricted to the integers 1, 2, .... 
The Kolmogorov differential equations were derived in 1; XVn,9 and 
again in X,3. This section contains an independent treatment by means of 
Laplace transforms. To render the exposition self-contained we give a 
new derivation of the basic equations, this time in the form of convolution 
equations. 

The basic assumption is that if X(T) = i at some epoch T, the value 
X(t) will remain constant for an interval T < t < T+ T whose duration 
has the exponential density cie-CiX

; the probability of a jump to jiS then Pij' 
Given that X(O) = i the probability Pik(t) that X(t) = k -:;t. i can now be 

11 The theory developed in this section applies without essential change to the general 
jump processes of X,3. It is a good exercise to reformulate the proofs in terms of the 
probabilities themselves without using Laplace transforms. Some elegance is lost, but the 
theory then easily generalizes to the non-stationary case where the coefficients Cj and Pjk 

depend on t. In this form the theory is developed (for general jump processes) in W. Feller, 
Trans. Amer. Math. Soc., vol. 48 (1940), pp. 488-515 [erratum vol. 58, p. 474]. 

For a probabilistic treatment based on the study of sample paths see Chung (1967). 
For generalizations to semi-Markov processes see problem 14. 
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calculated by sumniing over an possible epochs and results of the first jump: 

co it Pik(t) = 2 cie-C{XPi;P;k{t-x) dx 
j=1 0 

(k =;t. 0. (7.1 a) 

For k = i VI must add a term accounting for the possibility of no jump: 

(7.1b) Pii(t) = e-cit + ~ rtcie-c,xpijPji(t_x) dx 
;=1 Jo 

These equations can be unified by introducing the Kronecker symbol 0ik 
which equals 1 or 0 according as k = i or k =;t. i. 

The backward equations (7.1) are our point of departure;12 given arbitrary 
Ci > 0 and a stochastic matrix p = (PiJ we seek stochastic matrices 
pet) = (Pik(t» satisfying (7.1). . 

Alternatively t if we suppose that any finite time interval contains only. 
finitely many jumps we can-modify the argument by considering the epoch x 
of the last jump preceding t. The probability of a jump from j to k has 
density L Pij(X)C;jJ;kt while the probability of no jump between x and t 
equals e-Ci(t-X). Instead of (7.1) we get the forward equations. 

. it co Pik(t) = 0ike-cit + ~Pi;(X)c,p;ke-Ck(t-X) dx. 
o i=1 . 

(7.2) 

As will be seen t however t there exist processes with infinitely many jumps 
satisfying the backward equations t and hence the forward equations are not 
ilIl:plied by the basic assumptions underlying the ptocess. This phenomenon 
was discussed in X t 3 and also in 1; XVII t 9. 

In terms of the Laplace transforms 

(7.3) 

the backward equations (7.1) take on the form 

(7.4) 
O.k c. co 

TI ik().) = • + · 2 Pi; TI ik().)· ). + Ci ). + C· ;=1 

We now switch to a more convenient matrix notation. (The rul~s of matrix 

12 The change of variables y = t - x makes differentiation easy, ~nd it is seen that the 
convolution equations (7.1) are equivalent to the system of differential equations 

P;k(t) = -Ci Pik(t) + ci 2Pi; P;k(t) 
i 

together with the initial conditions Pii(O) = 1 and Pik(O) = 0 for k:F i. This system 
agrees with 1; XVII,(9.14), except that there the coefficients Ci and Pi; depend on time, 
and hence Pik is a function of two epochs 7' and t rather than of the duration t - 7'. 
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calculus apply equally to infinite matrices with non-negative elements.) We 
introduce the matrices TIo.) = (TI ik().» and similarly PCt) = (Pik(t»; 
p = (Pik) , and the diagonal matrix c with elements c

i
. By 1 we denote 

the column vector all of whose elements equal 1. The row sums of a matrix 
A are then ~ven by AI. Finally, I is the identity matrix. 

It is then clear from (7.4) that the backward equations (7.1) are trans
formed into 

(7.5) (A+c) TI()') = I + cp TI()'), 

and the forward equations into 

(7.6) TI()')()'+c) = I + TI(A)cp. 

To construct the minimal solution we put recursively 

(7.7) ().+c) TI<~+1)().) = I + cp TI<n)().). 

For the row sums of )'TI<n)(A) we introduce the notation 

(7.8) 

Substituting into (7.7) and remembering that pI = 1 it is seen that 

(7.9) ().+c)~<n+1)().) = cp~<n)().). 

Since ~<O) ~ 0 it follows that ~<n)().) > 0 for all n, and so the matrices 
)'fI<n)(A.) are substochastfc. Their elements are non-decreasing functions 
of n and therefore there exists a finite limit 

(7.10) 
n ..... oo 

and )'TI< OO)().) is substochastic or stochastic. 
·Obviously TI<OO)().) satisfies the backward equation (7.5) and for any 

other non-negative solution TI()') one has trivially fl()') > TI<O)().), and 
by induction TI()') ~ TI<n)().) for all n. Thus 

(7.11) TI(A) > n<oo)().). 

Less obvious is that TI<OO)(A) satisfies also the forward equation (7.6). 
To show it we prove by induction that 

(7.12) TI<n)(A)().+c) = 1+ TI<n-l)(A)cp. 

This is true for n = 1. Assuming the truth of (7.12), substitution into (7.7) 
leads to 

(7.13) ().+c)TI<n+1)().)().+c) = ).1 + c + [1+ cpTI<n-l)().)]cp. 

Th~ expression within brackets. equals (A+C)TI<n)(A). Premultiplication of. 
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(7.13) by (A+C)-I yields (7.12) with n' replaced by n + 1. This relation 
is therefore true for all n, and hence fI(CO){A) satisfies the forward equation. 

Repeating the argument that led to (7.11) we see equally that any non
negative solution of the forward equations (7.6) satisfies fI{A) > fI(CO){A). 
For this reason fI(CO){A) is called the minimal solution. 

We have thus proved 

Theorem 1. There exists a matrix fI(CO)(A) > ° ~ith row sums ~,A-I 
satisfying both (7.5) and (7.6) and such that for every non-negative solution 
of either (7.5) or (7.6) the inequality (7.11) holds. 

Theorem 2. The minimal solution is the Laplace transform of a family of 
substochastic or stochastic matrices pet) satisfying the Chapman-Kolmogorov 
equation 

(7.14) P{s+t) = P{s)P{t) 

and both the backward and forward equations {7.1 )-(7 .2). Either 'aI/matrices 
pet) and AfI(CO)(A) (t > 0, A > 0) are strictly stochastic or none is. 

Proof. We drop the superscript 00 and write fI{A) for II(CO)(A). Fr<>m 
the definition (7.7) it is clear that fI:~){A) is the transform of a -positive 
function P:~) which is the convolution of finitely many exponential distri
butions. Because of (7.8) the row sums of p(n){t) form a monotone sequence 
bounded by 1 and so it follows that fI{A) is the transform ofa matrix pet) 
which is substochastic or stochastic. From (7.5}-{7.6) it is clear that pet) 
satisfies the original forward and backward equations. These. imply that 
pet) depends continuously on t.· ItJollows that if the ith row sum is < 1 
for some t ·the ith row sum of fI{A) is < A-I for aU A and conversely. 

To restate (7.l4) in termS of Laplace transforms multiply if by e-M-,fI' and 
integrate over sand t. The right side leads to the matrix product fI(A) fI(v), 
and the left side is easily evaluated by the substitution x = ,I + s, y. = 
= -t + s. The result is 

(7.15) _ fI{v) - fI(A) = fI{A) fI{v); 
V-A . 

conversely (7.15) implies (7.14). [This argument was used III example 
XIII,8{a).] 

To prove (7.15) consider the matrix equation 

(7.l6) {A+C)Q = A + cpQ. 

If A and Q are non-negative then obviously Q ~ (A+C)-IA= fI(O){A)A 
and by induction Q > fI(n){A)A for all n. Thus Q ~ fI{A)A. Now fI{v) 
satisfies (7.l6) with A = 1+ (A-v)fI{v) and hence for A > V 

(7.17) fI{v) > fI{A) + (A-v)fI{A) fI{v). 
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On the other hand, the right-hand member satisfies the forward equation 
(7.6) with A replaced by y. It follows that it is > TI(y) and thus the 
equality sign holds in (7.17). This concludes the proof.13 ~ 

To see whether the matrix ATI(CXl)(A) is strictly stochastic14 we return to 
the relations (7.8) and (7.9). Since the elements ~:n~(A) are non-increasing 
functions of n there exists a limit ~(A) = lim ~(n)(A) such that 

(7.18) 

and 

(7.19) (A+C)~(A) = Cp~(A), 

On the other hand, we have 

(7.20) (A+C)~(O)(A) = cl = cpl 

o S ~(A) ~ 1. 

and therefore ~(O)(A) > ~(A) _ for any vector ~(A.) satisfying (7.19). From 
(7.9) it follows by induction that ~(n)(A) > ~(A) for all n, and so the vector 
~(A) in (7.18) represents the maximal vector satisfying (7.19). We have thus 

TheOrem 3. The row defects of the minimal solution are represented by 
the well-defined maximal vector ~(A) satisfying (7.19). 

Thus ATI(CXl)(A) is strictly stochastic iff (7.}9) implies ~(A) = o. 
Corollary 1. If' Ci S M < 00 for all i the minimal solution is strictly 

s toehas tic (so that neit~er the forward nor the backward equations possess 
other admissible solutions). 

Proof. Since- c/(A.+c) is an iI\~reasing function of c it follows from (7.19) 
by induction that 

(7.21) 

for all n, and hence 

~(A) S ( M )n. 1 
A + M 

~(A) = 0 .. 

If A(A) is a matrix of ele~ents of the form ~i(A) 1Jk(A) with arbitrary 1Jk(A) then 
II(A) + A(A) is again a solution of the backward equation (7.5). It is always possible 
to choose A(A) so as to obtain admissible matrices p(t) satisfying the Chapman
Kolmogorov equation. The procedure is illustrated in the next section. The corresponding 

13 (7.15) is the resolvent equationJor the family of contractions All (A) on the Banach 
space of bounded column vectors. We saw in XIII,tO that it holds iff the range of these 
transformations is independent of A, and minimal character guarantees this. (In terms 
of boundary theory the range is characterized by the vanishing of the vectors at the "active 
exit boundary.") 

14 Warning: A formal multiplication of the forward equations by the column vector 1 
would seem to lead to the identity AII().)l = 1, but the series involved may diverge. 
The procedure is legitimate if the Ci are bounded (corollary 1). 
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processes are characterized by transitions involving infinitely many .iumps in a finite time 
interval. Curiously enough, the forward equations may be satisfied even though their 
interpretation in terms of a last jump is false. 

These are the main results. We conclude with a criterion that is useful 
in applications and interesting because its proof introduces notions of 
potential theory; the kernel r of (7.25) is a typical potential. 

We assume ci > 0 and rewrite (7.19) in the form 

(7.22) ~(A) + AC-l~(A) = p~(A). 

Multiplying by pk and adding over k = 0, ... ,n-l we get 

n-l 

(7.23) ~(A) + A ~ pkC-l~(A) = pn~(A). 
k=O 

This implies that pn~(A) depends monotonical1y on n and so pn~(A) -+ x 
where x is the minimal column vector satisfyinglS 

(7.24) px = x, ~(A) ~ x ~ 1. 

Now define a matrix (with possibly infinite elements) by 

00 

(7.25) r = ~pkC-l. 
k=l 

Letting n -+ 00 in (7.23) we get 

(7.26) ~(A) + Ar~(A) = x, 

which implies in particular that ~k(A) = 0 for each k such that r kk = 00. 

This is the case if k is a persistent state for the Markov chain with matrix 
p and hence we have 

Corollary 2. The minimal solution is strictly stochastic (and hence unique) 
whenever the discrete Markov·chain with matrix p has only persistent states. 

8. EXAMPLE: THE PURE BIRTH PROCESS 

Instead of pursuing the general theory we consider in detail processes in 
which only transitions i -+ i + 1 are possible, for they furnish good 
illustrations for the types of processes arising from non-uniqueness. To 
avoid trivalities we suppose ci > 0 for all i. By definition Pi.Hl = 1 
whence Pik = 0 for all other combinations. The backward and forward 
equations now reduce to 

(8.1 ) 

15 It is not difficult to see that z is independent of A and AIl( oo)(A) = z - E(A). 
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and 

(8-.2) (A+Ck)TIik(A.)' - Ck-1ni,k-l(A) = c5ik, 

where c5it equals 1 for i = k and 0 otherwise. We put for abbreviation 

(8.3) 

Pi is the ·Laplace transform of the (exponential) sojourn time distribution 
at i, and r·t is the ordinary Laplace transform of the probability that this 
sojourn time extends beyond t. The dependence of rj and Pi on A should 
be borne in mind. 

(a) The minimal solution. It is easily verified that 

(8.4) 

.is the minimal solution for both (8.1) and (8.2). It reflects the fact that 
transitions from i to k < i are impossible, and thar the epoch or the 
arrival at k > i is the sum of the k independent sojourn times at i, i + 1, ... , 
k-l. 

LetPik(t) stand for the transition probabilities of the process defined by 
(8.4).' We prove the following important result derived by other methods in 
1; -XVII,4. 

Lemma··]f· 

(8.5) 

then 

(8.6) 
00 

X Pik(t) = 1 
k-i 

for all i and' t > o. Otherwise (8.6) is false for all i. 

Proof. Note that Ark = 1 - Pk, whence 
. . 

(8.7) A[TIii(A) + ... + TIi,i+n(A)] = 1 - Pi •.• 'Pi+n· 

Thus' (8.6) holds iff for all A > 0 

(8.8) PiPi+l ... Pn -- 0 n -- 00. 

Now if Cn -- 00 then Pn"""" e-Alcn and hence in this case (8.5) is necessary 
and sufficient for (8.8). On the other hand, if Cn does not tend to infinity 
there exists a number q < I such that Pn < q for infinitely many n, and 
hence both (8.8) and (8.5) hold. ~ 
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In the case where the series in (8.5) diverges there are no surprises: the 
Cn determine uniquely a birth process satisfying the basic postulates from 
which we started. From now on we assume therefore that! C;l < 00. 

The defect 1 - LPik(t) is the probability that by epoch t the system 
has pass~d through all states, or has "arrived at the boundary 00." The epoch 
of the arrival is the sum of the sojourn times at i, i+ 1, .... The series 
converges with probability one because the sum of the mean sojourn times 
llcn converges. 

In a process ,starting at i the lifetime of the process up t6 the epoch of the 
arrival at 00 has the Laplace transform 

(8,.9) ~i = lim PiPi+1 ... Pi+n 
n-+ Q() 

and the ~i satisfy the equations (7.19), namely, 

(S.lO) 

For the row s,ums we get from (S.7) 

co 

(8.11) A I nik(A) ~ 1 - ;i· 
k-i 

(b) Return processes. Starting from the process (8.4) new processes may 
be defined as follows. Choose n,umbers q, such that q~;;::: 0, I qi :;= 1. 
We stipulate that on arrival at co with probability'-8 tJi the $tate of the system 
passes instantaneCously to i. The original process now starts afrelh until a 
second arrival at 00 takes place. The timeelapsecl between'the two arrivals 
at 00 is a random var.iable with Laplace transfonn 

(8.12) 

The Markovian character of~e process requires -that oa the 5eCODci arrival 
at 00 ,the process recommenoe& i~ the same manner. We •• wdescribe the 

, transition proba~litieS p:t(t) of the new process ill terms of itS Laphlce 
transforms n:t(AJ. The prebability of a traDsitioa fi:"om i at epoch 0 to 
k at epoch t without an intervening passage through 00 has the tr~sform 
(S.4). The probability to reach k .ner exactly one passage throug. 00 has 
therefore the LaplaCe transform ~i L flUIl().)' and the epoch af the second 
arriv,al at 00 has, transform Et'T(l}. Considering further retums we see in 
this way that we must have 

, (8.13) 

16 Variants of the return prOcesses are obtained by letting ~ q i < I,; on arrival at 00 

the process termin~tes with probability 1 ~ 1: qi. 
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where [l-'T(l)]-l == I'Tn(,t) counts the- number of passages, through 00. 

A trite calculation using (8.11) shows that the row sums in (8.13) equal Ill, 
and so' the n~t(l) .are the transforms of a strictly stochastic matrix of 
transition probabilities pret(t). 

It is easily verified that the new process satisfies' the backward eq.vptiom 
(8.1) but not the forward equations (8.2). This is as shoUld be: the pos'tulates 
leading to the forward equations are violated since no last jump need exist. 

(c) The bilateral birth process. To obtain a process satisfying both the 
forward and the backward equations we modify'the birth process"by letting 
the states of the system run through O,"± 1, ±2,". ... Otherwise the con-

, . 
ventions remain the same: the constants Ci > ° are defined for all integers', 
and transitions from i are possible only to i +~. We assume again that 
I 11cn < 00, the summation now extending from "- 00 to' 00. 

Nothing changes for the minimal solution which is still 'given by (8.4). 
The limit 

(S.14) 
i-+-oo 

exists and rrAay be interpreted as the transform of "the probability P -oo,k(t) 
of a transition from - 00 at epoch ° to k at epoch t." With this' starting 
point the process will run through all states from' ~ 00 to 00 and "arrive at 
00" at an epoch with Laplace transform ~-oo = 'lim ~n' We now define 

n-+-OO 

a new 'process as follows. It starts as the process corresponding to the 
ntinimal solution (8.4) but on reachipg 00 it recommences at - 00, and in this 
way the process continues forever. By the constructio~ used in (b) we get 
for the transition probabilities 

(8.15) n~(A) = n (A) + ~i1]k 
Ik ik 1 - ~-oo 

It is easily verified that the nZc satisfy both the backward and the forward 
equations (8.1) and (8.2). The process satisfies the hypotheses leading to the 
backward equations, but not those for the forward equations. 

9. CALCULATION OF ERGODIC LIMITS AND OF 
FIRST-PASSAGE TIMES 

Ascan be: expected, the behavior as t -+ 00 of the transition probabilities 
Pi1(t) of Markov pro~sses on integers is similar to that of higher transition 
probabilities in discrete chains with the pleasing simplification, however, 
that the nuisance of periodic chains disappears. Theorem 1 establishes this 
fact as a simple consequence of the ergodic theorem of 1; XV. Our main 
concern will then be to calculate the limits for the general processes of section 
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7 and to show how first passage times can be found. The methods used are of 
wide applicability. 

Theorem 1. Suppose that for the family of stochastic matrices P(t) 

(9.1) P(s+ t) = pes) pet) 

and pet) -+ I as t -+ O. If no Pik vanishesl7 identically, thim as t -+ 00 

(9.2) 

where either Uk = 0 for all k or else 

(9.3) 

and 

(9.4) ! u j Pik(t) = Uk' 
i 

rlze second alternative occurs whenever there exists a probability vector 
(ul , Uz, ••• ) satisfying (9.4) for some t > O. In this case (9.4) holds for all 
t.> 0, and the probability vector 'uJs Unique .. 

(As exptained in 1; XVII,6 the imp6rtant feature is that the limits do 
not depcmd on i, which indicates that the,influence of the initial conditions 
is asymptotically negligil?le.) " . 

Proof. For a fixed t:5" > 0 consider the discrete Markov, chain with 
matrix P(~) and higher transition probabilities' giv~n byPf'!>(~) -:- P(n~). 
If all elements Pi1,(n~) are ultimately positive the chain is irreducible and 
aperiodic, and by the ergodic theorem 1; XV,1. the ,asSertions are true 
for t restricted to ~he sequence ~, 2~; 3~, .... ' Since two ,rationals have 
infinitely many multiple~ in commo~ the limit asn -+ 00 of Pik(n6) is the 
same for all ratiopaf ~. T~ finish the proof it suffiCes to s,how that Pik(t) 
is a unifonnly continuous function of t and is'positive f~r'Iarge t. Now by 
(9.1)' . . . 

. . 

(9.5) Pii(S) Pik(l)' ~ Pik(S+t) ~ Pik(t) + [1· - Pii(s)] 

'[the first inequality is trivial, the'second follows from the fact tpat the terms 
Pils) with /~ i add up to 'I' - Pu(s)]. For s sufficiently" small we have 
1'- E'~ Pii(s) ~ 1 and so (9.5) shows the uniform continuity of Pike It. 
-follows fI'om (9~5>, alsp that if Pik(t) > 0 then Pik(t+S) > 0 in some 
s-interval bf fixed length and hence P ik is either identically zero or ultimately 
positive. ~ 

17 This CQndition i~ introdus:ed only to avoid trivialities that may be circumvented by 
restrictions to appropriate sets of states. It is not difficult to see that our conditions imply 
strict positivity of Pik(t) for all t. 
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We now apply this result to the minimal solution of section 7 assuming 
that it is strictly stochastic, and lience unique. In matrix notation (9.4) reads 
uP(t) = u; for the c?rresponding ordinary Laplace transform this implies 

(9.6) uAn(A) ~ u. 

If a vector U satisfies (9.6) for some particular value A > 0 the resolvent 
equation (7.15) entails the truth of (9.6) for all A > 0, and hence the 
truth of (9.4) for all t > O. Introducing (9.6) into the forward equation 
(7.6) we get 

(9.7) ucp = uc; 

the ~omponents UkCk are finite though possibly unbounded. On the other 
hand, if U is.a probability vector satisfying (9.7) it follows by induction 
from (7.12) that uAn<n)(A) ~ U for all' n, and hence uAn(A) ~ u. But the 
matrix An (A) being strictly stochastic the sums of the components on either 
side must be equal and hence (9.6) is true. We have thus 

Theorem 2. If the minimal solution is strictlystochastic (and hence ullique) 
the relations (9.2) hold with Uk > 0 iff there exist~ a probability vectfJr u 
such that (9.7) holds. 

This implies in particular that the solution u of~(9.·7) is ~nique. 
Probabilistic interpretation. To fix ideas consider the simplest case where 

the discrete chain. with transition probabilities Pii is ergodic. In other words,
we as~ume that there exists a strictly positive probability vector (X = 
= «(Xh (X2, ••• ) such t~at . (Xp = (X and p!;' --'(Xk as n.:...r 00. It is then clear 
that. if a = 1 (XkC,;l < w, --the probability vector with components 
Uk = (Xkc;lla satisfies (9.7) whereas no solution exists if a = 00 •. 

Now'it is intuitively obvious that the transitions in our process are ~he 
same as in the discrete Markov chain with matrix p, but their timing is 
different. For an orientation consider a particul'ar state and label it with the 
index O. The successive sojourn times at 0 alternate with off times during 
which the system is at states j > O. The number of visits to the state j is 
regulated by p, their duration depends on Cj. In the discrete'Markov chain 
the long-run frequencies of j and 0 are in the r~tio (Xi/(XO and hence (Xi/(Xo 

should be the expected number of visits to j during an off interval. The 
expected duration of each visit being l/c; we conclude that in the long rur 
the probabilities of the states j and 0 should stand in the proportion 

-1~ -1 . . 
(XjCj • IXoco 01 uj • uo. 

This argument can be made rigorous even in the c.ase where Pij(t) - O. According to 
a theorem of C. Derman mentIOned in 1; XV ,11, if p induces an irreducible and persistent 
chain there exists a vector cx such that ap = cx and ~ is unique up to a multiplicative 
constant; here cxk > 0, but the series 1; CXk may diverge. Even in this case the ratio 
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a.j: IXo have the relative frequency interpretation given above and the argument holds 
generally. If Ia.k"k"l < 00 then (9.2)-:-(9.4) are true with u" proportional to 1X~k"1. and 

. otherwise pet) - 0 as t - 00. The interesting feature is that thelimits u" may be positive 
even if the discrete chain has only nun states. 

The existence of the limits Pi ,,( 00) can be obtained also by a renewal 
argument intimately connected with the recurrence times. ~To show how the 
distribution of recurrence and first passage times may be calculated we number 
the states 0, 1,2, .... and use 0 as pivolal state. Consider a new process 
which coincides with the original process up to the random epoch of the first 
visit to 0 but with the state fixeq atO forever after. In other words, the new 
process is obtained from the old one by making 0 an absorbing state. Denote 
the traJlsition probabilities of the modified process by °Pi,,(t). Then 
°Poo(t) = 1. In terms of the original process °PiO(t) is the probability of a 
first passage from i ¥:. 0 to 0 before epoch t, and °Pi,,(t) gives the prob-
ability of a transition from i ¥:. 0 to k ¥:. 0 without intermediate passage 
through O .. It is probabilistically clear that the matrix °P(t) should satisfy 
the same backward and forward equations as pet) except-that Co is replaced 

. byO. We now proceed the inverse way: we modify the backward andforward 
equations by changing Co to 0 and show that the unique solution of this 
absorbing-state process has the predicted properties. 

If ~ is the vector represented by the zeroth column of TI (4), the backward 
equatipns show that the vector 

(9.8) o.+c-cp)~ = 'YJ 

has components 1,0,0, .... Now the backward equations for °TI(A) are 
obtained on replacing Co by 0, and so it ~ stands for the zeroth column of 
°TI(A) thevector{9.8)hascomponents 'YJl = 'YJ2 ='" = 0, but 'YJo = P sF O. 
It follows that the vector with components ~,,= TI"o(A) - pOTIkO(A) satisfies 
(9.8) with 'YJ -:- 0, and 'as AI1(A) is strictly stochastic this implies ~,,= 0 
for aU k (theorem 3 of section 7). Since °TIoo(A) = 1/ A we have therefore 
for k ~ 0 

(9.9) TIkO(A) = AOTIkO (A)TI 00 (A). 

Referring to the first equation in (9.8) we see also that 

1 CO" ° . (9.10) TIooCA) = + . £., PMA TI iOCA)TIooCA). 
A + Co A + Co i 

(9.9) and (9.10) are renewal equations with obvious probabilistic interpreta
tion. In fact, let the process start at k > O. Then °TI kO is the ordinary 
Laplace transform of the probability °PkO(t) that the first entry to 0 occurs 
before t, and hence AOTIkO(A) is the Laplace transform of the distribution 
F" of the epoch of first entry to O. Thus C9.9) states that PkO(t) is, the con
volution of F" and Poo; the event XCt) = 0 takes place iff the first entry 
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occurs at some epoch x < t and t - x time units later the system is again 
at O. 

Similarly, !POiAOniO represents the distribution Fo of an off time, that 
is, the interval between two consecutive sojourn times at O. The factor 
of noo(A) on the right in (9.10) therefore represents the waiting time for a 
first return to 0 if the system is initially at O. (This is also the distribution 
of a complete period = sojourn time plus, off time.) The renewal 'equation 
(9.10) expresses Poo(t) as the sum of the probability that the sojourn time 
at 0 extends beyond t and the probability of X(t) = 0 after a first return 
at epoch x < t. If 0 is pers,istent (9.10) implies by the renewal theorem that 

(9.11) 
1 

Poo(oo) -= ---
1 + Co"" 

where p, is the expected duration of an off time and C;;l + " is the expected 
duration of a complete cycle. 

If). PROBLEMS. FOR SOLUTION 

1. In the renewal equation (1.3) let Ff(t) = get) = e7"tt p-
1jr(p). Then 

1 
(10.1) tp(A) = (A+I)P-l . 

By the method of partial fractions show that foc integral18 p 

(10.2) ,,(t) -= ~ ~1 a~-{l-I:)t 
? e-k 

where ak = e~lclJl and ,-'I. - -1. 
2. A server has Poisson incoming traffic with parameter a and a holding time 

distribution G with Laplace' transform y. Let H(t) be the probability that 
the duration of a holding time does not ex "eed t and that no new call arrives during 
it. Show that H is a defective distributioa, with Laplace-Stieltjes transform 
yeA +a). 

3. ust ell/Is. Suppose that the server of the preceding example is free at epoch 
O. Denote by U(t) the probability that up to epoch t all arriving calls find the 
server free. Derive a renewal equation for U and conclude that the ordinary Laplace 
transform (f) of U satisfies the linear equation 

1 1 - y(A+a) a 
w(A) - A + IX (l- )2 + A yeA +«) weAl· + IX +cx + IX 

The expected waiting time for the first call arriving during a busy period is 

a-I + 1X-1 [1-Y(IX)jl. 

18 The roots of the denominator are the same for p =. nand p = n12, but the solutions 
are entirely different. This shows that the popular "expansion according to the roots of the 
denominator" requires caution when tp is an irrational function. 
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Hint:. Use the preceding problem. 
4. (Continuation.) Solve the preceding problem by the method described in 

proble~ l7 of VI,13 considering U as the distribution of the total lifetime of a 
delayed terminating renewal process. 

5. If F has expectation p, and variance er and if cp, < 1, the solution of the 
busy-period eq~ation (4.1) has variance (er +Cp,3)/(I-Cp,). 

6. In example 4(b) .the generating function of the total numbers of cars delayed 
is &6[,,(3)-1] where 

(10.3) 'P(s) = srp(c - c'P(s». 

7. Show that if cp is the Laplace transform of a proper distribution the solution' 
tp of (10.3) is the generating function of a possibly defective distribution. The 
latter is proper iff F has an expectation p, < l/c. 

8. In the absorbing barrier process of example 5(a) denote by F(t, x} the 
probability that (starting from x) absorption will take place within time t. (Thus 
F stands for the distribution of the total lifetime of the process.) Show that the 
ordinary Laplace transform of 1 -'-: F is given by the integral of Kabs(x, y) over 
o . < y < ex). Conclude that the Laplace-Stieltjes transform of F is given by 
e-"; 2). :1:, in agreement with the fact that it must satisfy the differential equation (5.9)., 

. 9. Starting from (5.7) show that the Green function of the general diffusion 
equation (5.19) in any interval is necessarily of the form 

(l0.4) 

~;.(x) 'YJ;.(y) 
W(y) 

K;.(x, y) = 
'YJ;.(x) ~;.(y) 

W(y) 

where ~;. and 'YJ;., are solutions of t~e homogeneous equation 

(*) ).cp -lacp" - bcp' = 0 

for x ~ y 

for x >y, 

bounded, respectively, at the left and the right boundary. If (*) has no bounded 
solution then ~;. and 'YJ;. are determined up to arbitrary multiplicative const.ants 
which can be absorbed in W. (Otherwise appropriate boundary conditions must 
be imposed.) 

Show that W;. defined by (10.4) and (5.5) satisfies the differential equation 
(5.19) iff W is the Wronskian 

(10.5) W(y) = [~A(y) 'YJ;.(y) - ~;.(y) 'YJA(Y)]a/2. 

The solutions ~;. and 'YJ;. are necessarily monotonic, and hence W(y) ~ O. 
10. Continuation. For x < y the first-passage epoch from x to y has the 

Laplace transform ~;.(x)/~;.(y). For x > y it is given by 'YJ;.(x)/'YJ;.(Y). 
11. Show that th~ method described in section 5 for diffusion processes applies 

equally to. a general birth-and-death process.lll 

12: Adjust example 6(a) to the case of a > 1 channels. (Explicit calculations 
of the a constants are messy and not recommend~.) 

19 For details and boundary conditions see W. Feller, The birth and death process as 
diffusion process, Journal Mathematiques Pures Appliquees, vol. 38 (1959), pp. 301-345. 
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13. In example 6(b) show directly from the differential equations that the busy 
. h . 1 . 1 

tIme as expectatIon ( ) and vanance....2( )3 . 
C q-p . c- q-p 

14. Semi-Markov processes. A semi-Markov process on 1, 2, ... differs from 
a Markov process in that the sojourn times may depend on the terminal state: 
given that the state i was entered at T the probability that the sojourn time ends 
before T + t by a jump to k is Fik(t). Then Ik FiAl:(t) gives the distribution of 
the sojourn time and Pik .= Fik( 00 J is the probability of a jump to k. Denote by 
Pik(t) the probabiJity of ~k at epoch t +.T given that i was entered at epoch T. 
Derive an analogue to the Kolmogorov backward equations. With self-explanatory 
notations the transformed version is given by 

Il(A) = yeA) + cI>(A) Il(A) 

where yeA) is the diagonal matrix with elements [1- Ik 9'ik(A)]/).. For 
Fik(t) == Pik(1-e-Ci') this reduces to the backward equations (7.5). The COD

struction of the minimal solution of section 7 goes through.20 

20 For d,etails see W. Feller, On semi-:Markov processes, Proc. National Acad. of Sciences, 
vol. 51 (1964) pp. 653-659. Semi-Markov proccsses,were intrP<iuced by P. Levy and W. L. 
Smith, and were investigated in particular by R. Pyke. 



CHAPTER XV 

Characteristic Functions 

This chapter develops the elements of the theory of characteristic functions 
and is entirely independent of chapters VI, VII, IX-XIV. A refined Fourier 
analysis is deferred to chapter XIX. 

1. DEFINITION. BASIC PROPERTIES 

The generating function of a non-negative integral-valued random vari
able X is the function defined for 0 < s S 1 by E(~), ~he ex;>ectation of 
sX. As was shown in chapter XIII, the change of variable s = e-A makes 
this useful tool available for the study of arbitrary non-negative random 
variables. The usefulness of these transforms derives largely from the multi
plicative property r""' = rs" and e-A(a:+,,) = e-Aze-A". Now this property 
is shared by the exponential function with a purely imaginary argument, 
that is, by the function defined for real x by 

'(l.l) ei~a: = cos {x + i sin 'x 

where { is a real constant and ;2 = -1. This function being bounded, 
its expectation exists under any circumstances. The use of E(ei~X) as a 
substitute for generatIng functions provides a powerful and universally 
applicable tool, but it is bought at the price of introducing complex-valued 
functions and random variables. Note, however, that the independent 
variable remains restricted to the real line, (or, later on, to 5i'j. 

By a complex-valued function w = It +;v is meant the pair of real 
functions u and v defined for real x. The expectation E(w) is merely an 
abbreviation for E(u) + iE(v). We write, as usual, W = u - iv for the 
conjugate function, and Iwl for the absolute value (that is, Iwl2 = WW = 
= u2 + v2). The elementary properties of expectation remain valid, and 
only the mean value theorem requires comment: if Iwl S a then IE(w)1 S a. 
In fact, by Schwarz inequality 

(1.2) . IE(w)12 = (E(U)2 + (E(V»2 < E(U2) + E(v2) = E(lwI2) < a~. 
498 



XV.l DEFINITION. BASIC PROPERTIES 499 

Two complex-valued random variables Wi = Ui + iVi are called 
independent iff the pairs (UI,VI) and (U2, V2) are independent. That the 
multIplicative property E(W 1 W 2) = E(W 1) E(W ~ holds as usual is seen 
by decomposition into real and imaginary parts. (This formula illustrates 
the advantage of the complex notation.) With these preparations we define 
. an analogue to generating functions as follows. 

DefiDitiOB. Let X be a random variable with probability distribution F. 
The characteristic functiDn of F (or of X) is the function qJ defined for real 
, by 

(1.3) 1
+00 

q;(0 == -00 ita: F{dx} = u(O + iv(O 

where 

(1.4) 1+ tJO 

u(O = _CQ cos 'z . F{dx}, 
f+OO 

va) = J-oo sin 'Z . F{dx}. 

For distributions F with a'density f, of course, 

(1.5) 1+00 

fJ(O == -00 ei(~ f(x) dx. 

TeradDoIoglcal _tee In the aa;epted tenlliRology of Fourier analysis 9' 
is the FOUI'ier-Slieltjes tranafllml 0/ F. Such. transfoqns are defined for all 
boUllded measUres anel dte term. ucharacteristic function" emphasizes daat 
the nteaswe bas unit mass. (No ether measures have charaderistic functioas.) 

. 00 the other 1wt4, intesraJa of the form (1.5) occur in many connections 
aDa we shall say that (1.5) ddiaes the ordinar1 Fourier trtlllS/orm of f. The 
chat~eristic f\utction of F is the ordinary Fourier transform of the deDJity 
f (~hen the latter exjsts), but the tenn Fourier transform applies aIIo to 
otkcr functions. • 

For ease of reference we list some basic properties of cluKacteriltic 
functions. 

, L-uu' t. LIlt . fF - • + w be the characteristic function of a random 
".iable X with dUtribution F. Then 

(a) fJ is continuous. 
(6) ,(0) .. 1 tmd 11'(')1 ~ 1 for all {. 
(c) aX + b has the characteristic function 

(1.6) 

In particular, ip = u - iv is the characteristic function of - X. 
(d) u is even and v is odd. The characteristic function is real iff F is 

symmetric. 
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(e) For all , 

(1.7) 

CHARACTERISTIC FUNCTIONS 

(For variants see problems 1-3.) 

Proof. (a) Note that /ei~X/ = I and hence 

(1.8) /ei~(X+h) - ei~x/ = /ei~h - 1/. 

XV.l 

The right side is independerit of x and is arbitarily small for h sufficiently 
close to O. Thus ffJ is, in fact, uniformly continuous. Property (b) is 
obvious from the mea~ value theorem, and (c) requires no comment. For 
the proof of (d) we anticipate the fact that distinct.distributjons have distinct 
characteristic functions. Now ffJ is real iff ffJ = ip, that is, if X and -X 
have the same characteristic function. But then X and -X have the same 
distribution, and so F is symmetric. Finally, to prove (e) consider the 
elementary trigonometric relation 

(1.9) 

valid because 0 < I + cos 'x < 2. Taking expectations we get (1.7). .. 

Consider now two random variables Xb X2 with di~tributions FI , f2 and 
·characteristic functions ffJ.I, ffJ2' If Xl and X2 are independent~ the multi
plicative property of the exponential entails 

(1.10) 

This simple result is used frequently and we record it therefore as 

Lemma 2. The convolution FI * F2 has the ch~racteristic function fIJI ffJ2' 
In other words: to thl! sum Xl + X2 of two independent random variables 

there corresponds the product ffJI ffJ2 of their characteristic functions. I 

'If X2 has the same distribution as Xb then the sum Xl - X2 represents 
the symmetrized variable (se~ V!5). We have therefore the 

Corollary. IffJI2 is the characteristic function of the symmetrized distri-
bution of. 

The following lemma gives a characterization of arithmetic distributions. 

Lemma 3. If 1 :¢ f) the following three statements are equivalent: 
(a) ffJ(1) = 1. 
(b) ffJ has period 1," that is ffJ('+nA) = ffJa) for all { and n. 

I The converse is false, for it was shown in 1l,4(e) and again in problem 1 of III,9 that 
in some exceptional cases the sum of .two dependent variables may have the distribution 
F} * F2 • and consequently the characteristic function qJI fl'2' 
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(c) All points of increase o/·F are among 0, ±h, ±2h, .. ·. where 
h = 27T/1. 

Proof. If (c) is true and F attributes weight Pn to nh then 

fP.(O = IineinW,. 

This function has period 27T/h, and so (c) implies (b), which in tum is 
stronger than (a). 

Conversely, if (a) holds, the expectation of the non-negative function 
1 - cos lx vanish~s, and this is possible only if I - cos lx = 0 at every 
point x that is a point of increase for F~ Thus F is concentrated on the 
multiples of 27T/l, and hence (c) is true. . 

Technically this lemma covers the extreme .case of a distribution F 
concentrated at the origjn. Then <p(') = 1 for all ", and so every.numb~r 
is a period of cpo In general, if 1 is a period of <P the same is true of all 
multiples ± 1, ±21, ... , but for a non-constant periodic function·. <P 
there exists a smallest positive period, and this is called the true period. 
Similarly, for an arithmeti~ F there exists .a largest positive h for which 
property (c) holds, and this is called the.span of F. It follows from lemma 
3 that the span h and the period 1 are related by lh = 27T. Thus unless 
either <pa) :;!= 1 for all ,:;!= 0, or <pa) = I identically, there exists a small
est 1 > 0 such that <p(1) = I but <p( ') :;!= I for 0 < , < 1. 

All this can be restated in· a form of more general appearance .. Instead 
of <p(1) = I assume only that I <p(1) I = 1. There exists then a real b such 
that <p(1) = eibA

, and we can apply the preceding result to the variable 
X - b with characteristic function <p( ')e- ibA which equals I at ,= 1. 
Every period of this characteristic function is automatically a period of I <pI, 
and we have thus proved 

Lemma 4. There exist only the follOWing three possibilities: 
(a) I <pa)1 < I for all ,:;!= O. 
(b) I cp(A) I = I and I <pa)1 < I for 0 < , < 1. In thiscase I <pI has period 

1 and there exists a real number b such that F(x+b) is arithmetic with span 
h = 27T/l. 

(c) I <pa)1 = 1 for all ,. In this case <pa) = eibC and F is concentrated 
at the point b. 

Example. Let F be concentrated on 0 and 1 attributing probability 
! to each. Then F is arithmetic with span I, and its characteristic function 
fPa) = (I +ei')/2 has period 27T. The distribution F(x+1) is concentrated 
on ± 1. It h~ span 1 and its characteristic function cos '/2 has period 
47T. ~ 
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2. SPECIAL DISTRIBUTIONS. MIXTURES 

For ease of reference we give a table of the characteristic functions of ten 
common densities and describe the method of deriving them. 

~otes to table 1. (1)' Normal density. If one is not afraid of complex 
integration the result is obvious by the substitution y = x - iC. To prove 
the formula in the real domain use differentiation and integration by parts to 
obtain (j?'a) = -'qJa). Sin~ qJ(O) =.1 it follows that log 9'(0 = _1'2, 
as asserted.. . 

(2)-(3) Uniform densities. The calculation in (2) and (3) i, obvious. 
The two distributions differ only by locatioR parameters, and the relation 
between the characteristic functions illustrates the rule (I ;6). 

(4) Triangular density. Direct calculation is easy using integration By 
. parts. Alternahvely, observe that our triangular density is the convolution 
of the uniform density in - ia < z < ia with itself and in view of (3)· its 

h . . ti . . h ~ ( 2 . fl~2 C aractensttc unctIon IS t ereJ.ore r· sm -. . 
. . ae:, 2 

(5) This is obtained by application of the inversion formula (3.5) to the 
triangular density (4). See also problem 4 .. This formula is of great im
portance because many Fourier-ana1~ic proofs depend on the use of a 
characteristic function vanishing outside a finite interval. 

(6) Gamma densities. Use the substituti6n 11 = z(l-i{). If one prefus to 
stay in the real dQm8.in:expan4 ei:' into a power seri'es. For the cliaracteristic 
function one gets in this way 

2- i(it>" foo e-C~"+t-l tiz == i r(n + t) (i'J" = i (-t)( -i,)'1 
r(t) ,,-0 n! J. ~-. n! r(t) ,,-0 Il 

which' is the binomial series for (l-i{)-t. For the' special case t = I 
(exponential distribution) the calculation can be performed .ift the real by 
repeated integration bYparts. The same is true (by recursion) for all !ntegral 
values of t. 

(7) The bilateral ex,onentiql' is obtained by symmetrization from the 
exponential distribution, and so the characteristio function (ollows from 
(6) with t = 1. A direct verification is easy tiling repeated int~grations by 
parts. . 

(8) Cauchy distribution. Again the fomlula follows from the preceding 
one by the use of the inversioA fOrinula O.~). The diroct verification of this 
formula is a standard exercise in tile calculus of residues. 

(9) Bessel density. This is the Fourier version of the Laplace transform 
derived in XllI,3(d); and may be proved in t~e same way. . 

(10) Hyperbolic cosine. The corresponding. distribution function is 
F(x) = I - 217-1 arc tan e-z. Formula 10 is of no importance, but it has a 
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TABLE 1 

No. Name Density Interval Characteristic Function 

1 ' '~ 

1 Normal -=e-1~ -oo<x<oo .... 1" 
v' 271' ' ; 

2 Uniform 
1 

O<x<a 
~'-1 

-
tl ia' 

3 Uniform 
1 Ixl < a 

sin a' 
- --
2a a' 

4 Triangular ~(l _1:1) Ixl < a 
21 - cos a' 

a2 ,2 

1 1 - cos ax {I _1:1 for 1'1 ~ a 
5 - - -oo<x<oo 

71' ax2 

for 1'1> a 

6 Gamma 
1 1 _ x&-le"-2: x> 0, t>O T(t) (1 - i,)' 

7 Bilateral ie-1zl 1 
exponential 

-co<x<oo 1 + ,2 
8 Cauchy 

1 t -co<x<oo e-"" 
71' t2 + x2 t>O 

9 Bessel e-Z : I,(x) x > 0, t>O [1 - i' - v' (1 _i,)2 - l]t 
X 

10 Hyperbelic 1 1 
cosinea 71' cosh x 

-co<x<co 
cosh (71' '12) 

curi0sity value in that it exhibits a "self-reciprocal pair": the density and 
its characteristic function differ only by scale parameters. (The normal 
density is the prime example for this phenomenon.) To calculate the 
characteristic ftinction expand the density into the geometric series 

Applying number 7 to the individual term one gets the canonical partial 
fraction expansion for the characteristic function. ~ 

(For further examples see problems 5-8.) 
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Returning to the general theory, we give a method of constructing new, 
characteristic functions out of given ones. ,The principle is extremely 
simple, but example' (b) will show that it can be ,exploited to avoid lengthy 
calculations. 

Lemma. Let Fo, Fh . " be probability distributions with characteristic 
functions CPo, fIJI' .... If Pk ~ 0 and '2:Pk= 1 the mixture 

(2.1) U ' '2: PkFk 

,is a probability distribution with charapteristic function 

(2.2) w = '2: PkCPk' 

Examples. (a) Random sums. Let Xl' Xlb • •• be independent random 
variables with a common distribu'tion F and characteristic function cpo 
Let N be an integral-valued random .variable with generating function
P(s) =' '2: p~ and independent of the Xi . .The random sum Xl + ... + XN 

ha.s then the distribution (2.1). with Fk = F"*, and the corresponding 
characteristic function is 

, (2.3) 

The most noteworthy speciai '.~ is that or' the "compound PoiSson, dis-
tribution. Here Pk = e-ttkJk! and ' 

(2.4) we,) = e-t+,.<C). 

The ordinary Poisson d~stribution represents the special case' where' F IS 

concent~ at the point 1, that,is, when 9'(0, ::tt'., 

, , 
P3 I' ---------t-' 

o 

--
I -----_ 

I --I , 

FIGure I. lllustratinK example (b)~ 
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(b) Convex polygons. From number 5 in table 1 we know that 

(2.5) 1 - I" fer I" ~ 1 qJa) = . 
o for 1'1 ~ 1 

is a characteristic function. If aI, ... ,an are arbitrary positive numbers, 
the mixture 

(2.6) 

is an even characteristic function whose graph in 0, 00 is a convex polygon 
(fig. 1). In fact, without loss of generality assume a1 < a2 < ... < an' 

, . 
Iil,the interval 0< , < al the graph 'Ofw is a segment of a line with slope 

- (PI + .. " + Pn). Between a1 and a2 the term Pl/al drops out, and so 
a1 an . 

on, until between. an - 1 and an the graph coincides with a segment of slope 
-Pn/an. In 0, 00 the graph is therefore a polygon consisting of n finite 
segments with decreasing slopes a'nd the segment an, 00 of the '-axis. It is 
easily seen that every polygon with these properties may be represented in 
the form (2.6)' (the n sides intercepting the w-axis at the points Pn' 
Pn+Pn~b' .. 'Pn+ ... +Pl = 1). We conclude that every even function 
w ~ 0 with '£0(0) = 1 whose graph in 0, 00 is a convex polygon is a 
charaCteristic function. 

A simple passage ,to the limit will lead to the famous Polya criterion 
[example 3(b)] and reveals its natural source. Even the present special 
criterion Oleads 'to surprising and noteworthy results. 

la. SOME UNEXPECTED PHENOMENA 

We digress somewhat to introduce certain special types of cI:taracteristic functions with 
surpris~nc and interestinc properties. We begin by a prelimina'ry remark concerning 
arithmetic distributions. 

Suppose that the distribution G, is concentrated on the multiples n7r/ L of some fixed 
numbcil:. 7r/ L > 0, the point n7r/ L carrying probability Pn; here' n = 0, ± 1, ' . .. The 

,characteristic' function y is &iven by 
+00 

(2.7) , y(C) = ~ Ptleirt1lC/~ 
n--oo 

and has period 2L. It is usually not easy to find simple explicit expressions for y, whereas 
it is easy to expreSs the pro.babilitics Pr in 'terms of the'characteristic function y, Indeed, 
multiply (2.7) by e-inCIL. The probability Pn appears as the coefficient of the periodic 

fURction ei(n-r)·CIL whose integral over -L.l vanishes except when n = r. It follows 
that 

(2.8) r = 0, ±l, .. , . 
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-L -1 o 1 L 2L 3L 4L 

Figure 2. Illustrating example (c). 

We now anticipate the following criterion of theorem 1 in XIX,4. Let y be a continuous 
function with period L > 0 and normed by 1'(0) = 1. Then r is a characteristic function 
iff all the numbers Pr in (2.8) are ~O. In this case. {Pr} is automatically a probability 
distribution and (2.7) holds. 

Example. (c) Choose L > 1 arbitrary and let I' be the function with period 2L 
which for 1'1 < L agrees with the characteristic function fIJ of (2.5). Then I' is the 
characteristic function of an arithmetic distribution concentrated on the multiples of rrl L. 
In fact, for reasons of symmetry (2.8) reduces to 

(2.9) 

and a simple integration by parts shows that 

(2.10) Po = 11(2L), Pr = Lrr-2 (I-cos rrri L) ~ 0, r y!; O. 

We have thus obtained a whole family of periodic c~aracteristic functions whose graphs 
consist of a periodic repetition of a right triangle with bases 2nL -·1 < x < -2nL + 1 and 
intermittent sections of the ,-axis (see fig. 2). (We shall return tc? this ~mple in the more 
ge'leral setting of Poisson's summation formula in XIX,S.) ~ 

Curiosities. (i) Two distinct characteristic functions can coincide within a finite interval 

-a, a. This obvious corollary to examples (b) ·or (c) shows a marked contrast between 
characteristic functions and generating functions (or Laplace transforms). 

(ii) The .relation F * FI = F * F2 between three p;'obabili~Y distributions does not implr 
that Fl = F2• Indeed, with fJ defined by (2.5) we have tp9'l = fIJ'fJ2 for any two character-
istic functions that coincide within the interval -1, 1. In particular, we have tp'l. = 'PI' 
for each of the periodic characteristic functions of example (c). 

(iii) Even more surprising is that there exist two real cJvuacte"isti~ functwns 9'1 such that 
IflJ21 = fIJI > 0 everywhere. In fact, consider the characteristic function I' of example 
(c) with L = 1. Its graph is shown by the heavy polygonal line in fig. 3. We saw that the 
corresponding distribution attributes to the origin weight i. Eliminating this atom and 
doubling all the other weights yields a distribution with characteristic function 21' - 1. .fts 
graph is given by a polygonal Hne oscillating between ±l whose slopes are ±2. It follows 
that 2y(H) - 1 is a characteristic function whose graph is obtained from .that of I' by 

2 Statisticians and astronomers sometimes ask whether a given distribution has a normal 
component. This problem makes sense becau~ the characteristic function of a normal 
distribution ma has n~ zeros and therefore 91a * Fl = 91a * F2 does imply f{J) = f{J2 and 
hence, by the uniqueness theorem, FI = F2, 



XV;] UNIQUENESS. INVERSION FORMULAS 507 

A B c D E 

FiKure 3. 1/1ustratinK euriosity (iii). 

mirroring every secOnd triangle along the {-axis (fig. 3). Thus 1'(0 and 21'(10 - 1 are 
two real characteristic functions that differ only by their signs. (For a similar construction 
relating to fig. 2 see problem 9.) 

3. UNIQUENESS. INVERSION· FORMULAS 

Let F and G be two distributioRs with characteristic functions f{J and y. 
Then 

"'+ao 
(3.1) e-i{t<p(t) = J-ao eiC(z-d F{dx}. 

Integrating with respect to G{dt} one gets 

(3.2) . L:"' e-Il''I'<C> G{d~} = L:"' y(x-t) F{dx}. 

This identity is known as the PQI'sevai relation (which, however, can be 
written in many equivalent forms; we shall return to it- in chapter XIX). 

We shan use only the special case where G. == ~CI is the normal distribution 
with density an(a:t). Its characteristic function is given by r(t) = 

= ~ nala), and so (3.2) takes on the form 

(3.3) f+ao - f+ao (X - t) J-ao e-l(t<Pa)an(at) at = ~27r J-ao n a F{d~} 

which is the same as 

(3.4) 1 f+a) e-iCttp( {)e-taScll dt = f+ao ! n(t - X) F {dx}. 
~27T J-ao J-ao a a 

Surp.risingly many conclusions can be drawn from this identity. To begin 
with, the right side is the density of the convolution 9la * F of F with a 
normal distribution of zero expectation and variance a2

• Thus the knowledge 
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of cP enables us in principle to calculate the distributi()fls ma * F for all a. 
But 91a has variance a2

, and hence 91a * F ~ F as a ~ O. It follows 
that the knowledge of cP uniquely determines the distribution F. We have 
thus the important 

Theorem 1. Distinct probability distributions have distinct characteristic 
functions. 

Suppose then that we are given a sequence of probability distributions FrJ 
with characteristic functions CPn, such that CPn(') ~ cp{O for all {. By 
the selection theorem of VIII,6 there exists a sequence {nk} and a possibly 
defective distribution F such that Fnk ~ F. ' We apply (3.4) to the pair 
(CPnk' Fn,) and let k ~ 00. In the limit we get again the identity-(3.4) [the 
left side by bounded convergence, the right side because the integrand· 
'n«(t - x)a) vanishes at infinity]. But we have seen that for given cP the 
identity (3.4) determines F uniquely, and hence the limit F is the same for 
all convergent subsequences {Fn }. We have thus the 

, k 

Lemma. Let Fn , be a probability distribution with characteristic function 
CPn· If CPn({) ~ cp({) for all { then"thereexistsapossiblydefectivedistribution 
F such that Fn ~ F. ' 

Example., (a) Let U be a probability distribution with a real, non
negative characteristic function w. Let Fn = Un* so that CPn({) = wna)· 
Then cpna) ~ 0 except at the points where wa) = I, and by lemma 4 of 
section I, this ~et consists of all points of the form ±nA., where A. > Ois a 
fixed number. It follows that the left side in (3.4) is identically zero, and so 
un * ~ O. By symmetrization we conclude that Gn* ~ 0 for any prob
ability distribution G not concentrated at zero. ~ 

The next theorem states essentially that the limit F is defective iff the 
limit cP is discontinuous at the ori~in. 

Theorem 2.' (Continuity theorem.) In order thal a sequence {Fn} of 
probability distributions converges properly to a probability distribution F it 
is necessary and sufficient that the sequence {CPn} of their characteristic 
functions converges pointwise to a limit cP, and that cP is continuous in ,wme 
neighborhood of the origin. 

In this case cP is the characteristir function of F. (Hence cP is continuous 
everywhere and the convergence CPn ~ cP is uniform in every finite interval.) 

Proof. (a) Assume that Fn ~ F where F is a proper probability distri
bution. By the corollary in VIII,l the characteristic functions CPn converge 
to the characteristic function cP of F, and the convergence is uniform in 
finite intervals. 
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(b) A~sume <Pna) -- <pa) for all ,. By the preceding lemma the limit 
F = lim Fn exists and the identity (3.3) applies. The left side is the 
expectation of the bounded function e~t<pa) with respect to a normal 
distribution with zero expectation' and variance a-2, As a -+ 00 this 
distribution concentrates near the origin and so the left side tends to <p(O) 
whenever <p is continuous in some neighborhood of the origin. But since 

<Pn(O) = 1 we have <p(O) = 1. On the other hand, ~"j:; n(x) ~ 1 for all 

x, and so the right side is <F{ - 00, oo}. Thus F{ - 00, oo} > I, and hence 
F is proper. ~ 

Corollary. A continuous function which is the pointwise limit of a sequence 
of characteristic functions is itself 0. characteristic function. 

Example. (b) P()!ya's criterio,!., Let w, be a real evenfunction withw(O) = 1 

and a graph that IS convex in 0, 00. Then w is a characteristic function. 
Indeed, we saw in example 2(&) that,tl:le ,assertion is trl:le when the graph is a 
convex polygon. Now the inscribed polygons to a con.cave curve are convex, 
and hence the general assertion is an immediate consequence of the corollary. 
The criterion (together with a tricky proof) had a surprise'value in the early 

days. G. Polya used it in 1920 to prove that e-"'cX for 0 < ~ < ,I is a 
characteristic function of 'a stable distribution. (Cauchy is said t~ have been 

aware of this 'fact, but gave no proof.) Actually e-'~'cX is a characteristic 
function even for 1 < (X < 2, but the criterion breaks down. ~ 

We defer to chapter XIX a full use of the method developed for the proof 
of theorem 1. We use it here, however, to derive an important theorem 
which was used in numbers 5 and 8 of the table in section 2. For abbreviation 

we write<p E L iff l<pl is integrable over - 00, 00. 

Theorem 3. (Fourier inversion.) Let <p be thp characteristic function of 
the distribution F and suppose that <p E L. Then F has a bounded continuous 
density f given by 

(3.5) 

, Proof. Denote the right side in (3.4) by h(t). . Then fa is the density 
of the convolution Fa = 91a * F of F with the normal distribution 91a 

of zero expectation and variance a2
• As already mentioned, this implies 

that Fa -- F as a -+ O. From the representation on the left it is clear that 
la{t) -+ I(t) boundedly, where 1 is the bounded continuous function defined 
in (3.5). Thus for every bounded interval I 

(3.6) F.{I} = fr.(t) dt -+ Lf(x) dx. 
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But if I is an interval of continuity for F the leftmost member tends to 
F{I}, and so f is indeed the density of F. ~ 

Corollary. If gy> 0 then gy E L iff the corresponding distribution F has a 
bounded density. 

Proof. By the last theorem the integrability of gy entails that F has a 
bounded continuous density. Conversely, if F has a density f < M we 
get from (3.4) for t = 0 

(3.7) 1- f+«>gy(')e-tIJScS d, = 1 f+«>e-~3/(24S'f(x) dx < M. 
21T J-«> .J21T . a J-«> 

The integrand on the left is ~ 0 and if gy were not integrable'the integral 
would tend to 00 as a -+ O. .. 

Examples. (c) Plancherel identity. Let the distribution F have a density 
f and characteristic function gy. Then I9'F& E L iff f2 ELand in this case 

(3.8) 

Indee~, 19'12 is the characteristic function of the symmetrized distribution 
OF. If 1~12 E L it follows that the density 

(3.9) 'l(x) == L:i(Y+X)/{,) dy 

of OF is bounded and continuous. The left side in (3.8) equals ,,[(0), and 
the inversion formula (3.5) applied to Of shows the same is tr~e of the right 
side. Conversely, if r ELan application of Schwarz' inequality to (3.9) 
&haws that Of is bounded, and hence t~11 e L by the last corollary. We 
shall return to the relation (3.8) inXIX,7. 

(tl) Continuity theorem /or densities. Let ~n and cp be integrable 
characteristic functioD$ such that 

(3.10) 

By the last coroUary the corresponding distributions F" and F have 
bounded continuous densities I" and I, respectively. From the inversion 
formula (3.5) we sec that 

1/,,(x)-/(~)1 ~ (21Tr1 L:oo'fJna)-tp{{)1 dt· 

Therefore fn -+ f uniformly. (See also, problem 12.) 
(e) ln~ersion formula for distribution functions. Let F be a distribution 

with characteristic function 9', and let h > 0 be arbitrary, but fixed. We 
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prove that 

(3.11) F(x+h) - F(x) = _1 i+oo 
cp(O 1 - e-i~h e-i~x d{ 

h 27T -(Xl i{h 

whenever the integrand is integrable (for example, if it is O(If{2), that is, 
if /cpa)/ = O(lf{) as {-)o 00). Indeed, the It::ft side is the density of the 
convolution of F with the uniform distribution concentrated on -h,O; by 
the product rule the factor of e-i~x under the integral is the characteristic 
function of this convolution. Thus (3.11) represents but a special case 
of the general inversion formula (3.5). .. 

Note on so-callet! inversion formulas. Formula (3.11) is applicable only when I rp({>" I 
is ,integrable near infinity, but trite variations of this formula are generally applicable. 
For example, let Fa again denote the convolution of F with the symmetric normal dis
tribution with variance a2• Then by (3.11) 

(3.12) 

The statement that if x and x + h are points of continuity of F the right side tends to 
[F(x+h) - F(x)Jlh as a -- 0 is a typical "inversion theorem." An infinite variety of 
equivalent formulas may be written down. The trad,itional form consists in replacing in 

(3.12) the normal distribution by the uniform distribution in -/,1 and letting 1 -- co. 
By force of tradi~ion such inversion form(t1as remain: a popular topic even though they have 
lost much of their importance; their derivation from the Dirichlet integral detracts from 
the logical structure of the theory. 

From distributions with integrable characteristic functions we turn to 
lattice d,istributions. Let F attribute weight Pk to the point b + kh, where 
Pk ~ 0 and 2: Pk = 1. The characteristic function cp is then given by 

+ (Xl 

(3.13) cp({) = 2: Pkei(b+kh)', 
-Q() 

We suppose h > O. 

Theorem 4. If cp is a characteristic function of ' the form (3.13) then 
i 

(3.14) . 
h iTT

/
h 

, -Pr = - cp({)e-t(b+rh)~ d{. 
27T -rr/h 

Proof. The integrand is a series in which the factor of Pk equals ei(k-T)h,. 
Its integral equals 0 or 27T/h according as k ~ r or k = r, and so (3.14) 
is true. .. 

4. REGULARITY PROPERTIES 

The main result of this section may be summarized roughly to the effect 
tha.t the smaller the tails of a distribution F, the smoother is its characteristic 
function "F; conversely, the smoother F, the better will cp behave at 
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infinity. (Lemmas 2 and 4.) Most estimates connected with characteristic 
function, depend ~n an appraisal of the error committed in approximating 
eit by finitely many terms of its Taylor expansion. The next lemma states 
that this error is dominated by the first omitted term. 

Lemma 1.3 For n = 1,2, ... and t > 0 

't ('t)"-1 t" eit :....- 1 _ ~ _ ... _ I ~ _ • 

, 1! (n-l)! n! 
(4.1), 

Proof. Denote the expression within the ahsolute value signs by p,.(t). 
Then 

(4.2) Pl(t) = i j~teiz dx, 

whence Ipl(t)1 ~ t. Furthermore for n > 1 

(4.3) P.(t) = i £'p._.(x) dx, 

and (4.1) now follows'by induction. 

In the sequel F is an arbitrary distribution function, and qJ its character
istic function. For the moments and ~bsolute moments of F (when they 
exist) we write 

(4.4) 
f+ct) . 

. m" == J-c x" F{dx}, 

Lemma 2. If M" < 00, the nth ckrivative uf qJ . exists and is a cQntinuous 
func,ion given by . 

(4.5) 

Proof. The difference ratios of rp are given by 

(4.6) q.(t+h) - q.(t) = f+ct)eiCZ e
ib 

- 1 F{dx}, 
h J-.ct) II 

. . 
According to the last IeJIima the integrand is dominated by Ixl and so for 
n = 1 the assertion (4.5) follows by dominated convergence. The general 
case follows by induction. ~ 

Corollary. If m2 < ex;> then 

(4.7) rp'(O) == inrI' q/'(O) == -Int. 

J The S8I'De proof showS that when the Taylor development for either sin t or cos t 
is stopped after finitely many terms. the ~ror is of the same sien. and smoller in absolute 
value. titan the fost omitted term. For example. 1 - cos t ~t2/2. 
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The cont'erse4 of the last relation is also true = If gy" (0) exists, then 
m2 < 00. 

Proof. Denoting the real part of gy by u we have 

(4.8) 1 - u(h) '::;: i+(Xl 1 - cos hx. 2F{d} 
2 Z 2 lr X • 

h -(Xl h X 

Proof. The existence of u"(O) implies that u' exists near the origin and 
is continuous there. In particular, u'(O) = 0 because u is even. By. the 
mean value theorem there exists a (), such that 0 < () < 1 and 

(4.9) u(h) - 1 = u'(Oh) < u'(Oh) ,. 
hZ h - 8h" 

As h --+ 0 the right side tends to u" (0). But the fraction" under th~ iritegral 
in (4.8) tends tOt, and so the integral approaches 00 if m2 = 00. For a 
generalization see problem 15. ~ 

Examples. (a) A non-constant function 1p such that 1p"(0) = 0 cannot 
pe a characteristic function, since the corresponding distribution would 

have a vanishing second moment. For example, e-I'I
Ot 

is not a characteristic 
function when ex > 2. 

(b) The weak law of large numbers. Let Xl' X2 , • • • be independent random 
variables with E(X;) = 0 and the common characteristic function gy. Put 
Sn = Xl + ... + Xn; The average Sn/n has the characteristic function 
gyna/n). Now ~ear the origin gy(h) = 1 + o(h), and hpnce gy({/n) = ' 
= 1 + o{l/n) as n --+ 00. Taking logarithms we see, therefore, that 
gyn({/n) --+ 1. By the continuity theorem 2 of section 3 this implies that the 
distribution of Sn/n' tends to the distribution concentrated at the origin. 
This is the weak law <;>f large numbers. The simple and stra-ightforward 
nature of the proof is typical for characteFistic functions; a variant will lead 
to the central limit theorem.'') ~ 

Lemma 3. (Riemann-Lebesgue.) If g is i~tegrable and 

(4.-10, jim = I:oo ,i,' g(x) dx, 

hen y( {) --+0 as {--+ ± 00. 

4 The argument does not apply to the first derivative. The long outstanding problem 
offinding conditions for the existence of gJ'(O) is solved in section XVII,2a.' 

5 It was shown in VIl t7 that the weak law of large numbers can hold even when the 
variables X; have no expectatioru, The proof of the text shows the existence of a derivative 
~/ (0) is a sufficient cqndition. It is actually also necessary (see section XVU;2a). 
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Proof. The assertion is easily verified for finite step functions g. For an 
arbitrary .integrable function g and E > 0 there exists by the mean 
approximation theorem of IV,2 a finite step function gl such that 

(4.11) i+ocOC,g(X) - gl(x)1 dx < E. 

The transform (4.10) 1'1 of CI vanishes at infinity, and in consequence of 
the last two relations we have Ira) - rla)l < E for all {. Accordingly 
II'I ({)I < 2£ far a~ sufficiently large I {I, and as E is arbitrary this means 
that Yla) -. 0 as ,-+ ± co. ~ 

As a simple cerollary we let 

LemMa 4. If F hils II density f, 
. bl ~. . I' 1(11) mtegrll e .erzVll!lves J ••• , , 

then 'f({) -.0 as {-+ ± 00. 'If I has 
then l¥'a)1 = o(l{I-n) as I{I-+ 00. 

Proof. The first assertion is contained in lemma 3. 
an integration by parts soows that 

(4J2) 1 i+ 1Ifl 

.(t) == -:- ei{XI'(x) dx, 
I { -<iQ 

and hence l"a>L == 0(1,,-1), and 50 on. 

If I' is integrable, 

Appendix: The' Tayler Deveiopmeat of Characteristic Functions 

The in~uality (4.1) may K rewritten in the form 

(4.13) ( 
ilx (iIX)f'I-l) / Ilxl" . 

e"z eWe - 1 - TI - ... - (n-l)! ~ n! 

From this we get using (4.S) 

(4.14) . .,({+t) - 9'<') - - ,,'a) - ... - . ,,(_I)({) I t. t"-I 

I! . (n-I)! 
Itl" 

<M"-, . n. 

If Mil < - this inequality is valid for arbitrary', and t aad "rovides an upper boURd 
for the difference betWeea " .ad tllc first terms of its Taylor dev~lopment. In the special 
case when F is cpncentrated at the point 1 the inequality (4.14) reduces ti> (4.1). 

'Suppose now that. all moments e«ist and that' 

(4.15) Jim sup ~ M!/- == A < OJ. 
.... cg n . 

Stirliuc's r.rmula for n! then shows triviaUy that for It I < 1/(3).) the right side in (4.14) 
tends te ~o as n - 00. and so the Taylor series for f/J converges in some interval about 
C. It follows tbat q'J is analytic in a neighborhood of any point of the real axis, and hence 
completely determined by its power series about the origin. B,ut f/Jlnl(O) = (i)f'lm", and 
thus " is completely determined by the moments mn of F. Accordingly, if (4.15) holds 
then F is u12iquely determined by ils moments, and qJ is analytic in a neighborhood of the 
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real axis. This uniqueness criterion is weaker than Carleman's sufficient condition 
1 hl;l/ft ~ ex) mentioned in VII,(3.14), but the two criteria are not very far apart. (For 
an example of a distribution not determined by its moments see VII,3.) 

5. THE CENTRAL LIMIT THEOREM FOR EQUAL 
COMPONENTS 

Work connected with the central limit theorem has greatly influenced 
the development and sharpening of the tools now generally used in prob
ability theory, and a comparison of different proofs is therefore illuminating. 
Until recently the method of characteristic functions (first used by P. Levy) 
was incomparably simpler than the direct approach devised by Lindeberg 
(not to mention ether approaches). The streamlined modern version of the 
latter (presented in VIII,4) is not more complicated and has, besides, other 
merits. On the"other hand, the method of characteristic functions leads to 
refinements which are at present not attainable .by direct methods. Among 
these are the local limit theorem in this section as well as the error estimates 
and asymptotic ex.pansions developed in the next chapter. We separate the 
case of variables with a common distribution, partly because of its impor
tance, and partly to explain the essence of the method in the simplest situation. 

Throughout this section Xl' X2 , ••• are mutually independent variables 
with the common distribution F and chara,cteristic function cp. We suppose 

(5.1) E(X;) = 0, E(X~) = 1 

and put Sn = Xl + ... + Xn· 

Theorem6 1. The distribution of Snl".jn tends to the normal distribution 91. 
By virtue of the continuity theorem 2 in section 3 the assertion is equivalent 

to the statement that as n -- 00 

(5.2) for all {. 

Proof. By leinrna 2 of the preceding section has a continuous second 
derivative, and hence by Taylor's formula 

(5.3) cp(x) = cp(O) + xcp'(O) + lx2cp"(0) + 0(X2), x -- o. 
Choose { arbitrary and let x = 'In to conclude that 

(5.4) n -- 00. 

Taking nth powers we get (5.2). 

6 The existence of a variance is not necessary for the asymptotic normality of Sn. For 
the necessary and sufficient conditions see corollary 1 in XVII,5. , 
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It is natural to expect that when F possesses a density f, the density of 

Snl.J~ should tend to the normal density n. This is not always true, but 
the exceptions are fortunately rather "pathological." The following theorem 
covers the sittjations occurring in common practice. 

I 

Theorem 2. i If 1 cpl is integrable, then Snl.Jn has a density fn which tends 
uniformly to the normal density n. 

Proof. The fourier inversion formula (3.5) holds both- for fn and n, 
and therefore 

(5.5) 'fn(x) - n(x)' <.!.. roo ¢n(~) - e-i{~ d{. 
21T J-oo . .In 

The right side is independent of x and we have to show that it tends to 0 as 
n ~ 00. In view of (5.3) it is possible to choose 15 > 0 such that 

(5.6) for I"~ < b. 
We now split the integral into three parts and prove that each is < € for n 
sufficiently large. (1) As we have seen in the las~ proof, within a fixed 
interval - a < , ~ a the integrand tends uniformly to zero and so the 

contribution of -a,·a tends to zero. (2) For a < let < b~ the integrand 
is < 2e-tC! and so the contribution of this interval is < € if a is chosen 
sufficientJ.y large. (3) We know from lemma 40(section 1 that \ cp{') 1 < 1 
fo~ ,:;I:- 0, and from lemma 3 of the l~st section that q>(') ~ 0 as ",-. 00. 

It follows that the ~imum of 1 cp(') , fC1r -I" ~ lJ equals a number tz < 1. 

The contrib:u~ion of the intervals '" > oJ.~ to the. integral. (5.5) is then. less 
thw . . 

(5.7) 

Th~first integral:equaJs the-\ptegral ~f JIt 19'1, and-so the quantity (5.7) 
tends to zero. . ~ 

Actually the proof yicWs? the somewhat stconger result that if 19'1r E L for some integer 
r then In -+ n wiifonrrly. OIl the other haad .• the corollary to theorem 3.3 shows that if 
no I"lr isinteerable, tben every f. is unbounded. ~use 'of Jhei,r curiosity value w~ 
insert examples showini that such pathologies can in fact. occur. 

Examples. (0) For :J: > . .() and p ~. 1 put 

1 
(5.8) . u,,(z) - I.~ . 

z 06 Pz 

7 The only change is that in (5.7) the factor '1ft-I is replaced by '1~r, and " by (pr. 



XV.5 CENTRAL LIMIT THEOREM FOR EQUAL COMPONENTS 517 

Let g "be a density concentrated on 0,. 1 such that g(x) > u2)(x) in some interval 0, h. 

There exists an interval 0, c5 in which 112) decreases monotonically, and within this interval 

(5.9) g"*(x) ~ f.'U.(X- y) u.(y) ely > x u!(x) = u .. (x). 

By induction it follows that for n = 2k there exists an interval 0, hn in which gn* > lIn2)' 
and hence gn*(x) -- 00 as x -- 0+. Thus no convolution gn* is bounded. 

(b) A ,variant of the preceding example exhibits the san;te pathology in a more radical 
form. Let v be the density obtained by symmetrization of g and put 

(5.10) f(x) = i[v(x+l) + v(x-l)]. 

Then f is an even probability density concentrated on -2,2, and we may suppose that 
it has unit variance. .The analysis of the last example shows that v is continuous except 
at the ori~in, where, it is unbound~d. The same'statement is true of all conv?lutions vn * 
Now rn*(x) is a li~~r\combination of values v2n*(x+k) with k = 0, ±1, ±2, ..• , 
±n, and is therefore unbounded at all these points. The density of the normalized sum 

S2ntV2n of variables Xi with the density f is given by hn(x) = V2nrn*(xV2n). It is 

continuous except at the 2n + 1 points of the form k/V2n (k = 0, ±1, ... , ±n), 
where it is unbounded. Since to every rational point t _ there correspond infinitely many 

pairs k, n such that k/V2n = t it follows that the distribution of Sn/v; tends to m, but 
Jhe densities fn do not converge at any rational point, and the sequence {In} is unbounded 
in every interval. " 
W~~~~ ~ 

To round off the picture we turn t<? lattice distributions, that is, we suppose 
that the variables ~i' are restricted to values of the form b, b±h, b±2h, ..•. 
We assume that h is the ,span of the distribution F ~ tha~ is, h is the 
larges~ positive number with the stated property. Lemma 4 in section 1 states 
that 1911 has period 27T/h, and hence 1911 is not-integrable. Theorem 2, 
however, has a perfect analogue for the weights of the atoms of the distri-

bution of Sn/Jn. All these a~oms are",among the points of the form x = 
(nb+kh)/.j-;', where k = 0, ± I, ±2, . . .. For such x wepu~ 

(5.11) P.Cx) = p(~ .~ xl 
and we leave Pn(x) undefined for all other x. In (5.12) therefore x IS 

restricted to the smailest lattice containing' all atoms of Sn/.j;'. 

Theorem 3. If F is a lattice distribution with span h, then as n - 00 

(5.12) 

uniformly in x. 

.j" Pn(x) - n(x) ~ 0 
h 
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Proof. By (3.14) 

(5.13) .J;' P1I(x) = ~ iV~11lh cpn ( '_)e-ixl; d,. 
h 27T -v 1I11lh-J n 

Using again the Fourier inversion formula (3.5) for the normal density n 
we see that the left side in (5.12) is dominated by 

(5.14) _ r.p1l -::. _ e-h d, + e-1{ d,. i
V

;11lh '( , ) 2 f. % 

-v 1I11lh .J n '" > V';11lh 

It was shown in the proof of theorem 2 that the first integral tends to zero. 
The second integral triviaIJy tends to zero and this completes the proof. ~ 

6. THE LINDEBERG CONDITIONS 

We consider now a sequence of independent variables Xk such that 

(6.1) 

We denote the distribution of Xk by Fk, its characteristic function by lPk' 
and as usual we put 8 11 = Xl + ... + X1I and s~ = Var (8ft). Thus 

(6.2) s; = u~ + ... + u!. 
We say that the Lindeberg condition is satisfied if 

1 n J, 
-2 1 x2 Fk{dx} ~ 0, 
S 11 k=l /z/ > ts,. 

(6.3) n~ 00, 

for each fixed t > O. Roughly speaking, this condition r.-equires that the 
variance ui be due mainly to masses in an int~rvaJ whose length is small 
in comparison with s 11. It is clear that uUs! is less than t 2 plus the left 
side in (6.3) and, t being arbitrary, (6.3) implies that for arbitrary € > 0 
and n sufficiently large 

(6.4) k . 1, ... , n. 

This, of course~ implie~ that Sn ~ 00. 

The ratio a./sn may be taken as a measure for the contribution of tl)e 
component Xn to the weighted sum 8 nls,.. and so (6.10) may be described 
as stating that asymptotically 8 n/s" is the sum of "many indipidua/ly 
negligible components." The Lindeberg condition was introduced in VIII, 

, (4.15) and the following theorem coincides with theorem 3 of VIII,4~ Each 
proof has its advantag~s. The present one permits us to prove that the 
Lindeberg conditions are, in a certain sense, necessary; it leads also to the 
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asymptotic expansions in chapter XVI, and to convergence theorems for 
densities (problem 28). 

Theorem 1. If the Lindeberg condition (6.3) holds, the distribution of the 
normalized sums 8 n /s" tends to the standard normal distribution m. 

Proof. ~hoose ,> 0 arbitrary, but fixed. We have to show that 

6.5) q;iUslI) ... qJnCUsn) -+ e-i( 
-

Since 9?~(O) = 0 and I qJ;(X) I ~ ": for all x it follows from the two-term 
Taylor expansion and (6.4) that for n sufficiently large 

(6.6) 

We show that if this is true (6.5) is equivalent to 

n 
(6.7) 1 [fPkC'/Sn) - 1] + ,,2 -+ o. 

k-1 

In fact, we saw in (2.4) that e"l:-l is the characteristic function of a compound 
Poisson distribution and therefore 1e"1:-11 =s; 1. . Now for any. complex 
numbers such that \tlkl ~ 1 and Ibkl ~ 1 . 

n 

. (6.8) ·Ia ... II - b ... b I/''''' la - b I 
1 " 1 ".::::ak k ~ 

as can be seen by induction from the identity 

Xl X2' - 11111" = (Xl - 1I1)X" + (xi - 111)111· 

F or any ~ > 0 we have Ie- - 1- zl < ~ Izi if Izl is sufficiently small, 
and hence we get from (6.6) for large n 

I 

n . 

(6.9) leI(".CCI •• )-l] - 9?lC'lsn)· •. qJ"C'/sn)1 ~! le"·CC/,,.'-l_ 9'k(t/S,,)I 
k-1 

Since d is arbitrary this means that the left side tends to zero and hence 
(6.5) holds iff ('.7) is true. . . 

Now (6.7) may be rewritten in the form 

(6.10) 

From the basic inequality (4.1) it follows that for Ixi ~ tS ll the integrand is 
dominated .by IxUsnls < t,Sx"/s! and for Ixi > tSn by X2,2/S!. The left 
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side in (6.10) is therefore in absolute value 

(6.11) < t,3 + '2$;;21 l' -x2Fk{dx}. 
. k-l /:z:/>t8tl ' 

In consequence of the Lindeberg condition (6.3) the second' tenn tends to 
zero, and as t can be choseri arbitrarily small it follows that (6.10) is true. ~ . 

Illustrative examples are given in VIII,4, in problems 17-20 of VIII,10, 
and in problems 26-27 below. 

The next t~eorem contains a partial converse to theorem .I, 

Theorem 2. Suppose that Sn ~ 00 and un/sn ~ 0,' Then the Lindeberg 
condition (6.3) is necessary for the convergence of the distribution of 8 n/sn 
to 91. 

\V,:,rning. We shall presently see that even when the Lindeberg condition 
fails the distribution of ,Snlsn can tend to a normal distribution with 
variance < 1. ' . 

Proof. We begin by showing that (6.4)hol~~. By assumptio'n there exists 
a " such that un/sn < € for n >". For ,,< k < n we have then 
uklsn :< uklsk < €, and the ", ratios uklsn 'with k :5:'" . tend to 0 because 
Sn -+ 00. 

Assume then that the distribution of 8 nlsn tends to 91, that is·, assume' 
(6.5). We saw in the preceding proof that whet;t (6.4) holds', this relation 
im,plies (6.10). Since cos z - I + tZ2 > 0 the real part of the integrand is 
non-negative and so the real part ,of the left side is ' 

(6.12) 

> i [ (~~2 _ 2 ) Fk{dx} ~ (1,2 .~ 2t- 2) ~ I r x2Fk{dx}. 
k=l Jlzl>t8" n Snk=l J,:z:I>t8n ' 

Thus for arbitrary "andt the right side tends to zero, and hence, (6.3) 
is true. . ~ 

The condition ·un/sn -+ <> is not strictly' necessary as can be seen in the 
special case wh~re all the distributions Fk are normal: the. Uk may then be 
chosen ar:bitrarily and yet the distribution of 8 n/sn coincides with m. (See 
also problem 27.) However, the c'ondition (J'~/sn is ,a ,natural way to ensure 
that the influence of the individual terms Xk is in the limit negligible~ and 
without this condition there i~ a radical change in the character of the 
problem .. Even if un/sn -+ 0 and sn -+ 00 the Lindeberg condition is. not 

, necessary in order that there exist some nonning con~tants an such that 
the distribution of Sn/an tends to 91. The following example will Glarify 
the situation. 
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Example. Let {Xn} be a sequence of variables satisfying the conditions 
of theorem 1 including the no~ng (6.1). Let the X~ be independent of 
each other and of the· Xk and such that -

<Xl 

(6.13) 1 P{X~ ¥= O} < 00. 
n=l 

Put Xn = Xn + X~ and denote the partial sums of {X'} and {Xn} by _ n 

S~ aqd Sn. By the first Borel-Cantelli lemma with probability one only 
finitely many X~ will differ from 0, and hence with probability one S~ = 
= O(sn)' It follows easily that the distributions of Snlsn and Snlsn have 
the Same asymptotic behavior. Thus the distribution of 8nlsn tends to m 
even though s~ is not the variance of 8n-; in fact, the Xn need not have a 
finite expectation. If E(8n) = b arid E(8~) = s~ < 00, the distribution of 
8n/sn converges only if sn/Jn tends to a limit' p. In this case the limit 
distribution is nonnal with a variance p < I. ~ 

I 

This example shows that the partial sums Sn can be asymptotically 
nonnally distributed even when the components Xn have no expectations, 
and also that the variances are not always the appropriate nonning constants. 
We shall not pursue this topic here for two reasons. First, the whole theory 
will be covered in chapter XVII. More importantly, generalizations of the 
above theorems provide excellent exercises, and problems 29-32 are designed 
to lead by easy stages to necessary and sufficient conditions for the central 
limit theorem. 

7. CHARACTERISTIC FUNCTIONS IN 
HIGHER DIMENSIONS 

The theory of characteristic functions in higher dimensions is so closely 
parallel to the theory in .'1V. that a systematic exposition appears unnecessary. 
To describe the basic ideas and notations it suffices to consider the case of 
two dimensions. Then X stands for a pair of two real random variables Xl 
and X 2 with a given joint probability distribution F. Vv'e treat X ~ a rolV 
veclor with components Xl and X2 ; similarly, in F(x) the variable x 
should be interpreted as row vector with components Xl' x 2• On the other 
hand the variab.le , of the corresponding characteristic function stands for a 
column vector ,= aI' '2). This convention has the advantage that x, 
now denotes the inner product x, = 'IXI + '2X~. The characteristic functioll 
cp of X (or of F) is defined by 

(7.1) 

This definition is formally the same as in one dimension, but the exponent 
has a new interpretation and the integration is with respect to a bivariate 
distribution. 
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The main properties of bivariate characterIstic functions are self-evident. 
For example, the choice '2 = 0 reduces the inner product x, to Xl '1> 
and hence cpal, 0) ,represents the characteristic function of the (marginal) 
distribution of Xl' F:or any fixed choice of the parameters '1' '2 the linear 
combination 'lXl + '2X2 is a (one-dimensional) random variable and its 
characteristic function is given by 

(7.2) 

here '1 and '2 are fixed and;' serves as independent variable. In particular, 
the characteristic function of the sum Xl + X2 is given by cp(;', A). In 
this manner the bivariate characteristic function yields the univariate 
characteristic function of all linear combinations 'lXl + '2X2' Conversely 
if we know the distributions of all such- combinations, we can calculate all 
expressions CP(;"l, ;"2), . and hence ,the bivariate characteristic function. s 

The next example shows the usefulness and flexibility of this approach. 
It' uses the notations introduced in III ,5. 

-Example. (a) Multivariate normal characteristic functions. Let X = 
= (Xl' X2) (thought of as a row vector!) have a non-degenerate nonnal 
distribution. For tlle sake of simplicity we suppose that E(X) = G and denote 
the covariance matrix E(XTX) by C. Its elements are Ckk = Var (Xk) and 
e12 = C2l = Cov (Xl' X2)· For fixed '1 and '2 the linear combination 
'X = ;lXl + '2X2 has zero expectation and variance -

(7.3) 0'2 =,TC, = C11 ,: + 2C12'1'2 + C22'~' 
With ;. as independent variable; the characteristic function of the variable X, = 'lXl + '2X2 is therefore given by e-!u2

;.2. Accordingly, the bivariate 
characteristic function of X = (Xl' Xi) is given by 

(7.4) 9?C') = e-l{Tc~ . 

This formula holds also in r dimensions except .that then ,T C, is a quadratic 
form in r varialJles '1" ... , 'r· Thus (7.4) represents the characteristic 
function of the r-dimensional normal distribution with zero expectation and 
covariance matrix C. 

I t is occasionally desirable to change both pairs (Xl' X2) and ('1' '2) 
to polar coordinates, that is, to introduce new variables by 

(7.5) Xl = R cos 0,. X2 = R sin 0, '1 = P cos lX, '2 = P sin ~. 

8 This proves incidentally that a probability distribution in jt2 is uniquely determined 
by the probabilities o[all haIJ-planes. This fact (noted by H. Cramer and H. Wold) does not 
seem to be accessible by elementary methods. For an application to moments see probl~m 
21. 
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(For such transformations, see 111,1.) Then 

(7.6) 

but it must be borne in mind that this is not the characteristic function of the 
pair (R,0); the latter is given by E(ei(~lR+~20». 

Examples. (b) Rotational symmetry. When the pair (Xl' X2) represents 
a "vector issued in a random direction" (see 1,10) the joint distribution of 
(R,0) factors into the distribution G of R and the unifonn distribution 
over -7r < () < 7r. The expectation in (7.6) is then independent of ex and 
takes on the fonn 

(7.7) cpal' '2) . (27r)-1 ra) G{dr} r11 

eiPrCOS9d(). 
Jo J-lT 

The change of variable cos () = x reduces the inner integral to that discussed 
in problem 6, and thus 

(7.8) 

where 

(7.9) Jo(x) = fo(lx) = :z - . • oc (_1)k (X)2k 
k=O k!k! Z 

(The Bessel function 10 was introduced in 11,7.) 
A unit vector in a 'random direction has tlie distribution G concentrated 

at the point l. Thus J~(.J,~ + ';) is the characteristic function of the 
resultant of n independent unit vectors issued in random directions. This 
resuh was derived by Raleigh in connection wit4 random flights. 

(c) We consider the special case where (Xl' X2) has a bivariate density 
f given by 

(7.10) f(x l , x2) = (27r)-la2e-aT, r = .Jxi + x; 

where a is a positive constant. Then (7.8) takes on the form9 

(7.11) Tal' '2) = a2 La) e-aTJo(pr)r dr = (1 + p2ja2)-tt. 

(d) Rotational symmetry in .'1P. E;x.ample (b) carries over to three dimen
sions except that we have now two polar angles: the geographic longitude 

9 Substituting for Jo its expansion (7.9) one gets 

(2k+ 1)!. ( p \21.: (_ ~_) (p2)1.' IPal , ~2) = 1 k!k! (-1)'" 2a) = 1 k a2 

which is the binomial series for (I + p2/a2)-~. 
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wand the polar distance e. The inner integral in (7.7) takes on the form 

(7.12) 

1- iTT dwf,TT eirp coso sin e de = If,7t12(eirp coso + e-irp COSo) sin () de 
41T -TT 0 0 

where p2 = ,~ + ,~ + ,~. The substitution cos () = x reduces this 
expression to (rp)-l sin rp, and so (7.8) has the analogue 

(7.13) 

In particular, for a unit rando~ vector the integral reduces to p-l sin p. 
Letting '2 = '3 we see that the characteristic function of the Xl-component 
ofa unit random vector is given by ';-1 sin '1. We have thus a new proof for 
the fact established in 1,10 that this component is distributed unifonnly over 

-1, 1. ~ 

It may be left to the reader to verify that the main theorems concerning 
characteristic functions in one dimension carry over without essential 
change. The Fourier inversion theorem in :R,2 states that if cp is (absolutely) 
integrable over the entire plane, then X has a bounded continuous density 
given by 

(7.14) , 

Example. (e) BivaYiate Cauchy distribution: When the inversion fonnula 
(7.14) is applied to the density f in example (c) it is seen upon divis,ion by 

1(0,0) =(217')-1 a2 .that 

(7.15) 

represents the characteristic function of a bivariate density g denned by .. 

(7.16) 

It follows that this density shares the main properties of the ordinary Cauchy 
density. In particular, it is strictly s'able: if X(1), ... ,X(n) are mutually 
independent vector variables with the density (7.16), their average 
(X(1)+ .. ·+X(n»/n has the same density. ~ 
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We begin by a famous theorem conjectured by P. Levy and proved in 
1936 by H. Cramer .. Unfortunately its proof depends on at:la1ytic function 
theory and is therefore not quite in line with our treatment of characteristic 
functions. 

Theorem 1. Let Xl and X2 be independent random variables whose sum is 
normally distributed. Then both Xl and X2 have normal distributions. 

In other words, the normal distribution cannot be decomposed except 
in the trivial manner. The proof will be based on the following lemma of 
some independent interest. 

Lemma. Let F be a probability distribution such (hat 

(S.l) f('f}) = L:a) e,,2r&2 F{dx} < 00 

for some 'f} > O. The characteristic fUl1cti01.l cp. is then an enti;e function 
(definedfor all complex ,). If cp(') ~ 0 for all complex " then F is normal. 

Proof of the lemma. For all complex , and real x, 'f} one has 
Ix'i < 'f}2X2 + 'f}-2 1,,2 and so the integral defining cp converges for all 
complex , and 

(S.2) 

This means that cp is an entire function of order < 7., and if such a 
function has no zeros, then log cpa) is quadratic polynomial.10 Hence, 
cpa) = e-!a~2+ib~ where a and. b are (possibly complex) numbers. But cp 
is a characteristic function and hence -icp'{O) equals the expectation, and 
- cp" (0) the second moment of the distribution. It follows that b is real 
and a > 0, and so . F is indeed normal. ~ 

Proof of theorem 1. Without loss of generality we may assume the variables 
Xl and X2 centered so that the origin is a median for each. Then 

(8.3) P{IX1 + X 2 1 > t} > !P{IX1 1 > t}. 

Now the usual integration by parts [see V,6] shows that 

(S.4) f('f}) < 'f}2-J.a) X' e,,2 X 2[1 - F(z) + F( -x)] dx, 

and therefore the functions fk corresponding to Xk satisfy the inequalities 

* This section treats special topics and is used only in problem 27. _ 
10 See, for example, E. Hille, Analytic function theory, Boston, 1962, vol. II, p. 199 

(Hadamard's factorization theorem). 
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her;) < 2f(r;) < 00. Since fP1(O fP2(O = e--~a~2+ib{ neither fP1 
can have a zero, and so Xl and X2 are normal. 

XV.9 

nor fP2 
~ 

v.,'e jurn to a proof of the following .chara.cterization of the normal distri
bution enunciated and discussed in I II ¥4. 

Theorem 2. Let Xl and X2 be independent z:ariables qnd 

(8.5) 

If also Y 1 and Y 2 are independent of each other then either all four variables 
are normal, or else the transformation (8.5) is trivial in the sense that either 
Y1 = aX1 and Y2 = bX2 or Y1 = aX2 and Y2 = bX1. 

Proof. For the special case of variables Xi with continuous densities 
the theorem was proved in III,4. The proof depended on the general solution 
of the functional equation 111,(4.4), and we shall now show that an equation 
of the same type is satisfied by the characteristic functions fPj of the variables 
Xj. We show first that it suffices to consider real characteristic functions. 
This argument illustrates the usefulness of theorem 1. 

(a) Reduction to symmetric distributions. Introduce a pair of variables 
X; and X;- that are independent of each other and of the Xi) and distrib
uted as -Xl and -X2 , respectively. The linear transformation (8.5) 
changes the symmetrized variables °Xi = Xi + Xj - into a pair (oy l' oy 2) 

of symmetric independent variables. If the theorem is true for such variables 
then °Xi is normal, and by theorem 1 this implies that also Xi is normal. 

(b) The functional equation. Because of the assumed independence of 
y 1 and Y 2 the bivariate characteristic function of (Y l' Y 2) must factor: 

(8.6) E(ei(~l Y1+{2Y 2» = E(ei<l YI )E(ei~2Y2). 

Substituting from (8.5) we see that this relation implies the following 
identity for the characteristic functions of Xl and X2 

(8.7) CP1 (all ~1 +a21 ~2) fP2(a 12'1 +022'2) = 

= 1'1 (all '1) fP2(a12~1) fP1 (021 '2) fP2(a22'2). 

This identity coincides with III,( 4.4) except that the roles of 012 and 021 are 
interchanged. By assumption the fP; are real and continuous, a~d as in 
I1I,4 it is seen that all O;k may be assumed to be different from zero. By 
the lemma of III,4 therefore fP;(O = e-a ;(2, and so the Xi are normal. ~ 

9. PROBLEMS FOR SOLUTION 

1. From the inequality (1.7) conclude (without calculations) that for every 
characteristic function q; 

(9.1) I q;a)12 :s;; 1 _ 1 - 1:(2')1' < e-!{1-Iq:(2C'I. 



XV.~ PROBLEMS FOR SpUrflON 527 

2. If q; = u + iv is a characteristic function show that 

(92) u2a) ~ 1(1 +u(2,». 

This in turn impJies 

(9.3) 

Hint: For (9.2) use Schwarz' inequality, foi-(9.3) consider characteristic functions 
of the form eia.,<p( '). , 

3. With the same notations 

(9.4) 

The inequality (1.7) is contained herein when '2 = - '1' 
4. From elementary formula~ pi-ove (without explicit integrations) that the char

acteristic function <p'of the density (1/11-)[(1 - cos x)/z2] differs only by a constant 
factor from 21'1 - 1,+11 - 1,-11. Conclude that '<pal == 1 - 1'1 for 1,1 ~ 1. 

5. From the characteristic funCtion of the density iae-a/:I:/ derive a new char
acteristic function by simple differentiation with respect to a. Use the result 
to show that the co})volution of the given distribution with itself has density 
!ae-a/:I:/(1 +a Ixl). 

6. Let [ be the density concentrated on -I, 1 and defined by 

(9.5) [(x) =_;=1== 
1TvI - x 2 

Show that its characteristic function is given by 

(9.6) 
00 (_1)k 

<p(,) = K~O k! k! (t,)2k = Jo(')· 

Note that Jo(') = IoU') where 10 is the Bessel function defined in 11,(7.1). 
Hint: Expand ei,x into a power series. The coefficient of ,n is given by an integral, , 
and (9.6) can be verified by induction on n using an integration by parts. 

7. The arc sine distribution with density 1/[1T v' x(1-x)] concentrated on 0, 1 
has the characteristic function ei{/2Jo(,j2). Hint: Reduce to the precedin~ problem. 

8. Using the entry 10 of the table insection 2 show that 2~x' (sinh X)-l is a 
density with ch~racteristic function 2/[1 + cosh (1T')]. Hint: Use problem 6 
of 11,9. 

9. Let Y L stand for the characteristic function with period 2L described in 
example 2(c). Show that 2Y2L - YL is again a characteristic function of an 
arithmetic distribution. Its graph is obtained from fig. 2 by reflecting every second 
triangle about the ,-axis. 

lOY Let X and Y be independent random variables with distributions F 
and G, and characteristic functions <p and y~ respectively. Show that thr 
product XY has the characteristic [unction 

(9.7) f_:yax ) F{dx} = f:oo<p(,X) G{dx}. 

11 Combining (9.7) with the theorem in the footnote to example V,9(6) one gets the follow
ing criterion due to A. Khintchine. A function w is the charac!eristic function of a unimodal 
distribution iff wa) = fA <pax) dx where rp is a charaCi'eristic function. 
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11. If {9'n} i$ a sequence of characteristic functions such that 9'na) -+ 1 for 
-6 < , < 6, then 9'na) -+ 1 for all ,. 

12. Let g be an even density with a strictly positive characteristic function y. 
Then 

(9.8) (x) = g(x)[1 - cos ax) 
ga 1 - I'(a) 

is a probability density with characteristic function 

(9.9) ( Y) = 2ya) - ya+a) - ya-a) 
Ya !> 2[1 -:- yea)] . 

As a -+ 00 we have Ya -- I' but not ga -+ g. This shows that in the continuity 
theorem for densities the condition (3.10) is essential. 

13. If I' is a real characteristic function and I' ~ 0, there exist even densities 
gn with strictly positive characteristic functions Yn such that Yn -+ y. Hint: 
Consider mixtures (1 - £)G + £F and convolutions. 

14. If I' is a characteristic function such that I' ~ ~ and yea) =JI! 1, then 
(9.9) defines a characteristic function. Hint: Use the preceding two problems. 

15. Generalization o[ the converse to (4.7). Considering the distributions 
(l/m2k)x2k F{dx} (when they exist) prove by induction: the distribution F possesses 
a finile moment m2T iff the 2rth derivative of the characteristic function 9' exists 
at the origin. 

16. Let [ be a probability density with a positive and integrable characteristic 
function. Then [ has a unique maximum at the origin. If a seconrt derivative 
[N exists, then 

(9.10) 
x 2 

[(0) > [(x) > [(0) - :2 [H(O); 

analogous expansions hold for the first 2r terms of the Taylor development. 
[Note that [ is even and hence [(2k+1) (0) = 0.] 

17. Let 9' be a real characteristic function with continuous second derivative 
9'''. Then [unless 9'( ') = 1 for all '1 

(9.11) 
] - 9'a) 2 

V,a) = ~ i 9'''0)1 

is a characteristic function belonging to an even density 12 defined for x > 0 by 

(9.12) 2 foc 19'1/(0)! x [1 - F(t)] dt. 

Generalize to higher moments. 
18. Let [ be an even density with characteristic function 9'. For x > 0 put 

( ) _ f oc f(s) ds g x - , 
s 

x 
(9.13) g( -x) = g(x). 

Then g is again an even density and its characteristic function is 

(9.14) y( ') = ~ fo' <p(s) ds. 
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19. Let r be a characteristic function such that lim sup Ira)1 = 1 as ,-+ 00. 

The corresponding distribution F is purely singular (with respect to Lebesgue 
measure). 

20. Suppose that Ck > 0, 2 Ck = 1 but L Ck2k = 00. Let u be an even 
continuous density concentrated on -1, 1 and let w be its characteristic function. 
Then 

(9.15) 

defines a density that is continuous except at the origin and "has the characteristic 
functio!1 

(9.16) 

Show that I/pln is not integrable for any n. Hint: For x 7f!:. 0 the series in (9.15) 
is finite. Use the trivial inequality (L CkPk)n > L cZp~ valid for Pk > O. 

21. Moment problem in jt2. Let Xl and X2 be two random variables with a 
joint distribution F. Put Ak = E(IX1Ik) + E(IX21k). Show that F is uniquely 
determined by its moments if lim sup k-1 A~/k < 00. Hint: As pointed Qut in the 
footnote 8 to section 7 it suffices to prove that the distributions of all linear 
combinations alXl + a2X2 are uniquely determined. Use the criterion (4.15). 

22. Degenerate bivariate distributions. If /P is a univariate characteristic function 
and aI' a2 arbitrary constants, show that /p(a1 '1 +a2'2) as a function of '1' '2 
represents the bivariate characteristic function of a pair (Xl' X2) such that identically 
a2X1 = a 1X2• Formulate the converse. Consider the special case a2 = O. 

23. Let X, Y, U be mutually independent random variables with characteristic 
functions /p, y, w. Show that the product /p( ~l) ya2) wal + '2) represents the 
bivariate characteristic function of the pair (U + X, U + V). Hint: Use a tri-
variate characteristic function. . 

Examples and complements to the central limit theorem 

24. Prove the central limit theorem 4 of VIJI,4 for random sums by the method 
of characteristic functions. 

25. Let Xk have the density e-xx>ac1jI'(ak) whete ak - 00. The variance of 
Sn is s~ = (a1 + ... +an). Show that the Lindeberg condition is satisfied if 

n 

s:-2 '" a2 
- O. n £.. k 

k=l 

26. Let P{Xk = ± I} = (k - 1)/2k and P{XTc = ± v'k} = IJ2k. Show that 
there do not exist norming constants an such that the distribution of S,Jan 

tends to 91. Hint: Pass to exponentials using 

,2 ( ,\ k - 1 ~2 
1 - - < 'P', -) < 1 - ---'- -n -" - "k 2 • 

02 .. Ci". ., an 

27. If the distribution of Sn/s-r. tends to ':n, DU: cr.n./:"n -p > 0 then the 
distribution of X.Jsn tends to a normal distribution with variance ;/t', Hint: By 
the Cramer-Levy theorem in section 8 jf ~1 = U * V, then both U and V are 
normal. Use convergent subsequences fOf the distributions of X,js:, ar.c. Sn_dsn. 
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28. (Central limit t~eorem for densities.) Show that theorem 2 of section 5 
gene~a.Iizes to ~uences with variable de~s~ties fk .pro~ided sufficient uniformity 
condItIons are Imposed on the charactenstIc functIons. It suffices, for example, 
that the third absolute. moments remain bound~ and that the fk have derivatives 
such that If~1 < M for all k. . 

29. (Central limit theorem for triangular arrays.) Foreach n let X1•nt ••• ,Xn n 

be n independent variables with distributions Fk,n' Let Tn = X1•n + ... + Xn,~. 
Suppose that E(Xk , n} = 0 and E(T!} = 1, and that 

(9.17) i [ x2 Fk.n{dx} -+ 0 
k-l J'zl>t 

for each t > O. Show that the distribution of Tn tends to 91. Hint: Adapt the 
proof of theorem"! in section 6. 1 

. . 

Note. The Lindeberg theorem represents the special case Xk,n = Xklsn and 
Tn = Snlsn. Then (9.17) reduces to the Liogeberg condition (6.3). For triangular 
arrays see VI,3. . _ 

30. (Truncation.) Let {Xk } be a sequence of independent variables with 
symmetric distributions. For each n. and k :s;; n let X k • n be the variable obtained 
by truncating X k at ±a,.. Suppose that 2~-1 P{lXkl > an} -0 and that (9.17) 
holds. Show that the distribution of Sn/an tends to 91 .. 

31. (Generalized central /imi~ . theorem.) Suppose the distributions Fk · are 
symmetric and that lor every t > 0 

i f. l-,,{dx} -- 0, 
k-l Izi >14" 

(9.18) 

Prove that the distribution of Sn/On tends to 91 (a) using the last two problems, 
(b) directly, by adapting the proof of theorem 1 in section 6.12 

32. (Continuation.) The condition of symmetry may be replaced by the weaker 
--.ondition 

(9.19) .:t . f x Fk{dx} - O. 
k-l J 1«1<0" 

33. In'order that theieexist nonning constants an for which the conditions 
(9.18) are satisfied it is necessary and sufficient that there exi~ts a sequence of 

. numbers tn - 00 such thi( 

f f Fk{dx} -0, 
k-l J Izi <'It 

In this case one can take 

a~ =0: i f x2 Fk{dx}. 
k=l J Izl<l" 

(This criterion usually can be applied without difficulty.) 

12 Theorem 2 generalizes similarly but requires a different proof. 



C HAP T E R X V 1* 

Expansions Related to 

the Central Limit Theore.m 

The topics of this chapter are highly technical and may be divided into 
two classes. One problem is to obtain estimates for the error in the central 
limit theorem and to improve on this result by providing asymptotic expan
sions. A problem of an entirely different nature is to supplement the central 
limit theorem for large values of the ind.ependent variable, where the 
classical formulation becomes empty. 

In order to facilitate access to important theorems, and to explain the 
basic ideas, we separate the case of identically distributed variables. Section 
7 on large deviations is independent of the first five sections. The theory 
developed in these sections depends essentially on two techniques: direct 
estimation of absolutely convergent Fourier integrals, and smoothing methods. 
At the cost of some repetitions and some loss of elegance we separate the two 
main. ideas by first treating expansions for densities. 

The chapter culminates in the Berry-Esseen theorem of section 5. The 
smoothing method des.cribed in section 3 was first used by A. C. Berry in 
the proof of this theorem. An endless variety of smoothing procedures 
are in general use. In fact, the long and glorious history of the subject 
matter of this chapter has the unfortunate effect that accidents of historical 
development continue to influence the treatment of individual topics. 
The resulting diversity of tools and abundance of ad hoc methods has rendered 
the field proverbial for its messiness. The following systematic exploitation 
of Beny's method and of modern inequalities fortunately permits an ainazing 
unification and simplification of the whole theory.l 

* This chapter treats special topics and should be omitted at first reading. 
1 The best-known introduction to th~ asymptotic expansions i5 H. Cramer (1962). It 

contains the expansion theorems of sections 2 and 4 for equally distributed variables and a 
slightly sharper version of the theorems of section 7. The first rigorous treatmen~ of the 
expansion theorems is due to Cramer, but his methods are no longer useful. Gnedenko 
and Kolmogorov (1954) treat the material of sections 1-5. 

531 
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1. NOTATIONS 

Except in the last section (which deals with unequal components) we 
shall deno~e by F a one-dimensional probability distribution with char
acteristic function rp. When the kth moment exists, it will be denoted by: 

(1.1) 1+00" 

Pk = -00 xl' ~{dx}. 

We suppose PI = 0 and put, as usual, P2 = 0'2. For the normalized n-fold 
convolution we write Fn. Thus 

(1.2) 

When a density of Fn exists we shall den9te it by In. 
Except in section 6 (concerned with large deviations) we shall have to 

deal with functions of ~he form " 

(1.3) 

and the obvious estimate 

(1.4) /u(x)1 < -" Iv(~)1 d,. 1 1+00 

" "27f -00 

Both u and v will be integrable. If u is a probability density, then v IS 

its characteristic function. To simplify expressions we introduce the 

Convention. The function v in (1.3) will be ca.f/ed the Fourier transform 
of u and the right side of (I.4) will be called the Fourier norm of u. 

As always, the normal density is denoted by 

(1.5) 

Its Fourier transform is the characteristic function. e-i ,2. By repeated 
differentiation we get therefore the identity 

(1.6) 
d k 1 f+oo " ! 2 . 
-. n(x) = - e-t'X( -i,)ke- , d{ 
dxlC 217 J-oo 

valid for k = 1,2, . . .. Obviously the left side is of the form 

dk 

- n(x) = (_l)k Hk(X) n(x) 
d0 

(1.7) 

where Hk is a polynomial of degree k. The Hk are called Hermite 
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polynomials. 2 In particular, 

(1.8) Ha(x) = xa - 3x. 

The characteristic property of Hk is, then, that Hk(x) n(x) has the Fourier 
transform (i~)k e-~~2. 

2. EXPANSIONS FOR DENSITIES 

The central limit theorem 2 of XV,5 for densities can be strengthened 
considerably when some higher moments #k exist. The important assump
tion is that3 

(2.1) i+OO 

Q) I <pa)1 \I d~ < 00 

for some y > 1. The proof given in XV,5 may be summarized roughly 
as follows. The difference Un = In - n has the Fourier transform 

(2.2) ,vn(~) = <pn ( ~/_) _ e-i-~2. 
(1-y n 

The integral of Ivnl tends to zero for two reasons. Given an arbitrarily 

small but fixed 0 > 0 the contribution of the intervals I ~I > o(J-J~ tends 

to zero because of (2.1). Within I ~I < o(J-J~ the'integrand Vn is small by 
virtue of the behavior of <P near the origin. The latter conclusion depends 
only on the fact that #1 = 0 and #2 -: (12. When higher moments exist we 
can USt more terms in the Taylor development for <p and thus obtain more 
precise information concerning the speed of convergence fn ~ n. Un
fortunately the problem becomes notationally involved when more than three 
terms are involved, and we therefore separate out the simplest and n~ost 
important special case. 

Theorem 1~ Suppose thatfl3 exists and that 1<p1" is integrable for so.me 
')J > 1. Then fn exists for n > ')J and as n -- 00 

/I. ; j \ r ( ( ) ,3,:3 3) ( , I' I, 
J n I.x) - n x - ;- \ x - x YI X) = 0 g j- 1 

6(13,,' n \"/ n! 
(2.3) 

Uliiformly in x. 

Proof. By the Fourier inversion theorem of XV) the 
,; i:;ts :'C'[ n > v and has the Fourier norm 

Ii 'II J/ S, _1,.2 fA3, ,"\J --"~~ 
('i --. -, " ., - \ /1 , ;; -
I \ ,- ! ,- 3;- "'0 I -

I '. ay n' 6a 'Y [l 
cr., 

~ Sumetimes Chebyshcv-Hermit~ poiyn\-':nmls, The terminology is not unique. VariOt's 
~101'ming factors are in lise and frequently e-'.r~ repia(.cs our e-;!X

2 

) " -'" I 'I'y,;;' '\ " 'J '-'()' ~/1() ., Concernmg, tl.l" ..:OlluitlOn ::.cc eX3.mp es A ,_(a-o, and proo em "~. E! "',' .".1; 
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Choose lJ > 0 arbitrary ,but fixed. Since 'Pn is the characteristic function 
of a density we have I'P(OI <.1 for I~I #: O· and 'Pa) -- 0 as ", -- 00 

(lemmas 4 of 'XV,I and 3 of XV,4). There exists therefore a number 
q6 < 1 s'uch that I'P(OI < q6 for I~I ~ lJ. The contribution of the intervals 

1 ~I .> lJaJ~ to the integral in (2.4) is then 

(2.5) . < q;-V 1+00 I 'P(-~-) v d~ + r _e-h2 (1 + 1l3~3 ) d~ 
-00 ajnl J I"~ >dav' n a 

and this tends to zero more rapidly than any power of lIn. 
With, the abbreviation' 

(2.6) 

we have therefore 

(2.7) 

N. = L L,<H,;;e-ic' exp (ntp(<1~n)) - 1 - 6;:;n (i~)3 ti~ + 0 (~) 
The integrand will be estimated using the following general scheme 

(2.8) leGt - I-tJI = I(eel-el) + (eI-I-,8)1 :s: (l1X-,81 + lP)e], 

where- 'Y ~ max (l1X1, IP/). (That· this inequality is Valid for arbitrary real 
or complex IX and fJ becomes evident on replacing eel and eP by their 
power series.) 

The function'P is thrice differentiable and 'P(O) = 'P' (0) = 'P" (0) = 0 
'while 'P"'(O) = i3#3' Since 'P'" is continuous it is possible to find a neighbor
hood I~I < lJ of the origin in which 'P'" varies by less than E. From the 
three-term Taylor expansion we conclude that 

(2.9) for I" < lJ. 

Here we choose lJ so small that also 

(2.10) for I" < lJ. 

With this choice of lJ it is seen using (2.8) that the integrand in (2.7) is less 
than 

(2.11) 

and as E is ar~itrarv we have Nn = o(I/J";,) and so (2.3) is true~ ~ 

4 All logarithms of complex numbers ~ in the sequel are defined by the Taylor series 
log (1 +z) = L (-z)n/n valid for /z / <: 1. No other values of z will occur. 
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The same argument leads to higher-order expansions, but their terms cannot be expressed 
by simple explicit formulas. We therefore postpone the explicit construction of the poly
nomials involved. 

Theorem 2. Suppose that the moments 1'3"'" p.r exist and that 1<p1" is integrable for 
some v ~ 1. Then fn exists for n ~ v and as n -- <X) 

r 
(2.12) fn(x) - n(x) - n(x) ~ n-lkHpk(x) = 0(n-1rH) 

k=3 

uniformly in x. Here Pk is a real polynomial depending only on 1'1"'" p.k but not on 
nand r (or otherwise on F). 

The first two terms are given by 

(2)3) P· 1'3 H 
3 = 60-3 3' 

where Hk stands for the Hermite polynomial defined in (1.7). The expansion (2.12) is 
called (or used to be calle4) the Edgeworth expansion for f, 

Proof. We adhere to the notation (2.6). If P is a polynomial with real coefficients 
P1' P2' ... then 

(2.14) fu - n - n"E.pJrJlk 

has the Fourier norm 

(2.15) Nn = -.!.. f+oo e-1,s exp (ntp (~) ) - 1 - p(n) d,. 
211' J-oo (IV n 

The theorem will be proved by exhibiting appropriate polynomials p. (Their dependence 
on n is not stressed in order not to encumber the notations.) 

We begin by estimating the integrand. The procedure is as in the last proof except that 
we use the Taylor approximation for tp up to and including the term of degree r. This 
approximation will be denoted by ,2 tpr a). Thus tpr is a polynomial of degree r - 2 
with tpr(O) = 0; it is uniquely determined by the property that 

tpa) - '~ra) = 0(1'1') ,-- O. 
We now put 

(2.16) pm = I :![ ~rc.;n) r 
Then pU') is a polynomial with real coefficients depending on n. For fixed " on the 
other hand, p is a Polynomial in lr/~ whose coefficients can be calculated explicitly as 
polynomials in PI> P.2' ... 'P.r' As in the last proof it is obvious that for: fixed <5 > 0 the 
contribution of 1'1 > (511'\1';; to the integral in (2.15) tends to zero more rapidly than any 

power of lIn, and thus we are concerned only with the integrand for 1'1 < <5aV;;. To 
estimate it we use [instead of (2.8)] the inequality 

r-2 
(2.17) eCf. - 1 - L {:Jkjk! 

1 

r-2 
~ leCf. - ePI + ell - I - .2 {:Jkjk! 

1 

valid when I(XI < y and I{:JI < y. 
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By analogy to (2.9) we now determine ~ such that for '" < ~ 
(2.18) 

The, coe.Jficient of , in 'Pr being j3f.La16, we can suppose :that for "I < ~ also 

(2.19) 

provided a > 1 + 11'3" Finally we require that for "I < <5 

(2.20) 

For I"~ < ~aV;; the integrand in (2.15) is then less than 

(2.21) e-lC2 (£ l'lr + ar-l 1'13(r-l»). 
ntr- 1 . (r-l)! (aVnr-1 

As £.is arbitrary we have Nn = o(n-!r+l). 
We have now found real coefficients Pk depending on n such that the left side in (2.14) 

is o(n-!r+l) UIiifonDly in x. For fixed , the left side is a polynomial in 1 IV;;. Rearrang

ing it according to ascending powers of 1/v;; we get an expression of the form postulated 
in the theorem except that the summation extends beyond r. But the terms involving 
powers lInk with k > lr - 1 can be dropped, and we get then the desired expansion 
(2.12). ~ 

The explicit definition of the polynomials Pk is thus as follOWS. A polynomial "Pr of degree 
r - 2 is uniquely determined by the Taylor formula 

(2.22) 

valid near 'the origin. Rearrange (2.16) according to powers of 1/v;;. Denote the coefficient 
of n-V.;+1 by qk(i')· Then Pk is the polynomial such that n(x) Pk(x) has the inverse Fourier 
transform e-!C2qk(i,). 

3. SMOOTHING 

Every expansion for the densities In leads by integration to an analogous 
expansion for the distributions Fn , but this simple procedure is not available 
when the integrability condition (2.1) fails. To cope with this situation we 
shall proceed indirectly (following A. C. Berry). To estimate the discrepancy 
Fn - 91 or a similar fU,nction ~ we shall use the Fourier methods of the 
last section to estimate an approximation T ~ to ~, and then appraise the 
error T ~ - ~ by direct methods. In this section we develop the basic 
tools for this procedure. 

Let V T be the probability distribution with density 

(3.1 ) (
.) 1 1 - cos Tx 

vT X =-
7T Tx2 

' 

and characteristic function (()T' For 1'1 < T we have 

(3.2) 
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but this explicit form is of no importance. What matters is that wTa) 
vanishes for 1 'I > T, for this circumstance will eliminate all questions of 
convergence. 

We shall be interested in bounds fot Fn - 91 and, more generally, for 
functions of the form ~n = Fn - Gn · 'Such functions will be approximated 
by their convolutions with V T and we put generically T ~ = V T *~. In 
other words, given any function ~ we define 

(3.3) i+OO 

T~(t) = -00 ~(t-x) VT(x) dx. 

If ~ is bounded and continuous, then T ~ ~ ~ as T ~ 00. Our main 
problem is to estimate the maximum of I~I in terms of the maximum of 
IT~I. 

Lemma 1. Let F be a probability distribution and G a function such that 
G( - (0) = 0, G( (0) = 1, and IG'(x)1 < m < 00. 

Put 

(3.4) 
and 
(3.5) 

Then 

(3.6) 

~(x) = F(x) - G(x) 

'YJ = sup 1~(x)l, 'YJT = sup IT~(x)l· 
x x 

- > 'YJ 12m 
'YJT - 2 - 7TT 

Proof. The function ~ vanishes at infinity and the one-sided limits 
~(x+) and ~(x-) exist everywhere, and so it is clear that at some point Xo 
either 1~(xo+)1 = 'YJ or I~(xo-)I = 'YJ. We may assume ~(xo) = 'YJ. As 
F does not decrease and G grows at a rate < m this implies 

(3 7) ~(xo+s) > 'YJ - ms for s > O. 

Putting 

(3.8) 

we have then 

(3.9) 

'YJ . 
h =-, 

2m 

. 
t = Xo + h, x = h - s, 

~(t-x) > ~ + mx for Ixl < h. 

\Ve now estimate the convolution integral in (3.3) using (3.9) and the bound 
{\.(I -x) > -1} for Ixl > h. The contribution of the linear term vanishes 
for reasons of symmetry; since the density fl' attributes to Ixl > h a mass, 
< 4/(1TTh) we get 

(3.10) 
T 'YJ r 4 l 4 rJ 61'1 17 1 2m 

"11' > ~(xo) > ~Ll - - - 'YJ' - = -!.. - -' -. = - - T 
!.. TrTh~ rrTh 2 7;Th 2 7T - . 
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In our applications G will have a derivative g coinciding either with the 
normal density n or with one of the finite expansions described in the last 
section. In every case g will have a Fourier transform y with two con
tinuous derivatives such that y(O)'= 1 and- y'(O) = o. Obviously then 
the convolution T g. V T * g. has the Fourier transform YWT. Similarly, 
by the Fourier inversion theorem of XV,3 the product CPWT is the Fourier 
transform of the density T f of V T * F. In other words, 

(3.11) Tf(x) - T g(x) = _1 fT e-i'X[cpa)- ya)l WTa) d,. 
27T J-T 

Integrating with respect to x we obtain 

(3.12) T~(x) = _1 fT e-i,x cp(') ~ ya)WTa) d,. 
27T J-T -i' 

No integration constant appears because both sides tend to 0 as Ixl -+ 00, 

the left because F(x) - G(x) -+ 0, the right by the Riemann-Lebesgue 
lemma 4 of XV,4. Note that cp(O) = yeO) = 1 and cp'(O) = y'(O) = 0; 
hence the integrand is a continuous function vanishing at the origin, and so no 
problem of convergence arises. . 

From (3.12) we get an upper bound for rJT which, combined with (3.6), 
yields an upper bound for 1], namely 

(3.13) IF(x) - G(x)1 < 1. fT cp(') - yC{) d, + 24m. 
'It J-T { 7TT 

As this inequality will be the basis for all estimates in the next two sections 
we recapitulate the conditions of its validity. 

Lemma 2. Let F be a- probability distrJbution with vanishing expectation 
and characteristic function cpo Suppose that F - G vanishes at ± 00 and 
that G has a derivative g such that Igi < m. Finally, suppose that g has a 
continuously differentiable Fourier transform y such that yeO) = 1 and 
y' (0) = O. Then (3.13) holds for all x and T > o. 

We shall give two independent applications of this inequality: In the 
next section we derive integrated versions of the expansion theorems of 
section 2. In section 5 we derive the famous Berry-Esseen bound for the 
discrepancy F n - 91. 

4. EXPANSIONS FOR DISTRIBUTIONS 

From the expansion (2.3) for densities we get by simple integration 

(4.1) 
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For this expansion to hold it is not necessary that F has' a density. In fact, 
we shall now prove that (4.1) holds for all distributions with the sole exception 
of lattice distributions (that is., when F is concentrated on the set of points 
of the form b ± nh). For a lattice distribution the inversion formula 
XV,(5.l2) shows that the largest jump of Fn is of the order of magnitude 

1/~~, and hence (4.1) cannot be true of any lattice distribution. H~wever, 
even fOl fattice distributions the following theorem applies with a minor 
amendment. For convenience we separate the two cases. 

Theorem 1. If F is not a lattice distribution and if the third moment ft3 
exists, then (4.1) holds uniformly for all x. 

Proof. Put 

(4.2) G(x) = 91(x) - . fta (x2-1)n(x). 
6(J\/n . 

Then G satisfies the conditions of the last lemma with 

(4.3) 

We use the inequality (3.13) with T = a~~ where the constant a IS 

chosen so large that 24IG'(x)1 < Ea for all x. Then 

(4.4) 

As the domain of integration is finite we can use the argument of section 2 
even when 19'1 is not integrable over the whole line. We partition the 
interval of integration into two parts. First, since F is not a lattice distri
bution the maximum, of 19'(01 for ~ S 1'1 S a(J is strictly less than I 
owing to lemma 4 of XV, 1. As in section 2 it follows that the contribution 

of I" > ~(J~ tends to zero faster than any power of lIn. Second, by 

the estimate (2.11) for 1'1 S ~(J~ tne integrand in (4.4) is 

< e-H' (~ 1'1 + ft: ItIS) Vii 72n 

and so for large n the right side in (4.4) is < lOOOE/~~. Since E is 
arbitrary this concludes the proof. ~ 

This argument breaks down for lattice distributions because their character

istic functions are periodic (and so the contribution of 1'1 > ~(J~~ does 
not tend to zero). The theorem can nevertheless be saved by a natural 
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reformulation which takes into account the lattice character. The distri
bution function F is a stepfunction, but we shall approximate it by a 
continuous distribution function F# with polygonal graph. 

Definition. Let F be concentrated on the lattice of points b ± nh, tut 
on no sublattice (that is, h is the span of F). 

The polygonal approximant F# to F is the distribution function with a 
polygonal graph with vertices at the midpoints b ± (n + !)h lying on the graph 
ofF. 

Thus 

(4.5) 

(4.6) 

Now Fn 

(4.7) 

F#(x) = F(x) 

F#(x) = ![F(x) + F(x-)] 

is a lattice distribution with span 

h 
hn = ~ /-' <Tv n 

if x = b ± (n+i)h 

if x = b ± nh. 

and hence for large n the polygonal approximant F!: is very close to Fn. 

Theorem 2.5 For lattice distributions the expansion (4.1) holds with Fn 
replaced by its polygonal approximant F:. 

In particular, (4.1) is true at all mIdpoints of the latticefor Fn (with span hn), 
while at the points of the lattice (4.1) holds with Fn(x) replaced by 

![Fn(x) + Fn(x-)). 

Proof. The approximant F# is easily seen to be identical with the con
volutioITof F with the uniform distribution over -ih < x < ih. Accord
ingly, F! is the convolution of Fn with the unifonn distribution over 
- !hn < x < !hn' and we denote by G # the convolution of this distribution 
with G, that is 

(4.8) 

If M denotes the maximum of IG"I it follows from the two-term Taylor 
expansion of G about the point x that 

(4.9) IG#(x) - G(x)1 < !Mh~ = O(l/n), 

and to prove the theorem it suffices therefore to show that 

(4.10) IF~(x) - G#(x)1 = 0(1/.)n). 

;; Instead of replacing F,l by F: one can expand F~ - F.~ into a Fourier series and 
add it to the right side in (4.1). In this way one arrives formally at a form of the theorem 
proved by Esseen by intricate formal calculations. See, for example, the book by Gnedenko 
and KOlmogorov. 
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Since. taking convolutions corresponds to multiplying the transforms s we 
conclude from (4.4) that 

(4.11) IF!(x) - G #(x) I ~ r~~1 qyna/(Jn) - ya) /wn(,)1 d, + :n 

-a
V n' " 

where wn(,) = (sin ihn')i(!hn ,) is the char~cteristic function of the uniform 
distribution. The estimates used for (4.4) apply except that a new argument is 
required to show that 

(4.12) .iav':/qyna/(Jn)wna), ,-1 d, = ~.la'tI cpn(y) sin hy y-2 dy = 0(1). 
6t1v' n h 6 2 n 

By Lemma 4 of XV,l the characteristic function qy has period 21T/h, and the 
same is obviously true of Isin lhyl. It suffices therefore to prove that 

( 4.13) flrlh ( 1 ) 
..10 19>n(y)1 y dy = 0 ~n . 

But this is trivially true because within a neighborhood of the ongm 
I g>(y) I < e-ttl f/

2 
while outside this neighborhood I qy(y)1 is bounded away 

from 0 and hence the integrand in (4.13) decreases faster than any power of 
n. The int~gral is therefore actually O(1/n). ~ 

We turn to higher-order expansions. The proof of (4.1) differs from the proof of (2.3) 
only by the smoothing, which accounts for the finite limits in the integral (4.4). Thesame 
smoothing can be applied to the higher expansions (2.12), but it is obvious that to achieve an 
error term of the order of magnitude n-tr+l we shall have to take T,...., an1r- 1. Here one 

difficulty arises. The proof of (4.1) depended on the fact that the maximum of I gJ(U(Uv';;» I 
in ~uV;; < 1'1 < T is less than one. For non-lattice distributions this is always true when 
T = av';;, but not necessarily when T increases as some higher power of n. For higher-
order expansions We are therefore compelled to introduce the assumption that 

(4.14) lim suplgJa)1 < 1 
I~I"'" 00 

which for non-lattice distributions implies that the maximum q6 of I gJa)1 for I ~I > <5 is 
less than 1. With this additional assumption the method of proof given in detail for (4.1) 
applies without change to the expansions (2.12) and leads to 

Theorem 3. 1/(4.14) holds and the moments !-l3,'." f'r exist, then as n -- 00, 

(4.15) 
r 

Fn(x) - ~(x) - n(x) 2: fl-~k+lRk(x) = o(n-!r+l) 
k=3 

~1iIilorm!y ill x. Here Rk is a polynomial depending only on /-Ll •••• ,/-Lr but not on n alld 
r (or otherwise on F). 

The expansion (4.15) is simply the integrated version of (2.12) and the polynomials RIc 
are related to those in (2.12) by 

. d 
(4.16) n(x) Pk(x) = dx n(x) Rk(x). 



542 EXPANSIONS RELATED TO CENTRAL LIMIT TH~OREM XV 1.-5 

There is therefore no need to repeat their construction. The condition (4.14) is satisfied by 
every non-singular F. 

(4.15) is called the Edgeworth expansion of F. If F has moments of all orders, one is 
tempted to let r -+ 00, but the resulting infinite series need not converge for any n. 
(Cramer showed that it converges for all n iff e1x2 is integrable with respect to F.) The 
formal Edgeworth series should not be confused with the Hermite polynomial expansion 

r 
(4.17) F .. (x) - m(x) = .2 ck H k(x)e-1x2 

k=l 

which is convergent whenever F has a finite expectation, but is without deeper prob
abilistic meaning. For example even if it is possible to expand each Fn into a series of 
the form (4.17) the coefficients are not indicative of the speed of convergence Fn -+ m. 

5. THE BERRY-ESSEEN THEOREMS6 

The following important theorem was discovered (with radically different 
proofs) by A. C. Berry (1941) and C. G. Essen (1942). 

Theorem 1. Let the Xk be independent variables with a common distribution 
F such that' 

(5.1 ) E(X~) = 0'2 > 0, 

and let Fn stand for the distribution of the normalized sum 

Then for all x and n 

(5.2) 
3p 

IFn(x) - 91(x) I < ar. 
iT "n 

The striking feature of the inequality is that it depends only on the first 
three moments'. The expansion (4.1) provides a better asymptotic estimate, 
but the speed of convergence depends on more delicate properties of the under
lying distribution. The factor 3 on the right could be replaced by a better 
upper bound C but no attempt is made in our setup to achieve optimal 
results.7 

6 This section uses the smoothing inequality (3:13) (with G standing for the normal 
distribution) but is otherwise independent of the preceding sections. 

7 Berry gives a bound C ~ 1.88, but his calculations were found in error. Esseen 
gives C < 7.59. Unpublished calculations are rer.:>rted to yield /C ~ 2.9 (Esseen 1956) 
and C ~ 2.05 (D. L. Wallace 1958). Our streamlined method yields a remarkably good 
bound even though it avoids the usual messy numerical calculations. No substantial im
provement can be expected without improving the error term 24m/1T in (3.13). 
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Proof. The proof will be based on the smoothing inequality (3.13) with 
F = Fn and G = 91. For T we choose 

(S.3) 
4 0'3 

T = 3· -;;.[it ~ t.../n, 
the last inequality being a consequence of the moment inequality a3 < p. 
[See V,8(c).] Since the normal density n has a maximum m < i we get 

(S.4) J
T . 1- 2 d, 9.6 

1T IFn(x) - 91(x) I < l,cpn('IO'.jn) - e--~ 1- + - . 
-T 111 T 

To appraise the integrand we note that the familiar expansion for exn - pn 
leads to the inequality 

(S.S) if loci < y, IPI < y. 

We use this with ex = cp(UO'.../~) and P = e-l~2/n. From the inequality 
XV,(4.l) for eit we have 

(S.6) I cp(t) - 1 + !0'2t21 = 1: (eit:x: - 1 - itx + !t2X2) F{ dx} ~ tp Itl 3 

and hence 

(S.7) 

We concluqe that for 1'1 ~ T 

(S.8) Icp('IO' In)1 ~ 1 - .!.. ,2 + -..l!..- 1'13 ~ 1 _ 2- ,2 < e-158~2/n . 
V 2n 60'3ni 18n 

Since a3 < p the assertion of the theorem is trivially tru~. for .../~ ~ 3 
and hence we may assume n > 10. Then 

(5.9) I f[l('IO'~n)ln-l ~ e-~2, 
and the right side may serve for the bou~d yn-l in (S.S). Noting that 
e-4 - I +.% ~ !X2 for x > 0 we get from (S.6) 

(S.10) n cp(~) - e-k 'l1I ~ n cp( ',_) - 1 + f. 
0'.../ n O'y n 2n 

+ n 1 _ ,2 _ e-!~2,Jn ~ '_1'13 + 1.- ,4. 
2n 60'3.../ n 8n 

Since .../~ > j it follows from (S.S) and (S.9) that the integrand in.(S.4) is 

(S.II) 
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This function is integrable over - 00 < , < 00, and simple integrations 
by parts now show that 

(5.12) 1TT I Fn(x) - 91 (x) I < t~; + t + 10. 

Since ~; < t the right side is < .!.~ 3 < 41T, and so (5.2) is true. ~ 

The theorem and its proof can be generalized to sequences {Xk } with vary
ing distribl,!tions as follows. 

Theorem 2.8 Let the Xk be independent variables such that 

(5.13) 

Put 

2 2 2 (5.14) Sn = 0'1 + ... + O'n' rn = PI + ... + Pn 

and denote by Fn the distribution of the normalized sum (Xl+·· ·+Xn)/sn· 
Then for all x and n 

(5.15) 

Proof. If W k stands for the characteristic function of Xk the starting 
inequali~y (5.4) is now replaced by . 

(5.16) 1T IFn(x) - 9l(X) I <f: w{~J .. wn(D - e-k ' ~~ + 9~6. 
This time we choose 

(5.17) 

Instead of (5.5) we now use 
n. 

(5.18) ICXl··· CX n - III ... Pnl < .2 1'1 ... Yk"-lCXk-PkYk+l ••• Yn , k=l 

valid if ICXkl < Yk and IPkl < Yk. This inequality will be applied to 

(5.19) 1'1 < T. 

provided O'kT < Sn ~2. To obtain a bound Yk applicable for all k we change 

8 Due (with an entirely different proof) to Esseen. 



XVI.5 THE BERRY-ESSEEN THEOREMS 545 

the coefficient t to i and put 

(5.21) Yk = exp (_ a~ + ~ PkT
) ,2. 

2s! 8 s! 
Obviously Il1kl < Yk,and from (5.20) also ICXkl < Yk for k such that 
akT ~ iSn· But from the moment inequality p,. > a~ it follows that Yk > 1 
if akT> tSn, and hence Icxkl < Yk for all k. 

The theorem is trivially true when the right side in (5.15) is > 1, that is, if 
r n/S;l > t· Accordingly we assume from now on that r n/s! < t or T> )"36_. 

The minimum value of Yk is assumed for· some k such that 
ak/Sn < 4/3 T < 1, and hence Yk > e-f,2/32 for all k. Thus finally 

(5.22) IYl'" Yk-ll1k+l ... Ynl ~ exp '2(_ ! + 3rnT + .!..) < e-~2/8. 
2 . 8s! 32 

By analogy with (5.10) we get 
n , n 

(5.23) 21cxk - 11k I ~ 6rn3 I{1 3+ 8~ 2 at· 
k=1 Sn Sn k=) 

To appraise the last sum we recail that ~ ~ pt ~ r! . Pk whence 

(5.24) !.ia4 < (rn)t<..!..rn ~~rn. 
S4 k-l k - S3 - 61 S3 9 S3 n n n n 

These inequalities show that the integrand in (5.16) is 

(5.25) < 9~ (t,2 + -'/2 1"3)e-~2/8, 
and hence finally 

32 /- I) 
(5.26) 1TT IF n(x) - 9l(X) I ~ T7V 21T + sT' 64 + 9.6. 

The right side is < 161T/3, and thus (5.26) implies (5.15). 

Recently much attention has been paid to generalizations of the Berry
Esseen t.heorem to . variables without third mo~ent; the upper bound is 
then replaced by a fractional moment or some related quantity. The first 
step in this direction was taken by M. L. Katz (1963). The usual calculations 
are messy, and no attempt has been made to develop unified methods applic
able to the several variants. Our proof was developed for this purpose and 
can be restated so as to cover a much wider range. Indeed, the third moment 
occurs in the proof only because of the use of the inequality 

leitx 
- 1 - itx + it2x21 ~ t Itxl 3

• 

Actually it would have sufficed to use this estimate in some finite interval 
Ixl < a and to be otherwise satisfied with the bound t 2X 2• In this way one 
obtains the following theorenl obtained by different methods and with an 
unspecified constant by L. V. Osipov and V. V. Petrov. 
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Theorem 3. Assume the conditions of theorem 2 except that no third 
moments need exist. Then for arbitrary Tk > 0 

(5.27) IFn(x) - 91(x) I < 6 (S;3 r IxI3 F{dx} + S;2 r x2 F{dx}). 
J!z! $Tk J!Z! >Tk 

Simple truncation methods permit one to extend this result to variables 
without moments. 9 

6. EXPANSIONS IN THE CASE OF VARYING COMPONENTS 

The theory of sections 2 and 4 is easily generalized to sequences {Xk } of 
independent variables with varying distributions Ute. In fact, our notations 
and arguments were intended to prepare for this task and were therefore 
not always the simplest. . 

Let E(Xk) = 0 and E(X:) = 0':. As usual we put s; = O'i + ... + 0';. 
To preserve continuity we let F n again stand for the dist-ribution of the 
normalized sum (X1+·· ·+Xn)/sn. 

To fix ideas, let us consider t~e one-term expansion (4.1). The left side 
has now the obvious analogue 

(n) 

(6.1) Dn(x) = Fn(x) -'91(x) _fl63 
2 n(x) 

. sn 
where 

n 

(6.2) fl~n) = I E(X~)~ 
k=1 

In the case of equal components it was shown that Dn(x) = o(l/.Jn). 
Now Dn is the sum of various error terms which. in the present situation 
need not be of comparable magnitude. In fact, if the Xkhave fourth 
moments it can be shown that under mild further conditions 

(6.3) 

Here either of the two terms can preponderate depending on the "behavior of 
the sequence ns;;2 which may fluctuate between 0 and 00. In theory it 
would be possible to find' universal bounds for the error, 10 but these would 

9 For details see W. FeUer, On the Berry-Esseen theorem, Zs. Wahrscheinlichkeitstheorie 
verw. Gebiete, vol. 10 (1968) pp. 261-268. It is surprising that the unified general method 
actually simplifies the argument even in the classical case and, moreover, leads withou t 
effort to better numerical estimates. 

10 For example, in Cramer's basic theory the bound is of the form 

D.(x) = o(nls~'(t/(X:))') 
which may be worse than (6.3). 
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be messy and too pessimistic in individual cases arising in practice. It is 
therefore more prudent to consider only sequences {Xk } with some typical 
pattern of behavior, but to keep the proofs so flexible as to be applicable in 
various situations. 

F or a typical pattern we shall consider sequences such that the ratios s~/n 
remain bounded between two positive constants.11 We show that under mild 
additional restrictions the expansion (4.1) remains valid and its proof requires 
no change. In other situations the error term may take on different forms. 
For example, if s~ = o(n) it can be said only that IDn(x)1 = o(nls~). 
However, the proof is adaptable to this situation. 

The proof of (4.1) depended on taking the Fourier transform of Dn(x). 
If Wk denotes the characteristic function of Xk this transform may be 
written in the form 

(6.4) 

where 
n 

(6.5) vn(O = n-1 ~log wi') 
k=l 

Now this is exactly the same form as used in the proof of (4.1), except that 
there vna) = log cpa) was independent of n. Let us now see how this 
dependence on n influences the proof. Only two properties of v were 
used. 

(a) We used the continuity of the third derivative cpfll to find an interval 
1'1 < b within which v';; varies by less than E. To assure that this b can 
be chosen independent of n we have now to assume some uniformity 
condition concerning the derivatives w~' near the origin. To avoid uninterest
ing technical discussions we shall suppose that the moments E(X:) exist 
and remain bounded. Then the w'k have uniformly bounded derivatives 
and the same is true of v';;. 

(b) The ptoof of (4.1) depended on the fact that Icpn(OI = o(l/.j~) 
uniformly for all ,> b. The analogue now would be 

(6.6) Iw1a) ... wna)1 = o(l"/~) uniformly in ,> b > O. 

This condition eliminates the possibility that all Xk have lattice distri
butions with the same span, in which ~ase the product in (6.6) would be 
periodic funCtion of ,. Otherwise this condition is so mild as to be trivially 
satisfied in most cases. 'For example, if the Xk have densities each factor 
IWkl remains bounded away from I, and the left side in (6.6) decreases faster 

11 Then (6.3) gives I Dn(z) I = O(l/n) which is sharper than the bound o(1/V~) obtained 
in (4.1). The improvement is due to the assumption that fourth moments exist. 
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than any power of lIn unless Iwna)1 ~ I; that is, unless the Xn tend to be 
concentrated at one point. Thus in general the stronger condition 

(6.7) uniformly in ,> ~ 
will be satisfied and easily verified for all a > o. 

Under our two additi0nal assumptions the proof of (4.1) goes through 
without change and we have thus 

Theorem 1. Suppose that with some positive constants 

(6.8) cn < s! < Cn, E(X!) < M 

for all n and that (6.6) holds. Then I Dn(x)1 = o(I/J~) uniformly for all x. 

As mentioned before, the proof applies equally to other situations. For 
example, suppose that 

(6.9) s!ln ~ 0 but s!/n ~ 00. 

The proof of (4.1) carries through with T = as!ln, and since T = o(sn) 
the condition (6.6) becomes unnecessary. In this way one arrives at the 
following variant. 

Theorem 1a. If (6.9) holds and the E(X!) are uniformly bounded then 
IDn (x) I . o(nls!) uniformly in x. 

The other theorems of sections 2 and 4 generalize in like manner. For 
example, the proof of theorem 3 in section 4 leads without essential change 
to the following general expansion theorem:12 

Theorem 2. Suppose that 

(6.10) 0 < c < E(lXIV) < C < 00, v = 1, ... , r + 1, 
~ 

and that (6.7) holds with a = r + I. Then the asymptotic expansion (4.15) 
holds uniformly in x. 

The polynomials R; depend on the moments occurring in (6.10) but for 
fixed x the sequence {R;(x)} is bounded. 

7. LARGE DEVIATIONS13 

We begin again by considering our general problem in the special case of 
variables with a common distribution F such that E(~k) = 0 anc1 

. 12 With slightly milder uniformity conditions this theorem is contained in Cramer's 
pioneer work. Cramer's methods, however, are now obsolete. 

1:> This section is entirely independent of the preceding sections in this chapter. 
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E(X~) = (J'2. As before, Fn stands for the distribution of the normaliled 

sums (Xl + .. ·+Xn)/(J.J~. Then Fn tends to the normal distribution 91. 
This information is valuable for moderate values of x, but for large x both 
Fn(x) and 91 (x) are close to unity and the statement of the centra:l limit 
theorem becomes empty. Similarly most of our expansions and approxima
tions become redundant: One needs an estimate of the relative error in 
approximating I - Fn by I - 91. Many times we would like to use the 
relation 

(7.1) 
I-Fn(x) __ 1 

1 - 91(x) 

in situations where both x and n tend to infinity. This relation cannot be 
true generally since for the symmetric binomial distribution the numerator 

vanishes for all x > .J~. We shall show, however that (7.1) is true if x 
varies with n in such a way that xn- l -- 0 provided that the integral 

(7.2) 

exists for all , in some interval", < '0' [This amounts to saying that the 
characteristic function cp(') = fU') is analytic in a neighborhood of thCf 
origin, but it is preferable t'o deal with the real function f] 

Theorem 1. If the integral (7.2) converges in some interval about the origin, 
and if x varies with n in such a way that x -- 00 and x = o(nl), then 
(7.1) is true. 

Changing x into -x we obtain the dual theorem for the left tail. The 
theorem is presumably general enough to cover "all situations of practical 
interest," but the method of proof will lead to much stronger results. 

For the proof we switch from f to its logarithm. In a neighborhood of 
the origin 

(7.3) 

defines an analytic function. The coefficient "Pk depends'only on the moments 
fll' ... ,flk of the distribution F and is called the semi-invariant of order k 
of F. In general "PI = fll' "P2 = (J2, .•.• In the present case fll = 0 and 
therefore "PI = 0, "P2 = (J2, "P3 = fl3, • • • • . 

The proof is based on the technique of associated distributions. 14 With 
the distribution F we associate the new probability distribution V such that 

(7.4) 

14 It was employed in renewal theory XI,6 and for random walks XII,4. 
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where the parameter s is chosen within the interval of convergence of 1p. 
The function 

(7.5) va) =fa'+s) 
f(s) 

plays for V the same role as does f for the original distribution F. In 
particular, it follows by differentiation of (7.5) that V has expectation 
1p' (s) and variance 1p" (s). 

The idea of the proof can' now be explained roughly as follows: It is 
readily seen from either (7.4) or (7.5) that the distributions Fn* and Vn* 
again stand in the relationship (7.4) except that the norming constant e-tp(s) 
is replated by e-n'P(s). Inverting this relation we get 

(7.6) 1 - Fn(x) =1 - Fn*(xaJn) = entp(s)i~re-SllVll*{dY}. 
X(lV n 

In view of the central limit theorem it seems natural here to replace V n * 
by the corresponding normal distribution with expectation n1p' (s) and 
variance n1p"(s). The relative error committed in this approximation will be 
small if the lower limit of the integral is close to the expectation of V 71 *, 

that is, if x is close to 1p' (s)J~/a. In this way one can derive good approxima
tions to 1 - Fn(x) for certain large values of x, and (7.1) is among them. 

Proof. In a neighborhood of the origin 1p is an analytic function with a 
power- series of the form 

(7.7) 1p(s) = 1 + la2s2 + tft3S3 + .... 
1p is a convex function with 1p' (0) = 0, and hence increases for s > 0. The 
relation 

(7.8) J~1p'(s) = ax s > 0, x > 0, 

therefore establishes a one-to-one correspondence between the variables 

s and x as long as s and x/J~ are restricted to a suitable neighborhood 
of the origin. Each variable may be considered as an analytic function of the 
other, and clearly 

(7.9) . 
X 

sf"'o.../--
aJn 

We now proceed in two steps: 

if 
x 

---'0 .jn . 

(a) We begin by calculating the quantity As obtained on replacing V n* 
in (7.6) by the normal distribution having the" same expectation n1p'(s) and 
the same variance n1p"(s). The standard substitution y = n1p'(s) + tJn1p"(s) 
yields 

(7.10) 
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Completing the square in the exponent we get 

(7.11) As = exp (n[tp(s) - stp'(s) + !s2.yJ"(s)])· [1 - 91 (sv'ntp" (s)]. 

The exponent and its first two derivatives vanish at the origin and so its 
power series starts with cubic terms. Thus 

(7.12) As = [1 - 91(sv"ntp"(s»).] . [1 + O(ns3)], s -+- o. 
If ns3 -+- 0 or, what amounts to the same, if x = o(nl) we may rewrite 
(7.12) in the form 

(7.13) As = [l - 91(x)][1 + O(X3/~ n )], 

where we put for abbreviation 

(7.14) x = sv' ntp" (s). 

It remains to show that in (7.13) we may replace x by x. The power series 
for (x-'-x)/n is independent of n and a trite calculation shows that it starts 
with cubic terms. Accordingly, , 
I 

(7.15) Ix - xl = O(v'~ S3) = o (x3/n). 

From 1; VII,(1.8) we know that as t -+- 00 

(7.16) 
net) 

-~~~t. 

1 - 91(t). 

Integrating between x and x we get for ~ -+ 00 

(7.17) 

and hence 

(7.18) 

1 - 91(x) . 
log , = O(x . Ix-xl) = O(x4/n) 

1 "I 91(x) , 

1 - 91(x) = 1 + O(x4/n). 
1 - 91(x) 

Substituting into (7.13) we get finally if x -+- 00 so that x = o(nt) 

(7.19) As = [1 - 91(x)][1 + o (x3/v'-;' )]. 

(b) If 91s denotes the normal distribution' with expectation ntp' (s) and 
variance ntp" (s) then As stands for the right side in (7.6) when' Vn* is 
replaced by 91s . We now proceed to appraise the error committed by this 
replacement. By the Berry-Esseen theorem (section 5) 

(7.20) I Vn*(y) - 91sCy) I < 3Ms()3/v'~ 
for all y, where Ms denotes the third absolute moment of the distribution 
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V. After a simple integration by parts it is ther~fore seen that 

(7.21) 

11-F n(x)-Asl < 3:f~ en'P(S) [e-sCP/(S) + sJ.<X> e-slIdY] 
(J • ./ n ncp'(s) 

But by (7.11) 

(7.22) As = en[cp(s)-,~'P/(s)]. e tx2 [1_ 91(x)] f""oo-' ! en[,p(s)-.~cp/(s)] 
x 

and hence the right side in (7.21) is As' O(xlv/~). Thus 

(7.23) 

In combination with (7.19) this not oniy proves the theorem, but also the 
stronger 

Corollary. If x -- 00 so that x = o(nt) then 

(7.24) 1 - F n( X) = 1 + 0 ( X~) . 
1 - 91(x) .jn 

We have indirectly derived a much further-going result applicable whenevel x varies 
with n in such a way that x -- rfJ but x = O('v'~). Indeed, by (7.23) we have then 
1 - Fn(x) "" A. with A. given by (7.11). Here the argument of m is x, but (7.18) 
shows that x may be replaced by x. We get therefore the general approximation formula 

<7.25) 1 - Fnex ) = exp (n[tp(s)-stp'(s)+itp'2(s)])[1-91(x)] . [1 +O(;z;/v'~)]. 

The exponent is a power series in s commencing with the term of third order. As in (7.8) 
we now define an analytic function s of the variable z by 11" (s) = oz. With this function 
we define a power series ). such that . , 

(7.26) 

In terms of this series we have 

lbeorem 2.15 If in theorem 1 the condition x = o(n~) is replaced by x = o( v'~), then 

(7.27) ~1 Fn(x) = exp(x2)'(~)) [1 + o(_X_)]. 
1 - 91(x) Vn v'n 

15 The use of the transformation (7.4) in connection with the central limit theorem seems 
due to F. Esscher (1932). The present theorem is due to H. Cramer (1938), and wa~ 
generalized to variable components by Feller (1943). For newer results in this case see 
V. V. Petrov, Uspekhi Matern. Nauk, vol. 9 (1954) (in Russian), and W. Richter, Local 
limit theorems for large deviations, Theory of Probability and Its Applications (transl.), 
vol. 2 (1957) pp. 206-220. The latter author treats densities rather than distributions. For 
a different approach leading to approximations of the form 1 - Fn(x) = exp [v(x)+o(v(x»] 
see W. Feller, Zs. Wahrscheinlichkeitstheorie verw. Gebiete vol. 14 (1969), pp. 1-20. 
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In particular, if x = o(nl), only the first term in the ~ower series matters, arid we get 

(7.28) 1 - Fn(x) ,....., exp (A1x3) Al = 1-'3 
1 - m(x) v;; '6a3 . 

For an increase such that x == o(nh) we get 

(7.29) 

and so on. Note that the right sides- may tend to 0 or 00, -and hence these formulas do not 
imply an asymptotic equivalence ofl - Fn(x) and 1 - m(x). Such an equivalCince exists 
only if x = o(nf) [or, in the Case of a vanishing third moment, if x = o(n1)J. Under 
any circumstances we have the following interesting 

Corollary. If x = o( vn) then for any t" > 0 ultimately . 

(7.30) exp (-(1+t")%2/2) < 1 - Fn(x) < exp (-(1-t")x2/2). 

The preceding theory may be generalized to cover partial sums of random 
variables Xk with varying distributions and characteristic functions .Wk' 

The procedure may be illustrated by the following generalization of.theorem 
1 in which the uniformity conditions are unnecessarily severe. In it Fn 
stands again for the distribution of the normalized su~ (Xl + ... + Xn)/sn' 

Theorem 3. Suppose that there exists an interval -a, a in which all the 
characteristicfunctions Wk are analytic, and that 

(7.31) 

where At is independent of n. If Sn and x tendto 00 so that x = o(s!), then 

(7.32) 1 - Fn(x) -+- 1 
1 - 91(x) 

with an error o (r/s n ). 

The proof is the same except that "P is now replaced by the real-valued 
analytic function "Pn defined for -a < s < a by 

(7.33) 
1 n . 

"Pn(s) = - L log w k ( - is). 
n k=l 

In the formal calculations now XSn replaces x(JJ~. The basic equation (7.8) 
takes on the form "P~ (s) = xs,Jn. 



CHAPTER XVII 

Infinitely Divisible Dis.tributions 

This chapter presents the core of the now classical limit theorems of 
probability theory-the reservoir created by the contributions of innumerably 
many individual streams and developments. The most economical treatment 
of the subject would start from the theory of triangular arrays developed in 
section 7, but once more we begin by a discussion of simple special cases in 
order to facilitate access to various important topics. 

The notions of infinite divisibility, stability, etc., and their intuitive meaning 
were discussed in chapter VI. The main results of the present chapter were 
derived in a different form, and by different methods, in chapter IX, but the 
present chapter provides more detailed information. It is self-c~ntained, 
and may be studied as a sequel to chapter XV (characteristic functions) 
independently of the preceding chapters. 

1. INFINITELY DIVISIBLE DISTRIBUTIONS 

We continue the practice of using descriptive terms interchangeably for 
distributions and their characteristic functions. With this understanding the 
definition of infinite divisibility given in YI,3 may be rephrased as follows. 

Definition. A characteristic function w is infinitely divisible iff for each n 
there exists a characteristic function ~n such that 

(1.1) 

We shall presently see that infinite divisibility can be characterized by 
other striking properties which explain why the notion plays an important 
role in probability theory. 

Note concerning roots and logarithms of characteristic functions. It is 
tempting to refer t~ Wn in (1.1) as the nth root of w, but to make this 
meaningful we have to show that this root is essentially unique. To discuss 

554 
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the indeterminacy of roots and logarithms in the complex domain it is con
venient to start. from the polar representation a = rei' of the complex 
number a:¢ o. The positi.ve number. r is uniquely detennined, 'but the 
argument f) is determined only up to multiples of 21T. In principle this 
indetenninancy is inherited by log a = log r + if) and by alJn = r1/nei'/n 
(here ri/n stands for the positive root, and ·log r ,for the familiar real 
logarithm). Nevertheless, in any interval 1'1 < '0 in which w(,) ¢ 0 the 
characteristic function w admits of a unique polar' representation w( '> = 
= r(Oei'(,) stich that f) .. is continuous and f)(0) = O. In such an interva, we 
can write without ambiguity tog w(,) = log ra) + if)(') and' wl/n(O = 
= r1/na)ei'(,)/n; these determinations are the only ones that render log w 
and w 1/

n continuous functions that are real at the point ,= O. In this sense 
log wand w1/n are uniquely determine_d in any interval I" < '0 free of 
zeros of w. We shall use the symbols log wand ())l/n only in this sense, 
but it must be borne in mind that" this definition breaks down1 as soon as 
w('o) = O. ~ 

Let F be an arbitrary probability distribution and q;, i~s characteristic 
function. We recall from XV ,(2.4) that F generates the family of compound 
Poisson distributions 

(1.2) 

with characteristic functions eC(<P-l). Here c >0' is arbitrary. Obviously 
w = eC(<P-l> is infinitely divisible (the root w1/

n being of the same form 
with c replaced by c/n). The normal and the Cauchy di~tribution show that 
an infinitely divisible distribution need not be of the compound Poisson type, 
but ~e shall now show that every infinitely divisible distribution is the limit 
of a sequence of compound Poisson distributions. Basic for the whole 
theory is 

Theorem 1. Let {ipn} be a sequence, of characteristic functions. In order 
that there exist a continuous limit 

(1.3) 

it is necessary and sufficient that 

(1.4) 

wi~h 1p continuous. In this case 

(1.5) 

1 At the end of XV,2 (as well as in problem 9 of XV,9) we found pairs of real character
istic functions such that p~ = p~. This shows that in the presence of zeros even real 
characteristic functions may.possess two real roots that are again characteristic functions. 
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.. Proof. We recall from the continuity theorem in· XV,3 that if a sequence 
of characteristic functions converges to a continuous function, the latter 
represents a ·characteristic function and the convergence is automatically 
uniform in every finite interval. 

(a) We begin with the easy part of the theorem. Assume (1.4) where tp 

. is continuous. This implies that 9'n a) -+ 1 for every " and the convergence 
is automatically uniform infinite intervals. This means that in any interval 
1'1 < '1 we have 11 - 9' n (')1 < 1 for all n sufficiently large. F or such n 
we conclude then from the Taylor expansion for log (I -z) that 

(1.6) . ~ log 9'~a) = n log [1- [1':...- 9'na») = 

= -n[1 ~ 9'na)] - ~ [1 - 9'"a)]2 - .... 

. ·Because of (1.4) the first term on the right tends to -",a), and since 
9'n(s) -+ I ".this implies thataH other terms tend to zero. Thus n log 9'n -+ -tp 

or 9'~ ~·e-1p, as asserted. 
l...b) The ·converse is equally simple if it is known that the limit w in (1.3) 

has no zeros. Indeed, consider an arbitrary finite interval 1'1 S '1. In it the 
convergence in (1.3) is uniform and the absence of zeros of w implies that 
also Cfna) ¢ 0 for I" :s: '1 and all· n sufficiently large. We can therefore 
pass to logarithms and conclude that n log 9'n -+ log w, and hence 
log 9'n -+ O. This implies that 9'na}-+.1 for each fixed " and the con
vergence is automatically uniform in eyery finite interval. . As under (a) 
therefore we conclude that. the expansion (1.6) is valid, and since 

this implies that 

(1.7) 

1 .- Cfna)--+O 

. n log V'n(O ...:.. -n[l-9'"a)l(I +0(1» 
where 0(1) stands for a quantity that tends to 0 as n -+ ·00. By assumption 
the left side tends to' log (0(0.,· and henceobviou.sly n[l- 9'nl -+ -log w 
as' asserted. , 

To validate this argument we have to show that wa) canriot vanish for 
any t· For that purpose we can replace wand 9'n by the characteristic 
functions Iw1 2 · and 19'nll , respectively, and hence it suffices t~ c(,)nsider the 
spec.lal case of (1.3) where all 9'. are real and 9'n ~ O. Let then I 'I ~ '1 
be an interval iIi whic~ wa) > O. Within this interval -n log 9'na) is 
positive and re!J1,ains bounde~. On the other hand, for 1'1 s· '1' the expan
sion (1.6) is valid, and since all tenns are. of the same sign it follows that 
n[l - 9'n·a») remains bounded for all 1'1 S 'i' But by the basic iQequality 
XV,(1.7) for characteristic functions 

n[I-9'~(20J < 4n[I-9'n<'»), 
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and so n[I-9'n({)] remains bounded for all I{I ~ 2{t. It follows that this 
in'terval can contain no zero of co. But then the initial argument applies 
to this interval and leads to the conclusion that co({) > 0 for all I{I ::;;: 4{1' 
Continued doubling shows that (J)(~) > 0 for all {, and this concludes the 
~~. ~ 

Theorem 1 has many consequences. On multiplying (1.4) by t > 0 it is 
seen that this relation is equivalent to 

(1.8) , 

The left side represents a characteristic function of the compourid Poisson 
type, and therefore et'P(~) is a characteristic function for every t> O. We 
conclude in particular that co = ell' is, necessarily infinitely diVisible. In 
other words, every characteristic function wappearing as the limit of a 
sequence {cp~} of ch~ifacteristic functions is infinitely divisible. This may be 
regarded as a widening of the definition of infinite divisibility in that it 
replaces the identity (1.1) by the more general limit relation (1.3). It will 
be seen in section 7 that this result may be further extended to more general. 
triangular arrays, but we record our preliminary result in the form of 

Theorem 2. A characteristicfunction co is infinitely divisible iff tJiere exists 
a sequence {9'n} of characteristic functions such that . 9'~ -+ co. 

In this case (ot is a characteristic function for every f > 0, and co({) ¢ 0 
for all ,. 

CoroUary. A continuous limit of a sequence {COn} of infinitely divisible 
characteristic functions is itself infinitely divisible. ' 

Proof. By assumption 9'n = co~n is again a characteristic function, and 
so the relation (On -+ CO may be rewritten in the form 9'~ -+ co. ~ 

Every compound Poisson distribution is infinitely divisible, and theorem 1 
tells us that every infinitely divisible distribution can be represented as a 
limit of a sequence of compound Poisson distributions [see (l.8) with t = 11· 
In this way we get a new characterization of infinite divisibility. 

Theorem 3. The class of infinitely divisible distributions coincides ,with the 
class of limit distributions of compound Poisson distributions. 

Application t-o processes with independent increments. As explained in VI,3 such processes 
can be described by a family {XU)} of random variables with the property that for any 
partition to < tl < . , . < tn the increments X(tk ) - X(tk _ 1) represent n mutually 
independent variables. The increments are stationary if the distribution of X(s+t) - X(s) 
depends only on the length t of the interval, but not on its position on the time axis, In 
this case X(s+t) - X(s) is the sum of n independent variables distributed as 
X(s + tin) - X(s), and hence the distribution of X(s + t) - X(s) is infinitely divisible. 
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Conversely, every family of infinitely divisible distributions with characteristic functions 
of the form et'l' can regulate a process with independent stationary increments. The results 
concerning triangular arrays in section 7 will generalize this result to processes with non
stationary independent increments. The increment X(t + s) - X(s) is then the sum of 
increments X(tk+l) - X(tk) and these are mutually indepenoent random variables. The 
theorem of section 7 then applies provided the process is continuous in the sense that 
X(t + h) - X(t) tends in probability to zero as h - O. For such processes the distribution 
of the increments X(t + s) - X(t) are infinitely divisible. (Discontinuous processes of this 
type exist, but the discontinuities are of a trite nature and, in a certain sense, removable. 
See the discussion in IX,5"a and IX,9.) 

Compound Poisson processes admit of a particularly simple probabilistic interpretation 
(see VI,3 and IX,5) and the fact that every infinitely divisible distribution appears as limit 
of compound Poisson distributions helps to understand the nature of the more general 
processes with independent increments. 

2. CANONICAL FORMS. THE MAIN LIMIT THEOREM 

" We saw that to find the most general form of infinitely divisible character
istic functions w = e'" it suffices. to determine the general form of possible 
limits "of .sequences of characteristic functions exp cn<'n-l) of the com
pound Poisson type. For various applications it is desirable to state the 
problem more generally ~y permitting arbitrary centerings, and hence we 
seek the possible limits of characteristic functions of the form Wn = e"'n, 
where we put for abbreviation 

The w,,· are infinitely divisible, and the same is therefore true of their 
continuous limits. 

Our problem is to find conditions. under which there exists a continuous 
limit 

·(2.2) 

It is understood that ({In is the characteristic function of a probability 
distribution Fn , the Cn are positive constants, and the centering constants 
p" are real. . 

For distributions with expectations the natural centering is to zeio expec-
tation, and whenever possible we shall choose fln accordingly. However, we 
need' a universally applicable centering with similar properties. As it turns 
out, the simplest such centering is obtained by the requirement that for ~ = I 
the value of 'Pn be reaL If Un and Vn stand for the real and imaginary part 
of .rp" our condition requires that 

·(2.3) 
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This shows that our centering is always possible. With it 

(2.4) 

Near the origin the integrand behaves like _!,txt,_ just as is the case with the 
more familiar centering to zero expectation. The usefulness of the centering 
(2.3) is due largely to the following . 

Lemma. Let {cn} and {9'n} be given. If there exist centering constants 
fJn such that 'Pn tends to a continuous limit 'P, then (2.3) will achieve the same 
gool . 

Proof. Define 'Pn by (2.1) with arbitrary fJn' and suppose that 'Pn -+ 'P. 
If b denotes the imaginary part of 'P(l) we conclude for ,= 1 that 

(2.5) 

Multiplying by i'. and subtracting, from 'Pn -+ 'P we see that 

(2.6) 

and this pro~es the assertion. 

We begin.by treating our convergence problem in a special case in which the 
solution is particularly simple. Suppose that the functions 'Pn and 'P are 
twice continuously differentiable (which means that the corresponding 
distributions have variances; see XV,4). Suppose that not only 'Pn -+ 'P, 
but also 1p~ -+ 'P"' In view of (2.1) this means that 

(2.7) 

By assumption cnx2 Fn{dx} defines a finite measure, and we denote its 
total mass by !In' For ,= 0 we see from (2.7) that !In -+ -'P"(O). On 
dividing (2.7) by !In we get on the left the characteristic function of a proper 
probability distribution, and as n -+ 00 it tends to 'P"a)/'P"(O). It follows 
that ?p" (')/tp" (0) is the characteristic function of a probability distribution, 
and hence 

(2.8) 
(+00 

-tp"a) = J-oo ei{1I: M{dx} 

where M is a finite meaSU1~. From this we obtain tp by repeated integration. 
Bearin:g in mind that tp(O) .= 0 and that with our centering condition tp(I) 

must be real, we get 

(2.9) tpa) = [+0000 ei{x - 1 x-: n sin x M{dx}. 
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This integral makes sense, the integra Id being a bounded continuous 
function assuming at the origin the value -i{2. 

Under our differentiability conditions the limit tp is necessarily of the 
fonn (2.9). We show next that with an arbitrarily chosen finite measure M 
the integral (2.9) defines an infinitely divisible characteristic function ell'. 

However, we can go a step further. For the integral to make sense it is not 
necessary that the measure M be finite. It suffices that M attributes finite 

masses to. finite intervals and that M{ -x, x} increases sufficiently slowly 
for the integrals 

(2.1O) M+{x) == r y-' M{dy), M-{ -x)· r~y-' M{dy) 

to converge· for all x ~ O. (For definiteness we take the intervals of in~e
gration dosed.) 'Measures'defined by the densities Ixl P dx with 0 < p < 1 
are typical examples. We show that if M has these properties (2.9) defines 
an infinitely divisi~le characteristic function, and that all such characteristic 
functions are obtained in this manner. For this reason it is convenient to 
introduce a special term for our measures. 

. . .' 

"Definition 1. A measure M will be called canonical if it attributes finite 
masses to finite intervals and the integrals (2.10) converge for some (and 
therefore all) x > O. 

Lemma 2~ If M: is a canonical measure and tp defined by (2.9) then eIP ' is 
an' injinitefydivisible characteristic function. 

Proof. We consider two important special cases. 
(a) Suppose that M is concentrated at the origin and attributes mass 

m > 0 to it. Then tpa) ~ -m'2/~, and so e'P is a normal characteristic 
function with variance m-l . 

(b) Suppose that M is concentrated on Ixl > 'YJ where 'YJ > O. In this 
case (2.9) may be rewritten !n a simpler form. Indeed, x-2 M{dx} now 
defines a finite meas~re with total mass f-l =M+( 'YJ) f' M-( --- 'YJ). Accord
ingly, x-2 M{dx}/f-l.= F{dx} defines a probability measure with character
istic function cp, and obviously tpa) = f-l[cpa) - 1 - ib,}, where b is a 
real constant. Thus in this case e'P is the characteristic function of the 
compound Poisson type, and hence infinitely divisible. 

(c) Iri the general case, let m > 0 be the mass attributed by M to the 
origin, and put 

(2.11) 

Then 

(2.12) 

tp"a) = r ei{x - 1 ~ i' sin x M{dx}. 
J',;:I>" x 
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We saw thar e'l''1 (~) is the characteristic fooction of an infinitely divisible 
distribution U". If m > 0 the addition of -m~2/2 to 'I'"a) corresponds 
to a convolution of U" with a normal distributio;1. Thus (2.12) represents 
e'P as the limit of a sequence of infinitely divisible characteristic functions, 
and hence e'P is infinitely divisible as asserted. ~ 

We show next that the representation (2.9) is unique in the seose that distinct 
canonical measures give rise to distinct integrals. 

Lemma 3. The representation (2.9) of 1p is unique. 

Proof. In the special case of a finite measure M· it i.; clear that the secon~ 
derivative '1''' exists and that - 1p" a) coincides with the expectation of 
ei~a: with respect to M. The uniqueness theore~ fqr characteristic funCl,ions 
guarantees that !vI is uniquely determined by '1''',' and hence by 1p. 

This argument can be adapted to unboundeq .canonical measure~,· but it 
is necessary to replace the .second derivative by an operation \Vith a si~ilar 
effect and applicable to arbitrary continuous functions. Such operations can 
be chosen in various ways (see problems 1-3). We choose the ope~atip!l 
that transforms 1p into the function tp * defined by , 

(2.13) 1p*a) =1p.({) - 1-. Ih1p(i + s) ds, ,: ". 
2h -h' 

where h > 0 is arbitrary, but fixed. For the function 1p defined' by (2.9) 
we get 

(2.14) ,1p;({) = (+'X'ei{x. K(x) M{dx} 
. .1:-00 ·"r! 

where we put for abbreviation 

(2.15) K(x). i-'[ 1 ~ Si:hxh J 
This is a strictly positive continuous fl'ncticn assuming at the origiil the value 
h~/6 and as, x -- ± 00 we have K(x).-...., x-2• The measure J{* defined by 
Jvf*{d'l.;} = K{x) Af{dx} is therefore finit{-!, ~nd (2.14) states that y ~ is lt~ 

Fourier !ransform. By the uniqueness theorem for chara~teristl<.: function:. 
the knowledge of ;p* uniquely determines the measure Al*. But t,hen 
Al{dx} = K-l(X) M *{d.l·J

t is uniquely determined and so the.knowledge of 
1p enables us to calculate the corresponding can0nlcai meaS!1r~ (cf. problem 
3). ~ 

O:Jf llcxt goal should be to pro\~: that lemma 2 (iescribcs the totality of'ali 
infinitely divisibie characteristic functions, but to do thIS we must first 30lvc 

J • , 

the convergence problem described at the beginning of this sect;on, \Ve put 
it" now in the following slightly "more gen~raJ form: Let {A1nl b·; a sequence 
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of canonical measures and 

(2.16) 1+ 00 i,z 1 . r . 
'I'"a) = -00 e - ~ l~ SIn x M,,{dx} + ib", 

where btl is real. We ask for the necessary and sufficient conditions that 
'1'" -,+ 'I' where 'I' is a continuous function. Note that functions '1'" defined 
by (2.1) or (2.4) are a special case of (2.16) w.ith 

(2.17) M,,{dx} = c"x2 F,,{dx} 

Assume '1'" -+ '1',. the limit 'I' being continuous. The transforms defined 
by (2.13) then ,satisfy '1': -+ 'I' *, that is 

(2.18) 

where K is the strictly positive continuous function defined by (2.15). On 
the left we reco~ the Fourier transform of a finite measure with total mass 

(2.19) 1+00 
1-'" = -00 K(x) M ,,{dx}. 

Clearly. 1-'" -+ 'I' *(0). Ii is easily seen that 1-'" -+ 0 woul~ imply ¥'a) = 0 
for all " and hence we may suppose 'I' *(0) = Il > O. Then the measures 
M! defined by . 

(2.20) M: {dx} = 1.. K(x) M,,{dx} 
1-'" 

are probability measures, and. (2.18) states that their characteristic functions 
·'tend to the ~ontinuous function 'I' * (')/'1'*(0). It follows that 

(2.21) 

where M '* is the probability distribution with characteristic function 
'I' * a)/'I'* (0). But '1''': may be written in the form 

1
+00 i,z I' . r . 

(2.22) '1',,(') = 1-'" -00 e - ~ l~ SIn X K-1(x) M:{dx} + ib,,~. 

The integrand is a bounded continuous function of x, ana so (2.21) implies 
that the integral converges. It follows that bra -+ b and our limit 'I' is of the 
form 

(2.23) 

Since M* is a probability measure it is clear that the measure M defined by 

(2.24) M{dx} = I-'K-1(x) M*{dx} 
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is canonical, and 

(2.25) tp<') = [+00 ei{:z; - 1. ~ i' sin x M{dx} + ib'. 
J-oo x 

This shows that, except for the irrelevant centering term ib" all our limits 
. are of the form described by lemma 2. As already remarked, functions tp" 

defined by (2.1) are a special case of (2.16), and hence we have solved the 
convergence problem formulated at the begipning of this section. We state 
the result as 

Theorem 1. The. class of infinitely divisible characteristic functions is identical 
with the class offunctions of the form e'# with 1p defined by (2.25) in terms of a 
canonical measure M and a real number b. 

In other words, except for the arbitrary centering there is a one-to-one 
correspondence between canonical measures and infinitely divisible 
distributions. 

In the preceding section we have emphasized that the conditions 
M; -- M* and bn -- b are necessary for the relation tpn --tp. Actually 
we have also shown the sufficiency of these conditions, since tpn could be 
written in the form (2.22) which makes it obviousthat tpn tends to the limit 
defined by (2.23). We have thus found a useful limit theorem, but it is 
desirable to express the condition M; -- M* in terms of the canonical 
measures M nand M. The reiationship between M nand M; is defined 
(2.22). In finite intervals K remains bounded away from 0 and 00, and so 
for every finite I the relations M:{l} -- M*{l} and Mn{l} -- M{I} 
imply each other. As x -- 00 the behavior of K is nearly the same as that 

of x-2 , and hence M;{x, oo} t""-...J M~(x) where M: stands for the integral 
occurring in the definition (2.10) of canonical measures. Thus proper 
convergence M: -- M* is fully equivalent to the conditions 

(2.26) 

for all finite intervals of continuity for M, and 

(2.27) 

at all points x > 0 of continuity. In the special case of canonical measures 
of the form Mn{dx} = cnx2 Fn{dx} (with Fn a probability distribution) 
these relations take on the form 

(2.28) cn £x2 Fn{dx} -- M{l} 

and 

(2.29) 

If I = a, b is a finite interval of continuity not containing the origin, then 
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(2.28) obviously implies cnFn{l} -- M+(a) - M+(b) and so (2.29) may be 
taken as an exte~sion of (2.28) to semi-infinite intervals. An equivalent 
condition is that no masses flow out to infinity in the sense that to each E > 0 
there corresponds a T such that 

(2.30) 

at least for all n sufficiently large. In the presence of (2.28) the conditions 
(2.29) and (2.30) imply each other. [Note that the left side of (2.30) is a 
decreasing function of T.] Sequences of canonical measures Mn{dx} = 
= CnX2 Fn{dx} will occur so frequently that it is desirable to introduce a 
convenient term for reference. 

Definition 2. A sequence {Mn} of canonical measures is said to converge 
properly to the canonical measure ll1 if the. conditions (2.26) and (2.27) are 

I 

satisfied. We write Mn -- M iff this is the case.' . 

With this terminology we can restate our finding concerning the con
vergence tpn -- tp as follows. 

Theorem 2. Let Mn be a canonical measure and tpn be defined by (2.l6). 
In order that tpn tends to a continuous limit tp it is necessary and sufficient 
that there exist a canonical measure M such that Mn -- M, and that 
bn -- b. In this case tp is given by (2.25). ' 

In the following We shall use this theorem only in the special case 

(2.31) tpn(O = Cn[lfna) -. 1 - ibn']. 

,where ({In is the characteristic function ofa probability distribution En. 

Our conditions then take on .the fonn 

(2.32) cnx2 Fn{dx} -- M{4x}, cn(Pn~bn) -- b 

where we put again 

(2.33) 1+00 
Pn = "'00 sin ~ . F n{dx}. 

By virtue of theorem 1 of section lour conditions apply not only ~o seq uences 
of compound Poisson distributions, but also to~moregeneral sequences of 
the form {({J~}. 

Note on other canonical representations. The measure M is not the one encountered in ' 
the literature. In his pioneer work P. Levy used the measure A defined ol:ltside the origin 
by A{dx} = x-2M{dx} and which represents the limit of nFr.{dx}. It is finite on intervals 
Ixl > 15 > 0 but unbounded near the origin. It does not take into account the atom of M 
at the origin. if any. In terms of this measure (2.9) takes on the form 

(2.34) '1'('> = -:-iu2'2 + ;b, + ltm' r [ei'Z - 1 + i' sin xl A{dx}. 
cJ-o J1zl>cJ 
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,This is (except for a different choice of the centering function) P. Levy's original canonical 
representation. Its main drawback is that it requires many words for a 'full description of 
all requited properties of the measure A. 

Khintchine introduced the bounded measure K defined by K{dx) = (1+x2)-1 M{dx} 
This bounded measure may be chosen ,arbitrarily, and Khintchine's canonical represen
tation is given by 

i+ 00 [ i 'x ] 1 + x2 

xa) = ib, + ei{:Z: - 1 - K{dx}. 
1 + x 2 x 2 

-00 

(2.35) 

It is easiest to describe since it avoids unbounded measures. This advantage is counter
balanced by the fact that the artificial nature of the measure K complicates many argu
ments unnecessarily. Stable distributions and the example 3([) illustrate this difficulty. 

2a. DERIVATIVES OF CHARACTERISTIC FUNCTIONS 

Let, F be a probability distribution with' characteristic function qJ. It was shown in 
XV,4 that if F has an expectation p. then cP has a derivative cp' with cp' (0) = ip. The 
converse is false. The differentiability of cp is closely connected with the law of large numbers 
for a sequence {Xn} of independent random variables with the common distribution F, 
and hence many studies were concerned with conditions,on F that will ensure the existence 
of q/. This problem was solved by E. J. G. Pitman in 1956 following a p(irtial answer by 
A. Zygmund (1947) who had still to impose smoothness conditions on qJ. In view of the 
formidable difficulties of a direct attack on the problem it is interesting to see that its 
solution follows as a simple ~orollary of the last theorem. 

Theorem. Each of the followint three conditions implies the other two. 

(i) cp' (0) = i/-l. 

(ii) As t - 00. 

(2.36) f~tX F{dx} -p. 

(iii) The average (Xl +- .. +Xn)/n tends in probability to f.t. 

t[1 - F(t) + F(t)] - 0, 

Proof. The real part of cp being even, the derivative cp' (0) is necessarily r,urely iinagin
ary. To see the connection between our limit theorem and the relation cp (0) =;/-l it is 
best to write the latter in the form 

(2.37) 1-+ 00. 

If t rU!l.S through a sequence {cn } this becomes a special case of (2.31) with cpna) = 
= qJa/cn) and Fn(x) = F(cT/x). Thus theorem 2 asserts that (2.37) holds iff 

(2.38) t f_+oooo sin x F{t dx} - f.t. 

(a) Assume (2.36). An integration by parts shows that for arbitrary a > 0 

(2.39) tIa x 2 F{t dx} < 4!.atX [1 - F(tx) + F( -tx)] dx. 
-a 0 

As t - 00 the integrand tends to 0, and hence the same is true of the integral. Since 
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II sin x/I - xl < Cx2 it follows easily that (2.38) is true and this entails (2.37). Conversely 
(2.38) clearly implies (2.37). Thus conditions (i) and (ii) are equivalent. 

(b) According to theorem 1 of section 1 we have rpna/n) -- eill~ iff 

In Qther words, the law of large numbers applies iff (2.37) holds when I runs through the 
sequence of positive integers. Since the convergence of characteristic functions is auto
matically uniform in finite interva s it is clear that (2.40) implies (2.37) and so the con
ditions (i) and (iii) are equivalent. 

That (2.36) represents the necessary and sufficient conditions for the law of large numbers 
(iii) was shown by different methods in theorem 1 of VU,7. ~ 

3. EXAMPLES AND SPECIAL PROPERTIES 

We list a few special distributions and turn then to properties such as 
existence of moments and positiyity. They are listed as "examples" partly 
for clarity of exposition, partly to emphasize that the in'dividual items are not 
connected. None of the material of this section "is used in the sequel. 
Further examples are found in- problems 6, 7, and 19 .. 

Examples. (a) Normal distribution. If M is concentrated at the origilA 
and attributes weight a2 ~o it, then (2.25) leads to 11'(0 = -!a2s2 and e;P 
is normal with zero expectation and variance (12. 

(b) Poisson distribution. The ~tandard Poisson distribution with expectation 
IX has the characteristic function (J) = e'P with 1p(S) = IX(eiC -1). We 
change the location parameters so as to obtain a distribution concentrated 
at points of the form -b + nh. This changes the exponent into. pes) = 
= IX(ei~h-l) - ibs, which is a special case of (2:25) with M concentrated 
at the single point h. The property that the ~easure M is concentrated at a 
single point is therefore characteristic of the normal and the Poisson distri
butions with arbitrary scale parameters. Convolutions of finitely many such 
distributions correspond to canonical measures with finitcly many atoms. 
The most general measure M may be obtained as the limit of a sequence of 
such measures and so all infinitely divisible distributions are limits of con
volutions offinitely many Poisson and normal distributions. 

(c) Randomized random walks. In II,(7.7) we encountered the family of 
arithmetic distributions attributing to r = 0, ± 1, ±2, ... probability 

(3.1) Q,(t) = J (~)e-tI,(2,jpq t); 
here the parameters p, q, t are positive, .p + q = I, and Ir is the Bessel 
function .defined in II,(7.l). The fact that {ar } satisfies the Chapman
Kolmogorov equation shows th~t it is infinitely divisible. Its characteristic 
function (J) = e'P is easily calculated because it differs from the Schlomilch 
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expansion 11,(7.8) nlerely by the change of variable u = .J p/q e-iC• The result 

(3.2) 

shows that {ar(t)} is the distribution of the difference of two independent 
.Poisson variables with expectations pt and qt. The canonical measure is 
concentrated at the points ± 1. 

(d) Gamma distributions. The distribution with density 

g t(x) = e-%xt- 1/r(t) 

for x > 0 has the characteristic function Yt(O = (1-iO-t which is clearly 
infinitely divisible. To put it into the canonical form note that 

(3.3) (log y,a»' = it(l- i,)-1 = it f.oo eiC:»-:I: dx. 

Integration shows that 

1.
00 eiC:I: - 1 

(3.4) log i't(') = t e-:I: dx. 
o . x 

thus the canonical measure M is defined by the density txe-:r; for x > o. 
Here no .centering term is necessary since the integral converges without it. 

(e) Hyperbolic cosine density. We saw in XV,2 that. the density f<x) = 
= 1/1T cosh x has the characteristic function roe 0 = Ilcosh (1T'I2). To show 
that· it is infinitely divisible we note that (log ro)" = - (1T2/4)ro2. Now ro2 

is the characteristic function of the density f2 * which was calculated in 
'probiem 6 of 11,9. Thus 

~ 1+00 

x 
d

y210g roa) = - eiC:I::I: _:I: dx~ 
~ -00 e - e 

(3.5) 

Since (log ro)' vanishes at the or:igin we get 

1+00 eiC:I: - 1 - i~x x 
log ro(') = 2:1: _:I: dx. 

-00 x e - e 
(3.6) 

The canonical measure therefore has density xl(~ - e-:r;). For reasons of 
symmetry the contribution of the term i'x vanishes, ahd since the integral 
converges without it, this term may be omitted from the numerator. 

(f) P. Levy's example. The function 

+00 

(3.7) tp(') = 2 ! 2-k[COS 2k'-I] k--oo 
is of the fonn (2.9) with M symmetrIc CLnd attributing weight 2k to the 
points ±2k with k = 0, ± 1 ±2, , . . .. (The series' converges because 
1 - cos 21e , ,....., 22.t-l~ as k ~ - 00.) The characteristic function ro.= e'P 
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has the curious property that £02(,) =w(2s), and hence £02\0 = w(2k S). 
For stability (in the sense introduced in VI,I) one should have wna) = 
= w(anO forall n, butthis requirement is satisfied only for n = 2,4,8,···· 
In the terminology of section 9 this £0 b~longs to its own domain of partial 
a.ttraction, but it does not have a domain of attraction. (See problem 10~) 

(g) One-sided stable densities. We proceed to calculate, the characteristic 

functions corresponding to the canonical measures concentrated on 0, 00 

such that 

(3.8) M {a, x} = Cx2:-a o < IX < 2, C > o. 

This example is of great importance because it will turn out that from it we 
may derive the general form of stabI~ characteristic functions~ 

(i) If 0 < IX < 1 we consider the characteristic function lOa = e'Pa with 

(3.9) 
, Loo eiC:I: - 1 

tpa(') = e(2-IX) ,dx. 
o ra+1 

This differs from the canonical fonn (2.9) by the omission of the centering 
tertll, whi~h is dispensable, since the integral conve:tges without it. To 
evaluate the integral we suppose '>0, arid consider it as the limit as 
A-+O+ of 

(3.fO) 

= - ! r(l - IX)(A - i~t 
IX 

(for the characteristic function of gamma densities see XV,2). Now 

(A - is)a = (A2+ s2)a/2ei9a 
. \ 

where () is the argument of A - is, that is, tan () = ,- sf A. Obviously 
() ~ -7T/2 as A -+ 0+, and hence (A-i,)a -+ sae- iCX7t/2.' We write the final 
result in the form 

(3.11) 111 (.r) = ra. C . r(3-IX) e-i7ta/2 . 
ra ~ ~, (IX-1)IX. ' 

For S < 0 one gets "PaCS) as the conjugate of Vl,,( -~). 
(ii) When 1 < IX < 2 we put 

(3.12) (s) = cioo 
e,c:r: -. 1 - i'~ dx. 

"Pa 0 . x«+l 

s > o. 

This differs from the canonical form (2.9) by the more convenient centering 
to zero expectation. An integration by parts reduces the exponent in the 



XVII.3 . EXAMPLES AND SPECIAL PROPERTIES 569 

denominator and enables us to use the preceding result. A routine cal
. culation ,shows that ?Pa is again given by (3.11). (The real part is again 
negative, because. now cos 7T/2 < 0.) 

(iii) When IX = 1 we use the standard form 

(3.13) 

We know from·XV,2 that (l-cos X)/(7TX2) is a probability density, and hence 
the real part of ?PI(S) equals -i7Ts. For the imaginary part we get 

(3.14) f.oo sin sx -2 s sin x dx ~ .lim [1 00 

sin fX dx _ sloo sin 2X dX] 
I> X !-+O! X ! x 

When s > 0 the substitution sx = y reduces the first integral to the form 
of the second, and the whole reduces to 

(3.15) . J.!~ sin x . J.~ sin €y dy -s lIm -.-2 dx = -shm . - = -s log s. 
!-+o ! . x· !-+O I €y Y 

Thus finally 

(3.16) s> o. 
Of course, 'PI ( -s) is the conjugate to 'PIa). 

When IX ~ 1 the characteristic function w = e'Pa enjoys the property 
that wn(o = w(nl/as). This means that w is strictly stable according to 
the definition of VI,I: The sum of independent variables Xl"" ,Xn with 
characteristic function w has the same distribution as nl/aXI • When IX = 1 
we have wn(o = w(n')e-i~ log n, and hence the distribution of the sum 
differs from that of nl/aXI by its centering. Thus 1jJi is stable in the wide 
sense. 

[Fo! various properties of, and examples for, stable distributions see 
VI,1-2. Additional properties will be derived in section S.ln section 4t we 
shall see that when rx < 1 the distribution is concentrated on the positive 
half-axis. This is not true for rx -:;to I.] 

(h) General stable densities. To each 1jJa of the preceding example there 
corresponds an analogous characteristic function induced by the canonical 
measure with the same density,· but concentrated on the negative half-axis. 
To obtain these characteristic functions we have merely to change i into -i 
in oUf formulas. One can derive more general stable characteristic functions 
by taking linear combinations of the two extreme cases, that is, using a 
canonical measure M such that for x >0 

(3.17) M{O, x} = Cpx2
-

a
, M{ -x, O} = Cqx'!.·-a. 

Here p ~ 0, q > 0 and p + q = 1. From what was said it is clear that tht: 
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corresponding characteristic function (J) = e'P is given by 

(3.18) 1p(S) = Isla c r(3-(X)[cos 7T(x ± i(p-q) sin 7T(x] 
(X«(X-l) 2 2 

if 0 < (X < 1 or 1 < (X <2, while for (X = 1 

(3.19) 

here the upper sign applies when S > 0, the lower for ,< O. Note that 
for (X = 2 we get 1pa) = -'!(p + qgz, that is. the normal distribution. 
It corresponds to a measure M concentrated at the origin. 

It will be shown in section 5 that (neglecting arbitrary centerings) these 
formulas yield the most general stable characteristic functions. In pp.rticular, 
all symmetric stable distributions have characteristic functions of the form 

e-al'l
a 

with a > o. ~ 

4. SPECIAL PROPERTIES 

In this section (J) = e lll stands for an infinitely divisible characteristic 
function with 'I' given in the standard form 

(4.1) 

where M is a canonical measure and b a real constant. By the definition 
of canonical measures the integral 

(4.2) M+(x) = r y-' M{dy} 

converges for all x > 0, and a sinlilar statement holds for x < o. 
The probability distribution with characteristic function (J) will be denoted 

by U. 
(a) Existence of moments. It was shown in XV,4 that the second moment 

of U is finite iff (J) is twice differentiable, that is, iff '1'" exists. The same 
argument shows that this is the case iff the measure M is finite. In other 
words,for a second moment of U to exist it is necessary and sufficient that the 
measure M be finite. 

A similar reasoning (see problem 15 of XV,9) shows more generally that 
for any integer k ~ I th'e 2kth moment of U exists iff M has a moment of 
order 2k - 2. 

(b) Decompositions. Every representation of M = Ml + M z of M as 
the sum of two measures induces in an obvious manner a factorization 
w = e'Ple '1'% of w into two infinitely divisible characteristic functions. If 



XYlI.4 SPECIAL PROPERTIES 571 

M is concentrated at a single point the same is true of Ml and M
2

; in 
other words, if w is normal orPoisson,2 the same will be true of the two 
factors e'l'1 and e'Pz. But any other infinitely divisible w can be split into 
two essentially different components. In particular., any non-normal stable 
characteristic function can 'be factorized into non-stable infinitely divisible 
characteristic functions. ' 

A particularly useful decomposition w = e'P1e'PZ is obtained by represent
ing M as a sum of two measures concentrated on the intervals Ixl < 'Y} 

and Ixl > ,'Y}, respectively. For the latter we express M in terms of the 
measure N defined by N{dx} = x-2 M{dx}. Thus we write 

(4.3) 

where 

(4.4) 

(4.5) 

and the difference b - fJ accounts for the changed centering terms in (4.4) 
and (4.5). 

Note that ~'P% is the characteristic function of a compound Poisson distri
bution generated by a probability distribution F such that F{dx} = c N{dx}, 
or 

(4.6) 1 - F(x) = c M+(x), x> o. 
The function e'P1 is infinitely differentiable. We see thus that every infinitely 
divisible distribution if is the convolution of a distribution U1 possessing 
moments of all orders and a compound Poisson distribution U2 generated by 
a probability distribution F with tails proportional to M+ and M-. It 
follows in particular that U possesses a kth moment iff the kth moment of 
F exists. 

(c) Positive variables. We proceed to prove that U is concentrated on 

0, 00 iff3 

(4.7) l oo ei~:J: - 1 
'1'(0 = P{dx} + ibs 

o x 

2 By theorem 1 of XV,8 the normal characteristic function does not admit of any factor
ization into non-normal characteristic functions. An analogous statement hold~ for the 
Poisson distribution (Raikov's theorem). ' 

3 This remark was made by P. Levy and is also an immediate consequence of the Laplace 
transform version XIU,(7.2). It is interesting that without probabilistic arguments a formal 
verification of the assertion is cumbersome (see G. Baxter and J. M. Shapiro, Sankhya, 
vol. 22.) 
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where b ~ 0 and P is a measure such that (1 +X)-l is integrable with 
respect to P. (In the original notation of (4.1) we have P{dx} = X-I 

M{dx}.) 

Assume U concentrated on [0, (0) and consider the decomposition 
described by (4.3)-(4.5). The origin is a point of increase for the compound 
Poisson distribution U2 • The distribution U I has zero expectation, and 
therefore some point of increase s < O. It follows that s + fJ is a point of 
increase for U, and hence fJ ~ O. The same argument shows that UI can 
have no normal component, and therefore the contribution of UI must 
tend to 0 as 'YJ -- O. Finally, if t is a point of increase for the probability 
distribution F generating Uz, then nt is a point of increase for Uz itself. 
It follows that F, and hence N, are concentrated on- the positive half-axis, 
and so the integral in (4.5) actually extends only over x > 'YJ. The integrand" 
vanishes at the origin, and· therefore in the passage to the limit 'YJ -- 0 the 
measure N need not remain bounded. However, for x > 'YJ we can switch 
from the measure N to P{dx} = x N{dx} (which is the same as X-I M{dx}). 
Near the origin the new integrand (ei~:r;-l X-I is bounded away from 0, 
and hence P must assign finite values to neighborhoods of the origin. 
In this way we obtain the representation (4.7). 

Conversely, if "p is defined by (4.7) then our argument shows e'P to be 
the limit of characteristic functions of compound Poisson distributions 

concentrated on 0, 00. The same is therefore true of the limit distribution U. 
(d) AsymptotiC behavior. The result concerning the existence of moments 

appears to indicate that the asymptotic behavior of the distribution function 
U as x -- ± 00 depends only on the behavior ·of the canonical measure M 
near ± 00 or, what amounts to the same, on the' asymptotic behavior of the 
functions M+ and M-. Rather than attempting to prove this conjecture 
in the greatest possible generality we consider a typical situation. 

Suppose that M+ varies regularly at 00, that is, 

(4.8) M+(x) = x-'L(x) 

where ,> 0 and L is slowly varying. Then 

(4.9) 1 - U(x) i"'J M+(x), x -- 00. 

Proof. Let S be a random variable having V for distribution function. 
Consider the canonical measure M as a sum MI + Mz + M3 of three 

__ I I 
measures concentrated on the intervals 1, 00, -1, 1, and - 00, -1. As 
shown under (b), this induces a representation S = Xl + Xz + Xa + fJ as a 
sum of three independent random variables such that: Xl has a compound 
Poisson distribution UI generated by a probability distribution F concen-

trated on 1, 00 and defined by (4.6); the canonical measure corresponding 



XYliA SPECIAL PROPERTIES 573 

I I 
to X2 is concentrated on -1, 1; finally Xa is defined as Xl except that 

-~, 1 takes over the role of 1, 00. It is not difficult to show that 

(4.10) x--+- 00 

(see" theorem 2 of VIII,9). To prove the assertion (4.9) it suffices therefore 
to show that 

(4.11 ) P{S > x} f'J P{XI > x}, x -- 00. 

In this connection the centering constant fJ plays no role and we assume 
fJ = O. Then for every € > 0 

(4.12) 

On the other hand, since Xa < 0 

(4.13) P{S > x} S P{XI > (l - €)x} + P{X2 > €x}. 

As x --00 the last probability in (4.12) tends to 1, while the last probability 
in (4.13) decreases faster than any power x-a because X2 has moments of 
all orders. Thus (4.12) and (4.13) imply the truth of (4.11). 

(e) Subordination. If elp is infinitely divisible, so is eSIp for every s > o. 
By randomization of the parameter s we obtain a new characteristic function 
of the form 

(4.14) 

where G is an arbitrary probability distribution concentrated on 0, 00. 

The characteristic function cp need not be infinitely divisible, but it is easily 
verified that if G = G1 * G2 is the convolution of two probability distribu
tions then (with obvious notations) cp = CPl CfJ2' It follows that if G is 
infinitely divisible then (4.14) defines an infinitely divisible characteristic 
function. 

This result has a simple probabilistic interpretation: Let {X(l)} stand for 
the variables of a process with independent increments such that X(t) has 
the characteristic function e tlp • If T is a positive variable with distribution 
G then cP may be interpreted as the characteristic function of the composite 
random variable X(T). Suppose then that G is infinitely divisible with 
characteristic function eY• We may envisage a second process {T(t)} with 
independent increments such that T(l) has the characteristic function e

ty
. 

For each t > 0 we get a new variable X(T(t), and these are again the 
variables of a process with independent increments.4 Thus T(t) serves as 

41f G has the Laplace transform e-P(.u then T(/) corresponds to the Laplace trans
form e-tp(.u and it is easily verified that the characteristic function of X(T(t))' is given by 
e-tp(-Ip). 
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operational time. In the terminology of X,7 the new process {X(T(b»} is 
obtained by subordination, with {T(t)} as db; .. ecting process. We have now 
found a purely analytic proof that the subordination process always leads to 
infinitely divisible distributions. 

5. STABLE DISTRIBUTIONS. AND THEIR 
DOMAINS OF ATTRACTION 

Let {Xn} be a sequence of mutually independent random variables with a 
common distribution F, and put Sn = Xl -I:- ..• +Xn • Let U be a 
distribution not concentrated at one point. According to the terminology 
introduced in VI,I we say that F belongs to the domain of attraction of U 
iff there exist constants an > 0 and bn such that the distribution of. 
a-ISn - nbn tends to U. The exclusion of limit distributions concentrated n 

at a single point serves to eliminate the trivial situation where bn -- b 
while an increases so rapidly that a~?Sn tends in probability to zero. 

We wish to rephrase the definition in terms of the characteristic functions 
cP and w of the distributions F and U. According to lemma 4 of XV,I 
the distribution U is concentrated at one point iff Iw( 01 = 1 for all s. 
Accordingly, cp belongs to the domain of attraction of the characteristic 
function w if Iwl is not identically one, and there exist constants an > 0 
and bn such that 

(5.1) 

It was shown in VI,l that the limit w is necessarily stable, but we shall now 
develop the whole theory anew as a simple consequence of the basic limit 
theorem of section 2. In conformity with the notations used there we put 

According to theorem 1 of section 1 the relation (5.1) holds iff 

(5.3) n[cpn(O-l] -- tp(O 

for all S, where w = e"'. 
Consider first the special case. of a symmetric F. Then bn = O. We know 

from theorem 1 of section 2 that (5.3) implies the existence of a canonical 
measure M such that nx2 Fn{dx} -- M{dx}. To express this we introduce 
the truncated moment function 

(5.4) fl(x) = f::r;y2 F{dy}, x > o. 
Then at all points of continuity 

(5.5) 



XVII.5 

and 

(5.6) 

where 

(5.7) 
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n[l-F(a"x)] ~ M+(x) 

The relation qJ(Uan) ~ 1 implies an ~ 00, and therefore Sn/an and 
Sn/an+l have the same limit distribution U. It follows that the ratio an+1/a'n 
tends to 1, arid hence lemma 3 of VIII,8 applies to (5.5). We conclude that 
p varies regularly and the cal10nical measure M is of the form 

(5.8) M{ -x, x} = cra, 
with ex ~ 2. (The exponent is denoted by 2 - ex in conformity with a 
usage introduced by P. Levy.) If ex = 2 the measure M is concentrated at 
the origin. The convergence of the integral in (5.7) requires that ex > 0; for 
o < ex < 2 we find 

(5.9) x> O. 

A similar argument applies to unsymmetric distributions F, but instead of 
(5:6) we get the less appealing relations 

nF(an ( -x+bn» ~ M-( -x), 

and an analogous modification applies to (5.5). However, the fact that 
qJn(O ~ 1 and an ~ 00 implies bn ~O, and so (5.10) is actually fully 
equivalent to (5.6) and the analogous relation for the left tail. 

We see thus that (5.6) holds whenever F belongs to a domain of attraction 
In view of lemma 3 of VIII,8 this'means that either M+ vanishes identically, 
or else the tail 1 - F varies regularly and' M+(x) = Ax-a. Then (5.7) 
shows that on the positive half-axis the measure M has the density Aexx1-

a
• 

The same argument applies to the left tail and also to tjIe tail sum;' the 
exponent ex must therefore be common to the two tails. 

If both tails vanish identicaHy M is concentrated at the origin. In no 
other case can M have an atom at the origin. This is so because the canonical 
measure oM correspon,ding to the symmetrized distribution °U is the sum of 
M and its mirror image with respect to the origin, and we saw that oM is 
either atomless or concentrated at the origin. Accordingly, when ex < 2 
the canonical measure M is uniquely. determined by its densities on the two 
half-axes and these are proportional to lxiI-a. For intervals _ y,x con
taining the origin we have therefore 

(5.11) M{ -Y, x} = C(qy2-a + px2
-

a), 
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where 0 < rx. < 2, C> 0, and p + q = 1. For rx. = 2 the measure is 
concentrated at the origin. In accordance with (5.7) this is equivalent to 

(5.12) M -( ) C 2 - rx. ex -x = q --- x-- . 
rx. 

The characteristic function corresponding to these measures are given by 
(3.18) and (3.19). They show clearly that our distributions are stable in 
the sense tliat un * . differs from U only by location parameters. This means 
that each stable dis~ribution belongs to its own domain of attraction, and we 
have therefore solved the problem of finding' all distributions possessing a 
domain of attraction. We record this in 

Theorem 1. A distribution possesses a domain of attraction iff it i~ stable. 
'(i) The class of stable distributions coincides with the class of infinitely 

divisible distributions with canonical measures given by -(5.11). 
(ii) The corresponding characteristic functions are of the form w(,):
= ev'(~H-ib~ li'itlz tp defined by (3.18)-(3.19), and 0 < rx. < 2. 
(iii) As x ---+ 00 the [ails. of the corresponding. distribution U satisfy 

(5.13) 
2-ex 

x!X[l- U(x)] -+- Cpo . , 
rx. 

The last statement, is a direct corollary of (5:6) if ~ne remembers'that u 
belorigs to its own domain of attraction with norming constants given by 
an = 1Jl/ ex 

• • [Alternatively, (5.13) represents a special case of the result obtained 
in 4(d).J . . ,. 

Note that each of the three descriptiofls -in the tl~eorem determines U 
uniquely up to an arbitrary centering._ • . . . 

.' ,Before returning to the investigation of, the conditions under which a 
distribution F belongs to the domain of attraction of a stable distribution 
w~ recall a basic result concerning r~gular variation. According to the 
~efinition in Vnt8 a function L varies slowly at infinity if for each fixed 
x>O 

(5.14) L(tx) -+ 1 
L(t) , 

t -+ 00 .. 

In this case we hav~ for arbitra~y 15 > 0 . at:td all x sufficiently large 

(5.15) 

A function fl varies regularly if it is of the form p(x) = xP L(x). We con
sider in particular the truncated mome'nt function p. defined by (5.4). 
Applying theorem 2 of VIII,9 with ,== 2 'and 'Y) =0 to the distribution 

function on 0, CX) defined by F(x) - F( -x), we obtain the following 
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important result: 

If Il varies reguiarly with exponent 2 -:.. (X. (where 0 < (Y. < 2) then 

x2[1. -' F(x) + F( -x)] 2 - (X. 
(5.16) -, 
Conversely, if (S.16) is tru~ with (X. < 2, then fl, and the tailsum 

1 - F(x) + F( -x) 

vary regularly with exponents 2 - (X. an'd -(X., respectively. If (S.16) holds 
li'ith (X. = 2 then fl varies slowly. 

, . 
In deriving (S.7) we saw that for a symmetric F to belong to a domain of 

attraction it is necessary that' the truncated moment function' fl varies 
regularly: ' 

(S.17) x-+- 00, 

where L varies slowly. We shall now see that this 1S true also for un
symmetric distributions. When (X. = 2, this condition turns out to be 
sufficient, but 'when (X. < 2 the canonical' m,easure (S.II) attributes to the 
positive and negative half-axes weights in the proportion p:q and it turns 
out the two tails of F must be similarly balanced. 

We are now in a position to prove the basic 

Theorem 2. (a) In ord,er 'that a distribution F belong to some domain of 
attraction it is necessary that the truncated moment function fl varies 
regularly with an exponent 2 - (X. (0 < (X. <2). [That is, (S.17) holds.] 

(b) If (X. = 2 ~ this condition is also sufficient provided F is not concentrated 
at one point. 

(c) If (S.17) holds with 0 < (X. < 2 then F belongs to some domain of 
attraction iff the tails are balanced so that as x--+- 00 

(S.18) 
1 - F(x) 

------- -+- p, 
1 - F(x) + F(-~) 

F(-x) 
, -+- q. 

1 - F(x) + F(-x) 

Note that nothing is assumed concerning the centering of F. The theorem 
therefore implies that (S.17) either holds with an arbitrary centering or with 
none. The truth of this is easily verified directly except that when F is 
concentrated at a single point t the left side in (S.17) vanishes identically for 
the centering at t, and varies regularly for all other centerings. 

The theorem was formulated so as to cover also convergence to the normal 
distributions. "'""hen a < 2 it appears more natural to express the main 
condition in terms of the tailsum of F rather than '00. The following 
corollaries restate the theorem in equivalent forms. 
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Corollary 1. A distribution F 170t concentrated at one point belongs to the 
domain of attraction of the normal distribution iff /-l varies slowly. ' , 

This is the case iff (5.16) holds with (X. = 2. 

Needless to say, /-l varies slowly whenever F has a finite variance. 

Corollary 2. A distribuition F belongs to the domain of attraction of a stable 
distribution with exponent (X. < 2 iff its tails satisfy the balancing condition 
(5.1S) and the tai/sum varies regularly with exponent (x.. 

The latter condition is fully ~quivalent to (5.16). 

Proof. (a) Necessity. Suppose that the canonical measure of the limit 
distribution U is given by (5.11). In the process of deriving this relation 
we saw that a distribution belonging to the domain of attraction of U 
satisfies (5.6) and its analogue for the left tail, and so 

(5.19) nLI - F(anx) + F( -anx)] -+ M+(x) + M-( -x.) 

Assume first (X. < 2, so that the right side is not identically zero. As 
already ~entioned, lemma 3 of VIII,S then guarantees that the tailsum 
1 - F(x) + F( -x) varies regularly with exponent -(X.. But then (5.16) 
holds and so /-l varies regularly with exponent 2 - (X.. The balancing con
dition (5.1S) is now an immediate consequence of (5.6). 

There remains the case (X. = 2. The left side in (5.19) then tends to zero, 
and thus the probability that IXkl > an for some k < n tends to zero. In 
order that Snlan does not tend in probability to zero it is therefore necessary 
that the sum of the truncated second moments of X?:a~l be bounded away 
from O. But 

/-lean) -+ 00 

1 - F(an) + F( -an) 
(5.20) 

and hence (5.16) holds with (X. = 2. This implies the slow variation of /-l, 
and so our conditions are necessary. 

(b) Sufficiency. We shall not only prove that our conditions are sufficient, 
but shall at the same time specify norming constants an and bn that will 
guarantee convergence to a prescribed stable distribution. This is done in 
theorem 3. ~ 

The formulation of theorem 3 assumes 'knowledge of the fact that distri
butions in any domain of attraction with (x.. > 1 possess expectations. In 
the proof we shall require additional information concerning the truncated 
first moments. It is natural to formulate these results in a more general 
setting, although we shall require only the special case fl = 1. 

Lemma. A distribution F belonging to a domain of attraction with index 
(X. possesses absolute moments mp of all orders f3 < (x.. If (X. < 2 no moments 
of order fl > (X. exist. 
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More precisely, if fl < oc then as t -+ 00 

t2-P i 2 - oc (5.21) - Ixl P F{dx} -+ , 
pet) /xl>t oc-fl 

while for oc < 2 and fl > oc 

(5.22) i IxlP F{dx} ~ oc tP[l - F(t) + F( -t)]. 
/xl<t f3-oc 

(Note that in each case tl).e integral is a regularly varying function with 
exponent fl - oc.) 

Proof. The relations (5.21) and (5.22) represent the general form (~15) 
and are direct consequences of theorem 2 in VIII,9 applied to the distribution 
defined on 0, 00 by F(x) + F( -x). For (5.21) set ,. = 2 and 'YJ = fl and 
'YJ = o. ~ 

It is implicit in the proof of theor.em 2 that the norming constants an must 
satisfy the condition 

(5.23) 

If p varies regularly [satisfies (5.17)] such an exist: one may define an 
as the lower bound of all x for which nx-2p(x) < C. Because of the regular 
variation we have then for x > 0 . 

(5.24) np(anx) C 2-a 
-+ X • 

a2 
n 

This means that the mass attribut~d by the measure nx2 F{an dx} to any 
symmetric interval -x, x tends to M{ -x, x}. In view of (5.16) the relation 
(5.24) automatically entails the analogous relation (5.19) for the tailsum of F. 
When oc = 2 the right side is identically zero; when oc < 2 the balancing 
condition (5.18) guarantees that also the individual tails satisfy the required 
conditions 

2-oc CIt (5.25) n[l - F(anx)] -+ Cp x- , 
oc 

the right sides being identical with M+(x) and M-(x). [Incidentally, when 
oc < 2 the relations (5.25) in turn imply (5.24).] 

We have thus shown that the measures nx2 F{an dx} tend properly to the 
canonical measure M. By theorem 2 of section 2 this implies that 

(5.26) 

i+
OO eir:1I: - 1 - i' sin x ., i+ oo eir:1I: - 1 - i' sin x . ------=.-- nx~ F{an dx} -+ M{dx}. 

2 2 
. -00 X . -00 x 

From this it is now easy to derive 
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Theorem 3. Let U be the stable distribution determined (including centering) 
by the characteristic function (3.18) if oc :;f:. 1 or (3.1'9) if oc = 1. 

Let the distrib,,~tion F satisfy the conditions of theorem 2, and let {an} 
satisfy (5.23). 

(i) If 0 < ex < 1 then q;na/an) -+ we,) = e'P<'). 
(ii) If 1 < oc < 2 the same is true provided F is centered to zero 

expectation. 
(iii) If oc = 1 then 

(5.27) 

. 'where 

(5.28) i+oo X 
bn = sin - F{dx}. 

. -<10 an 

We have thus the pleasing resu~t that when oc < 1 no centering proced.ure 
is required, while for oc > 1 the natural centering to zero expectation suffices. 

Proof. (i) Let oc <·1. The integral defining "P( {) in (3.18) differs from the 
right side in (5.26) in that the term i' sin x is missing. We show that these 
terms may be omitted also in (5.26) so that ' 

i
+oo ei'x - 1., i+,.o ei'x - 1 

--2-.· nx~ F{a n dx} -+ 2· M{dx}. 
-00 x -00 x 

(5.29) 

Outside a neighborhood of the origin the integrand'is continuous, and since 
nx~ F{an dx} -+ M{dx} the relation (5.29) holds if an interval Ixl < b is 
cut out of the domain of integration. It suffices therefore to show ~at the 
contribution of Ixl < b to the integral on the left can be made arbitrarily 
small by choosing b sufficiently small. Now this contribution is dominated 
by .. 

(5.30) nJ, Ixl F{a n dx} = .!!:... 'f Iyl F{dy}; 
Ixl <6 an JI1I1 <anI 

and (5.22) with {J = 1 shows that the right side is ~(2 - oc/O - oc»Cb1-
CZ

, 

which tends to lZero with b. . 
Thus (5.29) holds. It can be rewritten in the form n[rp({fan ) - 1] -+ "P('), 

and by theorem 1 of sec#on 1 this is equivalent to the assertion 
. q;na/an) -+ log "P(O. 

(ii) Let oc > 1. The argument used under (i) carries over except that the 
modified version of (5.26) now takes the form 

(5.31) [+00 ei{1I: - \ - i'x nx2 F{a
n 

dx} -+ ,+00 ei'lI: - \ - i'x M{dx} . 
. -00 x J-oo x 

To justify it we have to show that the contribution of Ixl > t to the integral 
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on the 'left can be made arbitrarily small by choosing t sufficiently large. 
This follows directly from (5.2 I). 

(iii) Let (X. = 1. No modification is required in (5.26), but to show that 
this relation is equivaleflt to the assertion (5.27) it is necessary to prove that 
for fixed ~ 

(5.32) 

or, what amounts to the same, that 

(5.33) 

For lJ < 1 the absolute moment mp of F is finite. From the obvious 
inequality leit - 11 < 2 It IP we conclude that 19?a/an ) - 11 < ,2mp "IPa;P 
and so the left side in (5.33) is O(na;2P)'. But the defining relation (5.23) 
shows that n = O(a~ +£) for every€ > 0, and so (5.33) is true. ~ 

Concluding remark. The domain of attraction of the normal distribution must not be 
confused with the notion of the "domain of normal attraction of a stable distribution U 
with exponent aCZ introduced by B. V. Gnedenko. A distribution F is'said to belong to 
this domain if it belongs to the domain of attraction of U with norming coefficients . 
an' = nl/~. The delimitation of this domain originalll posed a serious problem, but 
within the present setup the s~lution is furnished by the condition (5.23) on the norining 
constants. A distribution F belongs to the "normal" domain of attraction of' U iff 
xC'[l - F(x)] -- Cp and xfX.F( -x) -- Cq as x -- 00. Here C> 0 is a constant. (Note, 
incid~ntally, that in this. terminology the normal distribution possesses a domain of non-
nor~al attraction.) . . 

*6. STABLE DENSITIES 

It seems impossible to express stable densities in a dosed form, but 
seri~s expansions were given independently. by Feller (1952) and H. Berg
strom (1953). They contain implicitly results discovered later by more compli
cated methods, and they provide a good example for the use of the Fourier 
inversion formula (although, complex integration is used). We shall not 
consider the exponent (X. = 1. 

For ~ > 0 we can put the stable characteristic functions in the form 
e-a,cz, where a is a complex constant. ~ts absolute value affects only a scale 
parameter so that we are free to let a have a unit modulus and write 
a = ei1rY/ 2 with 'Y real., Thus we put 

(6.1) 

where in ± the upper sign prevails for ~ > 0, the lower for ~ < O. [See 
the canonical form (3.18).] The raj:jo of the real and imaginary parts are 

* Tl?-is section treats a special topic and should be omitted at first reading. 
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subject to inequalities evident in (3.18); with the present notations for e'P 
to be stable it is necessary and sufficient that 

oc 
(6.2) Iyl ~ 2 _ oc 

if 0 < oc < 1 

if 1 < oc < 2. 

Since e'P is absolutely integrable the corresponding distribution has a 
density. It will be denoted by p(x; oc, y)" and we proceed to calculate it 
from the Fourier inversion formula XV,(3.5). Knowing that p is real and 
that "P( - 0 is the conjugate of "P(O we get 

( Loo . cz i7TY/2 (6.3) p(x; oc, y) = 7T-
I Re 0 e-1x,-{ e d,. 

It suffices to calculate this function for x > 0 since 

(6.4) p( -x; oc, y) = p(x; oc, -y). 

(a) The case oc < 1. Consider the integrand as a f~nction of the complex 
variable ,. When x '> 0 and 1m' -+ - ex) the integrand tends to 0 owing 
to the dominance of t~e linear term in the exponent. This enables one to 
move the path of integration to the negative imaginary axis, which amounts 
to using the substitution ,= (t/x)e-ib and proceeding as if all coefficients 
were real. The new integrand is of the form e-t-ctl%. The exponential expan

. sion for e-ctCZ and the familiar gamma integral lead without further artifice. to 

(6.'5) p( -x; oc, y) =, Re -i I r (koc+l) (-:-X-CZ exp [i7T (Y_OC)])k. 
7TXk=O k! 2 

(b) The case 1 < oc < 2. The use of the formal substitution 

, = t ll
-

I exp (-ii7TY/oc) 

can be justified as in the case oc < 1. The new integrand is of the form 
e-t-ctCZ-l t CZ-

1
_ 1• Expanding e-dcz-

1 
into an exponential,series we get 

p( -x; oc, y) = 

(6.6) . 1- Re exp (-i 7T'Y) I r ((n+l)/oc)(_ix exp [-i 7T'Y])n'. 
oc 7T - 20c n=O . n! 20c 

-
Changing the summation index n to k - 1 and using the familiar recursion 
formula r(s+l) = s res) leads to 

(6.7) p( -x; oc, y) = 1- Re i I r (1 + k/oc) (-x exp [-i ~ (y_OC)]\k. 
, TTX k=1 k! 20c J 

We have thus proved 
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Lemma 1. For x> 0 and 0 < oc< 1 

(6.8) 1 ~r(koc+ 1) _ . k7T 
p(x; oc, y). - ~. (-x «)k SIn - (y-oc). 

. TTX k-l k! 2 .. 
For x > 0 and 1 < oc· < 2 

(6.9) p(x; oc, y) = 1-. I r (1 + k[oc) (_X)k sin ~ (y-oc). 
1TX k-l k ! . 20c 

The values for x < 0 are given by (6.4). 

Note that (6.8) provides asymptotic estimates for x -+ 00. A curious' 
by-product of these fomiulas is as follows: 

Lemma 2. If I <: oc < 1 and x· > 0 then 

(6.10) ,.!.., p(> ~ ,I') = p("'; 01, y*) 

where y* = oc(y+ I) - l. 

A trite check sho~s that y* falls within the range prescribed by (6.2). 
The identity (6:10) was first .noticed. (with a complicated proof) by.V. M. 
Zolotarev. 

7. TRIANGULAR ARRAYS 

The notion of a triangular array was explained in VI,3 as follows. For 
each n we are given finitely many, say r n' "independent random variables 
Xk,n . (k = 1, 2, ... , r n) with distributions Fk,n and characteristic functions 
'Pk,n' We form the row sum Sn = X',n + ... + Xr",n, and denote its 
distribution and it characteristic function by Un and COn' respectively. 
F or reasons explaine4 in VI,3 we are interested primarily in arrays where the 
'influence of individual compqnents is asymptotically negligible. To ensure 
this we imposed the condition VI,(3.2) that the variables Xk,n tend in 
probability to zero uniformly in k = 1, ... , r n' In terms of characteristic 
functions this means that given € > 0 and '0 > 0 one has for all n 
sufficiently large ; 

(7.1) 11 - 9?k,n(OI < € 

Such an array is called a 'null array. 
In effect sections 1 and 2 are concerned with triangular arrays in which the 

distributions Fk,n do not depend on k, and such arrays are automatically 
null arrays. The condition (7.1) enables. us to use the theory developed in the 
first two sections .. In particular, it will be now shown that the main result 
carries over to arbitrary-null-arrays: if the distributions of the row-sums Sn 
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tend to a limit, the latter is infinitely divisible. 5 We shall find precise criteria 
for the convergence to a specified infinitely divisible distribution. 

For the reader's convenience we recall that a measure M is canonical if it 
attributes finite masses M{/} to finite intervals and is such that the integrals 

(7.2) 

exist for each x > O. (Definition 1 of section 1.) 
To simplify notations we introduce a measure M n defined by 

rn 
(7.3) Mn{dx} = Lx2 Fk,n{dx}. 

k=l 

This is the analogue to the measures nx2 Fn{dx} in the preceding sections. By 
analogy to (7.2) we put for x > 0 

rn rn 
(7.4) M~(x) = L [1 - Fk,n(i)], M~(x) = LFk,n( -x). 

1.:=1 k=1 

Extensive use will be made of truncated variables, but the standard trun
cation procedure will be m-odified slightly in order to avoid trite complications 
resulting from the use of discontinuous functions. The modified procedure 
will replace the random variable X by the truncated variable T(X) where T 
is the continuous monotone function such that 

(7.5) T(X) = x for Ixl S a, T(X) = ±a for Ixl < a 

[obviously T( -x) = -T(X)]. For the expectations of the truncated variabl~s 
we. write 

(7.6) rn 

b n = Iflk,m 
k=1 

Theoretically it would be possible to center the. Xk,n in such a way that 
all f3k,n vanish. This would simplify arguments, but the resulting criterion 
would not be directly applicable in many concrete situations. However, it is 
usually possible to center the Xk,n so as to render the flk,n small enough 
that Bn ~ O. In this case the conditions of the following theorem reduce to 
the condition Mn -+ M familiar from the preceding sections. In the general 
case we still have M,,{I} ~ M{I} for intervals I at a positive distance from 
the origin, but neighborhoods of the origin are affected by Bn' (TJ,e choice 
of the truncation point a has no effect.) 

5 Concerning the implications of this result for processes with independent but non
stationary increments, see the concluding remarks to section 1. 
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Theorem. L~t {Xk,n} be a null array. If it is possible to find constants bn 
such that the distributions of Sn - bn tend to a limit distribution U, the bn 
of (7.6) will do. 6 The limit distribution U is infinitely divisible.7 

In order that convergence takes place to a limit U with canonical measure 
M it is necessary and sufficient that at all points of continuity x > 0 

(7.7) M~(x) -- M+(x), 

and that for some s >'0 

(7.8) Mn{ -s, s} - Bn -- M{ -s, s}. 

In this case the distribution of Sn - bn tends to the distribution with character
istic function OJ = ell-" defined by 

"P(') =L-oo ei{x - 1 ~ i'T(x) M{dx}. 
-ex:; x 

(7.9) 

[The condition (7.8) will automatically hold at all points of continuity.] 

Proof. We proceed by steps. 
(a) Suppose first that all variables Xk n are symmetric so that the distri

butions of Sn must converge without preliminary-centering. The character
istic functions CfJk,n are real, and in view of (7.1) the Taylor expansion 

(7.10) 

nolds for arbitrary , provided only that n is sufficiently large. The question 
is whether 

Tn 

(7.11) L log CfJk,n( ') -- "P( '). 
k=1 

All the terms of the expansion in (7.10) are positive, and hence (7.11) requires 
that the sum of the linear terms remains bounded. In view of (7. 1) this implies 
that the contribution of the higher-order terms is asymptotically negligible 
and we conclude that (7.11) holds iff 

rn "", 
(7.12) L [IPk,71a) - 1] -- "P(')' 

l.:=1 

The left side may be written in the form r n [CfJn - I] where CfJn is the character
istic function of the arithmetic mean of the distributions Fl.:, no We are thus 

6 The theorem remains valid also with standard truncation, that is, if T is replaced by the 
trunc;.ltion function vanishing outside Ixl > a. To avoid notational complications it is 
then necessary to assume that there are no atoms of M at ±a. [Part (b) of the proof gets 
more involved since it may not be possible to find () such that E(T(X+O) = O.J 

7 A distribution concentrated at a single point is infinitely divisible, the corresponding 
canonical measure being identically zero. 
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concerned with a special case of-theorem 2 of section 2 and conclude that a 
relation of the fonn (7.12) holds iff there exists 2. canonical measure M such 
that Mn --+ M. When Bn = 0 the conditions (7.7)-{7.8) are equivalent to 
Mn --+ M because for an interval J at a positive distance from the origin 
the relation Mn{l} --+ M{J} is implied by (7.7). This proves the theorem 
for symmetric distributions. 

(b) Suppose next that fJk.n = 0 for all k and n. We shall prove that 
(7.11) cannot take place unless 

r,. 

(7.13) ~ I <Pk,na) - 11 < Ca), 
k=l 

that is, unless the sum on the left remains bounded. In thIs case (7.11) and 
(7.12) are again equivalent, and the concluding argument used under (a) 
again reduces the assertion to theorem 2 of section 2. It is true that this 
theorem refers to a centering b~ using sin x instead of T(X), but this is 
compensated by the corresponding change for the limit di'stribption since 

(,7.14) b
n 

- b~ =i+ex> T(X) -2 sil! x M~{dx} ~i+ex> T(X) -2 sin x M{dx}. 
-ex> x -ex> X 

To derive (7.13) from (7.11) we start from the identity 

(7.15) 

valid because {3k n = O. For Ixi < a the integrand equals ei'lt - 1 - i'x 
and is dominated' by l'2x2. Since IT(x)1 <a "it follows that 

. r. " 

(7.16) 2 I <Pk,n(') - 11 < 1,2M~{ -Q, a} + (2+a I'D(M~(a)+M-;;( -a» .. 
k==l 

To show that M!(a) must remain bounded we consider the array {OXk •n } 

obtained by symmetrization of {Xk •n }. The condition (1.1) for null arrays 
implies that for n sufficiently large the probability of the event 

°Xk •n > Xk ,lI - E 

exceeds! for all k < rn' Thus lM~(a) < OM! (a), and we know that the 
latter quantity remains bounded if convergence takes place. We conclude 
that in case of convergence M!(a) + M;( -a) remain, bounded, and hence 

. r,. 

(7.17) ~1<Pk,ng) - 112 = Mn{-a, a}' EnC'), 
k=l 

where En stands for a quantity tending to zero. On the other hand, the real 
part of the integrand in (7.15) does not change sign. For Ixl < a and , 
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sufficiently small it is in absolute value >1{2x2, and henCe 

r" 
(7.18) ~Re !(9'k.na) - 1) ~ 1~2Mn{ -Q, a}. 

k-l ' .. . 

The last two inequalities show that' the left side in (7.11) cannqt remain 
, ' 

bounded unless Mn{ -a, a} remains 'bounded, and in this case (7.13) is 
implied by (7.16). 

(c) We turn finally to an arbitrary null-array {~,n}' Since E('r(Xk,n- O» 
is a continuous monotone function of ° going from Q to -a there exists 
a unique value Ok,n ~uch that the variable Yk,n = Xk,n - 0k,n satisfies the 
condition E(r(Yk,n» = O. ,Clearly {Yk,n} is a null-array and hence the 
theorem applies to it. ' . 

We have'thus found the general forIlY of the possible Jimit distributions, 
but -th~ conditions for convergence are expressed in terms of the measure 
Nn{dx} = .I x2Fk,n{Ok,n+ dx} of the artificially centered distributions of the 
Yk,n' In other words; we have proved the theorem with Mn replaced by Nn 
in (7.7) and (7.8), and Bn rep~aced by O. 

To eliminate the centering constants Ok,n we recall that they tend uniformly 
to 0 and so ultimately 

M!(x+€) <N~(x) < M!(x-:€).' 

It follows ~hat the condition (7.7) applies interchangeably to both arrays. 
Before turning to condition (7.8) we show that the.- arrays {Yk,n} and 

{Xk,n - f3k,n} have the same limit distribution, that is, 

r .. 

(7.19) , bn - ,L0k,n ~O. 
k=l 

LetZk,n = T(Yk,n) - T(Xk,n) + Ok,n' From the definition of T it is 
clear that Zk,n vanishes unless Xk,n I > a - 10k ,nl and even there 
IZk,nl < IOk,nl-+ O. Condition (7.7) therefore guarantees that 

r.. r .. 

(7.20) L IE(Zk,n)1 = .I IPk,n - 0k,nl -+ O. 
. k=-l k=l 

and this is stronger than (7.19). 
Finally, we turn to condition (7.8). We usethe sign R:::1 to indicate that the 

difference of the two sides tends to 0 as n -+ 00. When (7.7) and (7.20) hold 
it is easi~y seen that 

r .. i M n{ -a, a}- Bn R:::1 L (x-Ok•n)2 Fk.n{dx} 
k=l /ltl<a 

(7.21) 
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and thus (7.8) is equivalent to the corresponding condition for the array 
{Yk.,J ~ 

Example. The role of centering. For k = 1, ... ,n let Xk,n be normally 
.distributed with expectation. n~t and variance n-;.. With the centering to 
zero expectations the limit distribution exists and is nprmaI. But with the 

centering constants fJk.n = n-t we have BTl "-' 2J~ --+ 00. It follows that 

Mn{ -a, a} --+ 00. This example shows that" the non-linear form of the 
theorem is unavoidable if arbitrary centerings are permitted. It shows also 
that in this case it does not suffice to consider the linear term in the expansion 
(7.10) for log ({Jk,n' ' ~ 

For further results see problems 17 and 18. 

t8. THE CLASS L 

As an illustration of the power of the last theorem we give a simple proof 
ofa theorem discovered by P. Levy. We are once more concerned with partial 
sums Sn = Xl + ... + Xn of a sequence of mutually independent random 
variables but, in contrast to section 5, the distribution Fn of Xn is permitted 
to deperid on n. We put· S! =(Sn - bn)/an and wish to characterize the 
possible limit distributions of {S!}, u~der the assumption that 

(8.1) 

The first condition eliminates convergent series 2: Xk which are treated in 
section 10. Situations avoided by the second condition are best illustrated 
by the 

Example. Let Xn have an exponential distribution with expectation n!. 
Put an = n! and b n = O. Obviously the distribution of S! tends to the 
exponential distribution ~ith expectation 1, bU,t the convergence is due 
entirely to the preponderance of the term Xn . ~ 

Following Khintchine it is usual to say that a distribution belongs to the 
class L if it is the limit distribution of a sequence {S!} satisfying the con
ditions (8.1). 

·In this formuhltion it is not clear that all distributions of the class Late 
infinitely divisible, but we shall prove this as a consequence of the 

Lemma. A characteristic function w belongs to the class L iff for each 
o < s < 1 the ratio wa)/w(s~) is a characteristic function. 

t This section treats a special topic. 
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Proof. (a) Necessity .. Denote the characteristic function of S! by 
Wn and lc:: t n > m. The variable S: is the sum of (am/an)S:, and a'variable 
depending only on Xm+l , ... ,X n • Therefore 

(8.2) 

where qJm.n is a characteristic function. Now let n --+ 00 and m --+ 00 in 
such a way that am/an --+ s < l. [This is possible on account of (8.1).] 
The left side tends to w(~) and the first factor 00. the right tends to w(s~) 
because the convergence of characteristic functions is uniform in finite 
intervals. (Theorem 2 of XV,3.) We conchide first that w has no zeros. 
In fact, since qJm.lI remains bounded w(~o) = 0 would imply w(s~o) = 0, 
and hence W(Sk~O) for all k > 0, whereas actually W(Sk~O) --+ 1. Accord
ingly, the ratio w(,)/w(s') appears as the continuous limit of the character
istic functions qJm.??, and is therefore a characteristic function. 

(b) Sufficiency. The above argument shows that (/) has no zeros, and 
hence we have the identity 

(8.3) w(n~) = wa) .w(2~). .. (()(n~) 
w(P w«n-l)O 

Under the conditions of the lemma the factor w(k~)/w«k-lg) is the 
characteristic function of a random, variable X k .aud hence wa) is the 
characteristic function of (Xl + ... +Xn)!n. ~ 

We have not only proved the theorem but have found that w is the 
characteristic function of the nth ro.w sum in a trian~ular array. The 
condition (7.1) for null arrays is trivially satisfied, and hence w is infinitely 
divisible. To find the canonical'measure M ~\!termining w we note that 
th~'ratio wa)/w(s~) is infinitely divi~ible as can be seen from the factoriz
ation (8.3). The canonical measure N determining wa)/w(s~) is related 
to M by the idC?ntity 

(8.4) , N{dx} = M{d~} - s2M{s-1 dx}. 

In terms of the functim:s M+ and M- this relation reads 

(8.5) N+(x) = M+(x) - M+(x/s), N-( -x) = M-( -x) - M-( -xIs). 

We have shown that if the canonical measure M determines a character
istic ,function w of class L, then the functions ,N+, and N- defined in 
(8.5) must be monotone for each 0 < s < 1. Conversely, if this is true then 
(8.4) defines' a canonical measure determining wa)/w(s~). We have thus 
proved the 

Theorem. A characteristic function w belongs to the class L iff it is 
infinitely divisible and its determining canonical measure. M is such that the 
two functions ill (8.5) are monotone for every fixed 0 < s < 1. 
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Note. It is easily verified that the functions are monotone iff ,M+( ex) 
and M-( -eX) are convex functions. 

*9. PARTIAL ATTRACTION. "UNIVERSAL LAWS" 

As' we have seen, a distribution F need not belong to any domain of 
attraction, and the question arises whether there exist general patterns in 
the asymptotic behavior of the sequence {Fn*} of its successive convolutions. 
The sad answer is that practically every imaginable behavior occurs and no 

. general regularity properties are discernible. We describe a few of the 
possibilities principally for their curiosity value.' 

,The characteristic function cp is said to belong to the domain of part ial 
attraction of y iff there exist norming constants an br and a sequence of 
integers nr --+ 00 such that 

(9.1.) 

Here it is understood that Iyl is not identically I, that is, the corresponding 
distribution is not concentrated at one point. Thus (9.1) generalize~ the notion 
of domains of attraction by considering limits of subsequences. 

The Jimit y is necessarily infinitely divisible by virtue of theorem 2 of 
section 1: The following examples will show that both extremes are possible: 
there exist distributions that belong to no domain of partial attraction and others 
that belong to the domain of partial attraction of every infinitely divisible 
dist ribut ion. 

Examples. (a) Example 3(f) exhibits a characteristic function cp which 
is not stable but belongs to its own domain of partial attraction. 

(b) A symmetrfc distribution with slowly varying tails belongs to Ito domain 
of partial attraction. Suppose that L(x) = 1 - F(x) + F( -x) vanes 
slowly at infinity. By theorem 2 of VIII,9 in this case 

(9.L) 
lOX 

U(x) = J_xy2 F{dy} = o(x
2L(x», x --+ 00. 

By the theorem of section 7, for F to belong to some domain of partial 
attraction it is necessary that as n runs through an appropriate sequence 
n[l - F(anx) + FC -anx )] and na~2 U(anx) converge at all points of 
continuity. The first condition requires that n L(an ) t""'-' I, the second that 
n L(an } --+ 00. 

(c) An infinitely divisible y need not belong to its own domain of partial 
attraction. Indeed, it follows from theorem 1 of section 1 that if cp belongs 
to the domain of attraction of y so does the characteristic function ell'-l, 

* This section treats special topics. 
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which is infinitely divisible. The last example shows that eC- 1 need not 
belong to any dOAnain of partial attraction. 

(d) As a preparation to the oddities in the subsequent examples we prove 
the following proposition. Consider an arbitrary sequence of infinitely 
divisible characteristic functions Wr = e'l'r with bounded exponents. Put 

00 

(9.3) Aa) = I 'Pk(ak')/hk· 
1<'-.1 

It is possible to choose the constants ak > 0 and integers nk such that as 
r~ 00 

(9.4) 

for all ,. 

Proof. Choose for {nk } a monotone sequence of integers increasing so 
rapidly that nk!nk- 1 > 2k max l'Pkl. The left side in (9.4) is then dominated by 

r-1 00 

(9.S) nrI l'Pk(~ak!ar)1 + L 2-k. 
k~1 k~r+l 

We choose the coefficients ar recursively as follows. Put a1 = 1. Given 
aI' ... ,ar-l choose ar so large that the quantity (9.5) is < l/r for all 
'" < r. This is possible because the first sum depends continuously on , 
and vanishes for ,-:- o. 

(e) Every infinitely divisible characteristic function W = e'" possesses a 
domain of partial attraction. Indeed, we know that .w is the limit of a 
sequence. of characteristic functions W k = eV'k of the. compound Poisson 
type. Defi~e A by (9.3) and put qy = e-t. Then qy is a characteristic function 
and (9.4) states that 

(9.6) lim qy1lr({Iar) = lim e'Pr(O = wa). 

(j) Variants. Let e~ and efJ. be two infinitely divisible characteristic 
functions and choose the terms in (9.3) such that 'P2k -- ex and 'P2k+l -- p. 
It follows from (9.4) easily that if a sequence 'JI,;,a/ak ) converges, the limit 
is necessarily a linear combination of ex and p. In other words, ~ belongs 
to the domain of partial attraction of all characteristic functions of the form 
ep~~fJ, and to no.others. This example generalizes easily. In the terminology 
of convex sets it shows that a distribution F may belong to the domains of 
partial attraction of all distributions in the convex hull of n prescribed 
infinitely divisible distributions. 

(g) Given· a sequence of infinitely divisible characteristic functions e~l, 

eels, . .. there exists a !p = e-t belonging to the domain of partial attraction 
of each of them. Partitlon the integers into infinitely many subsequences. 
(For example, let the nth subsequence contain all those integers that are 
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divisible by 2n
-

l but not by 2n.) \Ve can then choose the 1fr in example (d) 
such that 1fT - (Xn when r runs through the nth subsequence. With this 
choice (9.4) shows that cp = e).. has the desired property. 

(h) Doblin's "universal laws." It is possible that cp belongs to the domain 
of partial attraction of every infinitely divisible w. Indeed, it is obvious 
that if ({' belongs to the domain of partial attraction of WI' w 2 , •• , and 
Wn - w, then cp belongs also to the domain of partial attraction of w. 
Now there exist only countably many infinitely divisible characteristic 
functions whose canonical measures are concentrated at finitely many 
rational points and have only rational weights. ' We can therefore order these 
functions in a simple sequence elXI, e IX2

, • • •• Then every infinitely divisible 
W is the limit of a subsequence of {e IXk

}. The characteristic function cp of the 
last example belongs to the domain of partial attraction of each (Xk' and 
therefore also of (I). 

{Note. The last result was obtained by W. Doblin in a masterly study in 1940, foIlowing 
previous work by A. Khintchine in 1937. The technical difficulties presented by the problem 
at. that time were formidable. The phenomenon of example (b) was discovered in special 
cases by B. V. Gnedenko, A. Khintchine, and P. Levy. It is interesting to observe the 
complications encountered in a special example when the underlying phenomenon of regular 
variation is not properly understood.] 

*10. INFINITE CONVOLUTIONS 

Let Xl' X:!, . " be independent random variables with characteristic 
functions CPl' cp~, .... As in (7.5) we denote by T the monotone continuous 
truncation function defined by T(X) = x for Ixi < a and T(X) = ±a for 
Ixi > a. The basic theorem on infinite convolutions states that the distributions 
of the partial sums Xl + ... + Xn converge to a probability distribution U 
iff 

00 00 

(10.1 ) 2:Var(T(Xk») < 00, 2: P{IXk l > a} < 00 
k=l k=l 

and 
n 

(10.2) 2:E(T(Xd)- b 
1;=1 

where b is a number. 
The special case of finite variance was treated in 'VIII ,5 together with 

examples and applications. In full generality the theorem appears in IX,9 
where the result is also extended by proving the convergence of the series 
L X

7I 
(the "three-series theorem"). The theorem was shown to be a simple 

corollary to the basic theorems concerning triangular arrays, and it is not 

* This section treats a special topic. 
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necessary to repeat the argument.s We shall therefore be satisfied with 
examples ill ustrating the use of characteristic functions. 

Examples. (a) Factorization of the uniform distribution. Let Xk = ±2-k 

with probability l. It was shown in example 1,11 (c) informally that L Xk 

may be interpreted as "a number chosen at random between 1 and -1." 
This amounts to the assertion that the characteristic function (sin ~)g of 
the uniform distribution is the infinite product of the characteristic functions 
cos a/2k). For an analytic proof we start from the identity 

(10.3) 
sin ~ ~ ~ ~ sin (U2n) -- = cos - . cos - ... cos - . -~~ 

{ 2 4 2n ~/2n 

which is proved by induction using the formula sin 2(X = 2 sin (X cos (x. 

As n --+ 00 the last factor tends to 1 uniformly in every finite interval. 
Note that the product of the even-numbered terms again corresponds to a 

sum of independent random variables. We know from example I,ll (d) 
that this sum has a singular distribution of the Cantor type. 9 

(See problems 5, 7, and 19.) 
(b) Let Y k have density ie- Iltl with characteristic function 1/(1+ '2). 

Then L Y klk converges. For the characteristic function we get the canonical 
product representalion for 17,jsinh 17' where sinh denotes the hyperbolic 
sine. Using problem 8 in XV,9 we find that the density of L Yk/k is given by 
1/(2 + elt + e-lt

) = 1/4(cosh (X/2»2. 

11. HIGHER DIMENSIONS 

The theory develop~d in this chapter carries over without essential changes 
to higher dimensions, and we· shall not give all the details. In the canonical 
form for infinitely divisible distributions it is best to separate the normal 
component and consider only canonical measures without atOIn at the origin. 
The fonnulas then require no change provided ~x is interpreted as an inner 
product in the manner described in XV,7. For definiteness we spell out the 
formula in two dimensions. 

A measure without an atom at the origin is canonical if it attributes finite 
masses to finite intervals and if I /(1 +x~+x:) is integrable with respect 

R It is a good exercise to verify directly that the conditions (10.1)-(10.2) assure that the 
products fPI'" fPn converge uniformly in every finite interval. The necessity of the con
ditions is less obvious, hIlt follows easily on observing that the triangular array whose nth 
row is X'I' XlI+1, ... , Xn+fn must satisfy the conditions of the theorem of section 7 with 
M=O. 

9 G. Choquet gave a charming geometric proof applicable to more general infinite con
volutions. It is given in A. Tortrat, J. Math. Pures. App!., vol. 39 (1960) pp. 231-273. 



594 INFINITEL Y DIVISIBLE I?ISTRIBUTIONS XVII. 1 I 

to it, and if it has no atom at the origin. Choose ·an appropriate centering 
function in one dimension, say T(X) = sin x or the one defined in (7.5). Put 

(11.1) "Pah ~2) = e - -: 1';,IT
2

X1 - 1';,2T X 2 M{dx}, J 
i<'lltl+'2lt2) 1 . Y () • Y ( ) 

Xl + X 2 

the integral extending over the whole plane. Then w = e'" is an infinitely 
divisible bivariate characteristic function. The most general "infinitely divisible 
characteristic function is obtained by multiplication by a normal characteristic 
function. 

A reformulation in polar coordinates may render the situation more 
intuitive. Put 

(11.2) ~l = P cos cp, '2 = p sin f/J, X = r cos e, y = r sin e. 

Define the canonical measure in polar coordinates as follow~ .. For each 
e with -71' < e < 71' choose a one-dimensional canonical measure A8 
concentrated on 0, 00; furthermore, choose a finite measure W on 
~71' < e ~ 71' (the cfrcle). Then M may be defined by randomization ~f 
the parameter e, and (with a trite change in centering) (11.1) may be. recast 
in the form 

(11.3) 

(This form permits one to absorb the normal component by adding an atom 
at the origin to A8') 

Example. Stable distributions. By analogy with one dimension we put 
A8{dr} = r-ex+! dr. One could add an arbitrary factor C8, but this would 
merely change the measure W. As we have seen in example 3(g), with this 
measurf; (11.3) takes on the form 

(11.4) 

where the upper or lower sign prevails according as cp - e > 0 or 
cp - e < O. This shows that ell' is a strictly stable characteristic function, 
and as in section 5 one sees that there are no others. However, just as in one 
dimension, the exponent (X = 1 leads to characteristic functions that are 
stable only in the wide sense and have a logarithmic term in the exponent. 

When (X = 1 and W is the uniform distribution we get the characteristic 
function e-ap of the symmetric Cauchy distribution in jl2 [see example 
XV,7(e) and problems 21-23]. ~ 
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12. PROBLEMS FOR SOLUTION 

1. It was shown in section 2 that if tp is the logarithm of an infinitely divisible 
characteristic function, then 

(12.1) 1 fh 
tpa) - 2h -h tpa -s) dx = Xa) 

is a real multiple of a characteristic function. Prove the converse: Suppose that tp 

is a continuous function such that xa)/x(O) is a characteristic function for every 
choice of h > o. Then tp differs only by a linear function from the logarithm 
of an infinitely divisible characteristic function. Furthermore, tp is su~h a logarithm 
if it satisfies the further conditions tp(O) = 0 and tp( - {) = tp( {). 

[Hint: Prove that the solutions of the homogeneous equation (with X = 0) 
are linear.] 

2. Show that problem 1 and the argument of section 2 remain valid if in (12.1) 
or (2.13) the uniform distribution is replaced by a distribution concentrated at the 
points: 

(12.2) 

However, there arises a slight complication from the fact that the density corre
sponding to X is not strictly positive. 

3. Generalization. Let R be an arbitrary even probability distribution with 
finite variance. If e'P is an infinitely divisible characteristic function and 

(12.3) x = tp - R* tp, 

then Xa)/X(O) is a characteristic function. The argument of section 2 goes through 
using (12.3) instead of (2.13). 

In particular, if R has the density ie-I:!:I one is led directly to Khintchine's 
normal form for tp. (See the concluding note to section 2.) However, some care 
is required by the fact that tp is unbounded. 

4. If w is an infinitely divisible characteristic function then there exist constants 
a and b such that Ilog wa)1 < a + b{2 for all {. 

5. Shot noise in vacuum tubes. In example VI,3(h) we considered a triangular 
array in which Xk,n had the characteristic function 

lPk,n({) = 1 + cth[ei~IO.:h) -1], 

where }z = n-!. Show that the characteristi~ functions of STI = Xl,TI + : .. + Xll,n 

tend to eV' where 

'PW = " f.w [ei;/'" -I] d.r; 

e'P is the characteristic function of the random variable X(t), and by differentiation 
one gets Campbell's theorem VI,(3.4). 

6. Let U = L Xn/n w!lere the variables XI.: are independent and have the 
common density ie-I:!:I. Show that lO U is infinitely divisible with the canonical 

10 The characteristic function w is defined by an infinite product which happens to be 
the welI-known canonical product of 217 1'I/elTl~1 - e-·I;I . 
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-Ixl 
measure M{dx} = Ixl 1 

~ e-ixi dx. [No calculations beyond summing a geometric 

series are required.] 
7. Let P(s) = 2:.Pksk where Pk > 0 and 2:.Pk = 1. Assume P(O) > 0 and that 

I P(s). .. h . . ffi . If . h h .. og .P(O) IS a power senes Wit posItive coe clents. cp IS t e c aractenstlc 

function of an arbitrary distribution F show that P( cp) is an infinitely divisible 
characteristic function. Find its canonical measure M in terms of Fn*. 

S . I ,I" If 0 b 1 h 1 - b 1 - acp. . fi . I 'Pec1a case oJ Interest: :$; q < < t en -- . IS an In mte y 
1 - a 1 - bcp 

divisible. characteristic function. (See also problem 19.) 
8. Continuation. Interpret ,P(cp) in terms of rar:!domization and subordinated 

processes using. the fact that P is the generating function of an infinitely divisible 
integral-valued random variable. 

9. Let X be stable with character:istic function e-I{l oe (0 < ex :$; 2) and let Y 
be independent of X. If Y is positive with a distribution G (concentrated on 
0, 00 show that the characteristic function of XYI/IZ is given by 

ConcJud~: If. X and Yare independent strictly stable variables with exponents 
ex and {J and if Y > 0, the~ XYI/IZ is strictly stable with exponent ex{J. 

10. Let w be a characteristic function such that w 2({) = w(a{) and w3a) = 
= w(b{). Then w is stable. . 

[Example 3(f) shows that the first relation does not suffice. The exponents 2, 3 
may t>: rt!placed by any two relatively prime integers.] 

11. Show that the simple lemma 3 of VIII,8 applies (not only to monotone 
. .functions but also) to logarithms of characteristic functions. ConcJude that if 
wna) = w(an {) for all n then log wa) = A {oe for { > 0, where A is a complex 
constant. 

12 .. Continuation. Using the result of problem 28 in VIII,10 show directly 
that if w is a stable characteristic function .then for {> 0 either log w( {) = 
= A {oe + ib, or else log w({) = A { + ib{ log· { with b. real. 

13. Let F be carried by 0, 00 and 1 - F(x) = x-oeL(x) with 0 < ex < 1 and 
L slowly varying at infinity. Prove that 1 - cpa) ""' A {oeL(l1 {) as {-+ 0 + 

14. Continuation. From the results of section 5 prove the converse, and also 
that A = r(l -rx)e- iiTlZ / 2 • 

15. Continuation. By induction on k prove: in order that 1 - F(x) ,...." ax-oeL(x) 
as x -+ 00 with .L slowly varying and k < ex < k + 1 iris necessary and sufficient. 
that as {-+ 0+ 

(.*) cpa) - 1 _,llU{) _ ... _ /-lk(i{)k '-A'CXL (!) 
I! k! { . 

Then automatically A = -ar(k -rx)e-it iTlZ • 

16. Formulate the weak law for triangular arrays as a special case of the general 
theorem of section 7. 
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17. Let {Xk •n } be a null array whose ~ow sums have ,a limit distribution deter
mined by the canonical measure M. Show that for x > 0 

P{max [XI •n , •.• , XTn,n] ::;; x} -+ e-~lf+(:tt. 

Formulate a converse. 
18. Let {Xk,n} be a null array of symmetric variables whose row sums have a 

limit distribution determined by the canonical measure M with. an atom of 
weight 0'2 at the origin. Show that the distribution of S~ = ~·X:.n - 0'2 con
verges to a distribution determined by a measure M# without atom at the origin 
and such that Mt (x) = 2M+( vi) for x > o. 

19. Let 0 < r; < 1 and 'Lrj < 00. For arbitrary real a j the infinite product 

converges and represents an infinitely divisible characteristic function. (Hint: 
Each factor is infinitely divisible by problem 7.) 

20. Use the method of example 9(d) to construct a distribution F such that 
lim sup Fn*(x) = 1 and lim inf Fn*(x) = 0 at all points. 

21. In (11.4) let W stand for the uniform distribution. Then 

'Pal' '2) = -c['~ + '~J!cx, 
and e'P is a symmetric stable distribution. 

22. In (11.4) let W attribute weight t to each of the four pofnts 0, TT, tTT, -iTT. 
Then (11.4) represents the bivariate characteristic function of two independent 
one-dimensional stable variables. 

23. In (11.4) let W be concentrated on the two points 0' and 0' + TT. Then 
(11.4) represents a degenerate characteristic function of a pair such that 

Xl sin 0' - X2 cos 0' = O. 

More generally, any discrete W leads to a convolution of degenerate distributions. 
Explain (11.4) by a limiting process. 



CHAPTER XVIII 

Applications of Fourier Methods 

to Random Walks 

To a large extent this chapter treats topics already covered in chapter 
XII, for which reason applications are kept to a minimu·m. A serious 
attempt has been made to make it self-contained and accessible with a 
minimum of previous knowledge except the Fourier analysis of chapter xv. 
The theory· is entirely independent of the last 'two chapters. Section 6 is 
independe'nt of the preceding ones. 

1. THE BASIC IDENTITY 

Throughout this chapter Xl' X2, • •• are mutually independent random 
variables with a common distribution F and characteristic function cpo As 

.' usual we put So = 0 and Sn = Xl + ... + Xn; the sequence {Sn} 
constitutes the random walk generated by F. 

Let A be an arbitrary set on the line and A' its complement. (In most 
applications A' will be a finite or infinite interval.) If I is a subset (interval) 
of A' and if 

(1.1) Sl E A, .' .. , Sn-l E A, Sn E I (I cA') 

we say that the set A I is entered (for the first time) at epoch n and at a point 
of I. Since A' need not be entered at all the epoch N of the entry is a 
possibly defective random variable, and the same is true of the point SN of 
first entry. For the joint distribution of the pair (N, SN) we write 

(1.2) P{N = n, SN E I} = Hn{l}, n = 1, 2, .... 

Thus Hn{I} is the probability of the event (1.1), but the distribution (1.2) 
is defined . for all sets I on the line by the convention that Hn{l} = 0 if 
leA. The probabilities (1.2) will be called hitting probabilities. Their 

598 
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study is intimately connected with the study of the random walk pnor 
to the first entry into A', that is, the random walk restricted to A. For' 
I c A and n = 1,2, ... put 

(1.3) Gn{l} '= P{SI E A, ... , Sn-l E A, Sn E I};' 

in words, this is the probability that at epoch n the set I c A is visited and 
up'to epocn it no entry into A' took place. We extend this definition to 
all sets on the 'line by letting Gn{l} = 0 if I c A'. 

(1.4) Gn{A} = 1 - P{N ~ n}. 

The variable N is not defective iff this quantity tends to 0 as n -- 00. 

Considering the position Sn of the random walk at epochs n = I, 2, ... 
it is obvious that for I c A1 

(1.5a) 

whereas for I c A 

(1.5b) 

Hn+1{I} = L Gn{dy} F{I -y} 

Gn+1{I} = L Gn{dy} F{I-y}. 

We now agree to let Go stand for the probability distribution concentrated 
at the origin. Then the relations (1.5) hold for n = 0, 1, 2, ... and deter
mine recursively all the probabilities Hn and Gn. The two relations can be 
combined in one. Given an arbitrary set I on the line we split it into the 
components lA' and IA and apply (1.5) to these components. Recalling 
that Hn and Gn are concentrated, respectively, on A' and A we get 

(1.6) Hn+1{I} + Gn+1{I} = 11 Gn{dy} F{l -y} 

for n = 0, 1, ... and arbitrary I. 

The special case A = 0, 00 was treated in XII,3, the relation XII,(3.5) 
being the same as the present (l.5). We could retrace our steps and derive 
an integral equation of the Wiener-Hopf type analogous to XII,(3.9) and 
again possessing, only one probabilistically possible solution (though the 
uniqueness is not absolute). It is preferable, however, to rely this time on the 
powerful' method of Fourier analysis. 

We are concerned with the distribution of the pair (N, SN). Since N is 
integral-valued we use generating functions for Nand characteri'ltic 
functions for SN. Accordingly we put 

(The zero terms of the two series equal 0 and 1, respectively.) These series 
converge at least for lsi < I, but usually in a wider mterval. 
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The effective domains of integration are inserted for clarity, but the limits 
of integration may be given. as well as - 00 .and + 00. In particular, the 
integral in (1.6) is an ordinary convolution. On taking Fourier-Stieltjes 
transforms the relation (1.6) therefore takes on the form 

(1.8) 

Multiplying QY sn+l and adding over n = 0, 1, ... we get 

for all s for which the series in (1.7) converge. We have thus established 
the basic identity 

(1.9)" 1 - X = y[l-scp]. 

(For an alternative proof see problem 6.) 
In principle X and. y can be calculated recursively from (1.5), and the 

identity (I.9) appears at first glance redundant. In reality direct calculations 
are rarely feasible, but much valuable information can be extracted directly 
from (1.9). 

Example. Let F stand for the bilateral exponential distribution with 
density ie-I xl and characteristic function <p(') = 1/(1+'2), and let 

I I 
A = -Q, a. For x > a we get from (1.5a) 

(1.10) H.+,{ x, oo} = H '+I{ - 00, -x} = ! f~ G.{dy}e-C
.-.

l = c.e-· 

with c n independent of x. It follows that the point SN of first entry into 
Ixl > a is independent of the epoch of this entry and· has a density pro
portional to e-Ixl (for Ixl > a). This result accords intuitively with the 
Jack of .memory of the exponential distribution described in chapter J. The 
independence means that the joint characteristic function X must factor, 
and from the form of the density for SN we conclude that 

(1.11) Xes, ~) = tP(S)[ eiat; + e-ial; ] 

1 - i~ 1 + i~ 

where P is the generating function of the epoch N of the first entry into 
Ixl > a. [The proportionality factor is deduced from the fact that 
X(J,O) = I.] 

A direct calculation of P(s) would be cumbersome, but an explicit 
expression can be easily deduced from (1.9). In fact, with. our form of the 

characteristic function the right side in (1.9) vanishes for ~ = ±iJ 1 - s, 
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and so for this value XeS, ') must reduce to 1. Thus 

[ 
e-aVI-s eaVI- s J-I 

(1.12) P( s) = 2 + . 
1 + Jl - s 1 - Jl - s 

From this it follows that the epoch N of the first entry into Ixl > a has 
expectation 1 + a + la2• 

(For further examples see problems 1-5.) 

*2. FINITE INTERVALS. WALD'S APPROXIlVIATION 

Theorem. Let A = -a, h be a finite interval containing the origin and 
let (N, SN) be the. hitting point for the complement A'. 

The variables Nand SN are proper. The generating function 

00 00 

(2.1) ~:Sn P{N > n} = Lsn Gn{A} 
n=O n=O 

converges for some l s > 1 and hence N has moments of all orders. The 
hitting point SN has an expectation iff the random-walk distribution F has 
an expectation ft, in which case 

(2.2) 

The identity (2.2) was first discussed by A. Wald .. In the special case 
A = 0, 00 it reduces to XlI,(2.8). 

Proof. As was already pointed out, Gn{A} and P{N > n} are different 
notations for the probability that the random walk lasts for more than n 
steps, and so the two sides in (2.1) are identical. 

Choose an integer r such that P{ISrl < a + b} = r; < 1. The event 
{N > n + r} cannot occur unless 

N > nand IXn+ t + ... + Xn+rl < a + b 

(These two events are independent because {N > n} depends only on the 
variables XI' ... ,Xn. Since Xn+l + ... + Xn+r has the same distribution 
:IS Sr we conclude that 

P{N> n + r} < P{N > n}r;. 
Hence by induction 

(2.3) P{N > kr} ~ r;\ 

'* This section is included because of its importance in statistics; it should be omitted at 
first reading. 

I This is known to statisticians as C. Stein's lemma. For an alternative proof see 
problem 8. 
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which shows that the sequence P{N > n} decreases at least as fast as a 
geometric sequence with ratio r;l/T. It follows that N is a proper variable 
and that the series in (2.) converge at least for lsi < r;-l/T. This proves the 
first assertion. 

It follows also that (1.9) is meaningful for lsi < r;-l/T. For s =) we 
conclude 

(2.4) 

But x(1, 0 is the characteristic function of SN' and" the fact that x(1, 0) = 
= 1 shows that SN is proper. 

The event ISNI > t + a + b cannot occur unless for some n one has 
N > n - 1 and IX 7I 1 > t. As already remarked, these two e~ents are 
independent, and since the Xn are identically distributed we conclude that 

00 

< LP{N > n - I}' P{lXII > t} = E(N)· P{IXII > t}. 
n=I 

The expectation It = E(X I ) exists iff the right side is integrable over 0, 00. 

In this case the same is true of the left side, and then E(SN) exists. On the 
other hand, 

P{ISNI > t} > P{lXII > t + a + b} 

because the occurrence of the event on the right implies SN = Xl' Thus the 
existence of E(SN) implies the existence of It = E(XI)' When these 
expectations exist we can differentiate (2.4) to obtain 

(2.5) i E(SN) = oX(l, 0) = gJ'(O) y(l, 0) = ilt E(N). 0, 
We proceed .now to derive a variant of the basic identity (1.9) known as 

Wald's identity. To avoid the use of imaginary arguments we put 

(2.6) i+OO 

f(A) = -00 e-kx F{dx}. 

Suppose that this integral converges in som~ interval - Ao < A < Al 
about the origin. The characteristic function is then given by gJ(iA) = f(A), 
this functiun being analytic in a complex neighborhood of each A in the given 
interval. Wald's identity is obtained formally from (1.9) letting ,= iA and 
s = l/gJ{iA). For these particular values the right side vanishes and hence 
X(s, ~) = I. In view of the definition of X this relation may be restated in 
probabilistic terms as follows. 
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Wald's lemma.2 If the integral (2.6) converges for -Ao < A < A. I , then in 
this interval 

(2.7) 

Proof. We repeat the argument leading to (1.9). As the measures On are 
concentrated ona finite interval their Fourier transforms X n converge for 
all , in the complex plane. By assumption 9?(iA) = f(A) exists. and hence 
it. is seen that the Fourier version (1.8) of (1.6) is valid for ,= iA. On 
multiplication by f-n-I(A) this relation takes on the form 

(2.8) f-n7"I(A) Xn+I(iA) = f(A.)-n Yn(iA) - f-n-I(A) Yn+I(iA). 

If f-n(A) Yn(iA) -- 0 the right sides add to unity due to the obvious can
cellation of terms. In this case summation of (2.8) leads to the assertion (2.7) 
and hence it suffices to' show that 

(2.9) 

Now if f(TJ) < 00 

G.{A} < p{ -:-a < S. < b} < eC·+·II·l.f.e-" £"* {dx} 

< eCa+b) 1,,1 • fn('YJ). 

Thus (2.9) is true if.f(A) > f(TJ). As we are free to choose TJ this proves 
(2.7) for all A excepting values where f assumes its minimum. But being 
convex f has at most one minimum, and at it (2.7) follows by continuity. ~ 

·Example. Estimates concerning N. Wald was led to his lemma from 
problems in sequential analysis where it was required to find approximations 
to the distribution of the epoch N of the first exit from A, as well as 
estimates for the probabilities that this exit takes place to the right or left of 
this interval. Wald's method is a generalization of the procedure described 
in 1; XIV,8 for arithmetic distributions with finitely many jumps. (There it 
is also shown how strict inequalities can be obtained.) Put 

(2.10) 

and write for the corresponding generating functions pes) and Q(s). 
(Then P + Q is the generating function for N.) Suppose now that a and 
b are large in comparison with the expectation and variance of F. The 

2 WaJd used (2.7) in connection with sequential analysis, This was before 1945 and 
before the general random walks were systematically explored. It is therefore natural 
that his conditions were severe and his methods difficult, but unfortunately they still 
influence the statistical literature. The argument of the text utilizes an idea of H. D. Miller 
(1961). 
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hitting point SN is then likely to be relatively close to either b or -a. If 
these were the only possible values of SN the identity (2.7) would take on 
the form 

(2.11 ) P(1lf(A»e~)'b + Q(1If(A»ia = 1, 

and one expects naturally that under the stated assumptions (2.11) will 
be satisfied at least approximately. The function f is convex and it is 
usually possible to find an int'!rval So < s < S1 such that in it the equation 

(2.12) Sf(A) = 1 

admits of two roots Al (s) and A2(S) depending continuously on s. Sub
stituting into (2.11) we get two linear equations for the generating functions 
P and Q, and thus we get (at least approximately) the distribution of N 
and the probabilities for an exodus to the right and left. ~ 

3. THE WIENER-HOPF FACTORIZATION 

In this section we derive by purely analytical methods various consequencc-s 
of the basic identity (1.9). It turns out that they contain, in a more flexible 
and sharper form, many of the results derived in chapter XII by combinatorial 
methods. This may produce the false impression of a superiority of the Fourier 
methods, but in reality it is the interplay of the two methods that characterizes 
the recent progress of the theory: Each method leads to results which seem 
inaccessible to the other. (For examples in one direction see section 5; the 
arc sine law for the number of positive partial sums as well as generalizations 
of the whole theory to exchangeable variables illustrate advantages of the 
combinatorial approach.) 

From now on Nand SN will denote the epoch and the point of first 
entry into the open half-line 0, 00. Their joint distribution 

P{N = n, SN E I} = Hn{l} 
is given by 

(3.l) leO, 00 

with the understanding that Ho = ° and that Hn is concentrated on 0, 00. 

Instead of the bivariate characteristic function we introduce as before 
the more convenient combination of generating and characteristic function 

(3.2) 

namely, 

(3.3) 
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(The integration is over the open half-axis, but nothing changes if the lower 
limit is replaced by - 00.) For brevity we shall refer to X as "the transform" 
of the sequence of measures Hn. 

For the epoch and point of first entry into the open negative half-axis we 
write N- and SN-; then {H;;} and X- denote the corresponding distribu
tion and transform. 

When the underlying distribution F is discontinuous we must distinguish 
between firstentries into open and c!osed half-axes. It is therefore necessary 
to consider the event of a return to the origin through negative values. Its 
probability distribution {fn} is given by . 

(3.4) fn = P{SI < 0, ... , Sl1-1 < 0, Sn = O}, n > I, 
00 

and we put f(s) = .L fns". It will be seen presently that the right side 
n=1 

in (3.4) remain$ unchanged if all the inequalities are reversed. Clearly 
2fl1 ~ P{XI < O} < 1. -

With these notations we can now formulate the basic 

Wiener-Hopf factorization theorem. For lsi < lone has the identity 

(3.5) 1 - s<Pa) = [1-f(s)]· [I-X(s, ')]. [1-X-(s, 0]. 
The proof will lead· to explicit expressions for f and X which we state 

in the form of separate leinmas.3 

Lemma 1. For 0 ~ s < 1 

(3.6) log 1 = i snloo eiCa: F~*{dx}. 
1 - Xes, ') n-l n 0+ 

An analogous formula for X- follows by symmetry. 

Lemma 2. For 0 <s < 1 

(3.7) 
. loon 

log = 1 ~P{Sn = O}. 
1 - /(s) n=l n 

Since no inequalities enter the right side it follows that (3.4) remains valid 
with all inequalities reversed. This result was obtained in example XU,2(a) 
as a consequence of the duality principle. . 

The remarkable fp~ture of the factorization (3.5) is that it represents an 
arbitrary characteristic function <P in terms of two (possibly defective) 

3 For ,= 0 lemma 1 reduces to theorem 1 of XII,7. The generalized version XlI,(9.3) 
is equivalent to lemma 1, but is clumsy by comparison. Lemma 2 restates XII,(9.6). It is 
due to G. Baxter. A greatly simplified (but still rather difficult) proof was given by F. 
Spitzer, Trans. Amer. Math. Soc., vol. 94 (1960), pp. 150-169. 
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distributions concentrated on the two half-axes. Lemma 1 shows that this 
representation is unique. 

The proof is straightforward for continuous distributions, but for the 
general case we require the analogue to lemma 1 for the entrance probabilities 

I-
into the closed int~rval 0, 00. These will be denoted by Rn{l}, that is, 

(3.8) 
I--

for any interval I in 0, 00. Of course, Ro = ° and Rn{ - 00, o} = O. 

Lemma 3. For ° < s < 1 the transform p of {Rn} is given by 

1 00 s"'J.oo (3.9) log = I - eiex F n* {dx}. 
1 - pes, ') n-l n 0- . 

I 
Proof. We start from the basic identity (1.9) applied to A = 0, 00. With 

our present notation the entrance probabiiities are Rn rather than H n , and 
so (1.9) reads 

(3.10) 1 - p(s, ') = y(s, ,)[1 - spa)]. 

Here y is the transform of the sequence of probabilities G n defined on 

-00, ° by 

(3.11) Gn{l} = P{81 < 0, ... ,8n- 1 < 0,8", < 0, 8 n E I}, 

that is 

(3.12) 

For fixed lsi < 1 the functions 1 - sq;a) and 1 - Xes, ') can have no 
zeros, and hence (see XVII,I) their logarithms are uniquely defined as 
continuous functions of , va~ishing at the origin. We can therefore rewrite 
(3.10) in the form 

(3.13) 
1 1 

. log = log + log y(s, ') 
1 - sq;a) 1 - p(s, ') 

or 
00 S'" (+00 . 00 s'" 00 ( I)'" 

(3.14) "'~1 -;; J-~ eiC:z: F"'*{dx} . "'~1 -;; p"'(s, ') + "'~1 -n [y(s~ 0-1]". 

Consider this relation for a fixed value 0 < s < I. Then p"'(s, ') is the 
characteristic function of a defective probability distribution concentrated on 
r-
0, 00, and hence the first series on the right is the Fourier-Stieltjes transform 

I--
of a finite measure concentrated on 0, 00 .. Similarly, (3.12) shows that 
pes, ') - 1 is the Fourier-Stieltjes transform of a finite measure concentrated 
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on - 00, o. The same is therefore true of [p(s, ') -1]" , and so the last 

series is the transform of the difference of two measures on - 00, O. It 
f---. 

follows that, when restricted to sets in 0, 00, the first two series in (3.14) 
represent the same finite measure, namely L (snjn)F"*. The assertion (3.9) 
restates this. fact in terms of the corresponding transforms. ~ 

Proof of lem.ma 2. This lemma is contained in lemma 3 inasmuch as the 
two sides in (3.7) are the weights of the atoms at the origin of the measures 
whose transforms appear in (3.9). This is obviously true of the right sides. 
As for the left sides, hy. the definition (3.8) the atom of Rn at the origin has 
weight fn. Thus f(s) is the weight attributed to the origin by the measure 
! s"Rn with transform ~(s, '). The measure with transform .2 p"(s, ,)/n 
therefore attributes to the origin the weight .2fn(s)jn = log (l-f(S»-l. 

Proof of lemma 1. We may proceed in two ways. 
(i) Lemma 1 is the analogue of lemma 3 for the open half-axis and exactly 

the same proof applies. If both lemmas are considered known we may 
subtract (3.6) from (3.9) to conclude that 

(3.15) pes, ') =f(s) + [1-f(s)]x(s, 0· 
f---

[This identity states that the first entry into 0, 00 can be a return to the. 
origin through negative values and that, whell such a return does not take 

r-
place, the (conditional) d.istribution of the point of first entry into 0,00 

reduces to the distribution {Hn} of the first entry into 0, oo.J 
(ii) Alternatively we may prove (3.15) directly from the definitions (3.1) 

and (3.8) of Hn and Rn. [For that it suffices in (3.8) to consider the last 
index k < n for which Sk = 0 and take (k,O) as new origin.] Substituting 
(3.15) into (3.9) we get lemma 1 as a corollary to lemmas 2 and 3. ~ 

Proof of the factorization theorem. Adding the identities of lemmas 1-2 

and the analogue of lemma 1 relatingto - 00,0, we get (3.5) in its logarithmic 
form. That (3.5) holds also for s = 1 follows by continuity. 

Corollary. 

(3.16) 

Proof. In view of (3.13) and lemma.3 

(3.17) y(s, ') = exp (I snlo-eiex Fn*{dX}), 
n=1 n -co 

and by lemma 1 the right sides in (3.16) and (3.17) are identical. 
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Examples. (a) Binomial random walk. Let 

P{XI = I} = P and P{XI = -I} = q. 

The first entries into the two half-axes necessarily take place at ± 1 , and hence 

(3.18) 

where P and Q are the generating functions of the epochs of first entry. 
The two sides of the factorization formula (3.5) are therefore linear com
binations of three exponentials e ikC with k = 0, ± 1. Equating the coeffi
cients one gets the three equations 

[1-f(s)][1 +P(s)Q(s)] = 1, [l-f(s)]P(s) = sp,. 

(3.19) [l-f(s)]Q(s) = sq. 

This leads to a quadratic equation for 1 - f(s) , and the condition f(O) = 0 
implies that f is given by 

(3.20) f(s) = i(1 - J I-4pqs2). 

The generating functions P and Q now follow from (3.19). If P > q we 
have f(1) = q and hence Q(I) < 1. In this way the factorization theorem 
leads directly to the first passage and recurrence time distributions found by 
other methods in 1; XI and 1; XIV. 

(b) Finite arithmetic distributions. In principle the same method applies 
if F is concentrated on the integers between -a and b. The transforms X 
and X- together with f are now determined by a + b + 1 equations, bur 
explicit solutions are hard to come by [see example Xll,4(c)]. 

(c) Let F be the ronvolution of exponential distributions concentrated on 
the two half-axes, that is, let 

(3.21) 
a b 

p( ') = a + l' r (' ':. b - i 
a > 0, b > O. 

Because of the continuity of F we have f(s) = 0 identically. 'I he left 
side in the factorization formula (3.5) has a pole at ,= -ib, but X-(s, n 
is regular around any point , with negative imaginary part. (This is so 

because. X- is the transform of a measure concentrated ~n - 00,0.) It 
follows that X must be of the form X(s,.,) = (b-i,)-l U(s,,), whh U 
reg~lar for all ,. One may therefore surmise that U will be independent of 
" that is, that X and x- will be of the form 

(3.22) 
pes) 

xes, ') = b - i~ , 
_( Y) = Q(s) 

X s, ':. . 
. a + i' 
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F or this to be so we must have 

(3.23) 1 - s ab = (1 _ pes) ) (1 _ Q(s) ). 
(a + i,)(b-i') b - i' a + i' 

Clearing the denominators and equating the coefficients we find that pes) = 

= Q(s) and that pes) satisfies a quadratic equation. The condition 
P(O) = 0 eliminates one of the two roots, and we find finally 

, . 
(3.24) pes) = Q(s) = t [a + b - J (a+b)2-4abs]. 

Assume a > b. Then P(I) = b, and hence P(s)/b and Q(s)/a are 
generating functions of a proper and a defective probability distribution. 
The function ,x defin,ed in (3.22) is therefore the transform of a pair (N, SN) 
such that SN is independent of N and has the characteristic function 
b/(b- i'). A similar statement holds for X-, and because' of the uniqueness 
of the factorization P(s)/b and Q(s)/a are indeed the generating functions 
of the epochs Nand N- of first entries. [That SN and SN- are expon
entially distributed was found also in example XII ,4(a). Recall from example 
VI ,9(e) that distributions of the form (3.21) play an important role in queueing 
theory.] ~ 

For further examples see problems 9-11. 

4. IMPLICATIONS AND APPLICATIONS 

\\le proceed to analyze the preceding section from a probabilistic point of 
view and to relate it to certain results derived in chapter XII. 

(i) The duality principle. We begin by showing that the corollary (3.16) 
is equivalent to 

Lemma 1. For any interval 1 in 0, 00 

(4.1) P{Sl < Sf!, ... , S1I-1 < S1I' 8 n E l} = 
= P{SI > 0, ... , 8 71 - 1 > 0, Sn E l}. 

This fact was derived in XII,(2.1) by considering the variables Xl" .. , Xn 
in reverse order. Viewed in this way the lemma appears almost self-evident, 
but we saw that many important relations are simple consequences of it. 
r n the Fourier analytic treatment it plays no role, but it is remarkable that it 
comes as a byproduct of a purely analytic theory.4 [For a reminder of the 

4 Our Fourier analytic arguments are rather elementary, but historically the original 
WIener-Hopf theory served as point of departure. Most <of the literature therefore uses 
deep complex variable techniques which are really out of place in probability theory 
because even the origmal Wiener-Hopf techniques simplify greatly by a r~trictiori to 
positive kernels. See the discussion in XIl,3a. 
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fantastic consequences of lemma 1 concerning fluctuations the reader may 
consult example XII,2(b).J 

Proof. The corollary (3.16) refers to the negative half-axis and for a direct 
comparison all inequalities in (4.1) should therefore be reversed. -The prob
ability on the right in (4.1) then coincides with the probability Gn{l} 
introduced in (3.11), and yes, ') is simply the corr,esponding transform. To 
prove the lemma we have therefore to show that [l-X(s, ,)]-1 is the 
transform of the sequence of probabilities appearing on' the left side in (4.1), 

Now X(s, 0 was defined as the transform of the distribution of the point 

{N, SN) of first entry into 0, 00, and hence x''' is the transform of the rth 
ladder point (Nr, S1'). It follows that 

(4.2) 1 2 ---l=X+X + ... 
I-x 

is the transform of the sequence of probabHities that n be a ladder epoch and 
S" E l. But these are the probabilities appearing on the left in (4.1), and this 
concludes the proof. . ~ 

(ii) The epoch N of the first entry into 0, 00 has the generating function 
-r given by -res) = x(s', 0). Thus by (3.6) 

1 00 s" 
(4.3) log = 2 - P{S" > O}. 

1 - -res) ,,=1 n 

This formula was derived by combinatorial methods in XII,7 where various 
consequences were discussed. For example, letting s -+ 1 in (4.3) it is seen 
that the v3{iable N is proper iff the series 2 n-1P{S" > O} diverges; in 
case of convergence the random walk drifts to - - 00. On adding 
log (1 - s) =' - 2 s"/n to (4.3) and letting s -:+ lone finds that 

(4.4f 
. . 00 1 

log E(N) = log -r'(1) = 2 - P{S" < O} 
,,=1 n 

provided only that N is proper. -But we have just observed that the last 
'series converges iff the random walk drifts to 00, and hence we have 

Lemma 2. A necessarx and sufficient condition that N be proper and 
E(N) < 00 is that the random walk drifts to co. . 

This result was derived by different methods in XII,2 .. For further pro
perties of the distribution of N the reader is referred to XII,7. 

(iii) On the expectation of the, point ~ offirst entry. With the methods of 
chapter XII not much could be said about the distribution of SN' but now 
we get the characteristic function or SN by setting s = I in (3.6). Ho'wever, 
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it is, preferable to derive some pertinent information directly from the 
factorization formula. 

I.emma 3. If both SN and SN- are proper and have finite expectations 
then F has zero expectation and a variance ()'2 given by 

(4.5) 

Theorem I, of the next ~ection shows that the converse is also true. The 
surprising implication is that the existence of a second moment of F is' 
necessary to ensure a finite expectation for SN' 

Proof. For s = 1 we get from (3.5) 

(4.6) 

As ~ ~ 0 the fr.actions oli the right tend to the derivatives of the characteristic 
functions X and' x-,· that is, to i E(SN) and i E(SN-)' The left side has 
therefore a finite limit ()'2, which means that q/(O) = 0 and q/'(O) = t()'2. 

It follows that ()'2 is the variance of F (see the corollary in XV ,4). ~ 

We turn to the case of a drift toward 00. It follows from lemmas 1-2 of 
section 3, together with (4.5) that in this case as s ~ 1 and ~ ~ 0 

. (00 1 ) (4.7) [1-/(s)rl
. [1 - i(s,,)rl ~ exp 1 - P{S" < O} = E(N) < 00. 

,,-=1 n 
Now by the factorization theorem 

(4.8) 
x( 1, ') - 1 '_ tpa) - 1 , , 

Letting '~O we get the important result that 

(4.9) 

1 

provided E(SN) and E(X1) exist (the latter ,is positive because of the 
assumed drift to 00). 

We can go a step further. Our argument shows that the left side in (4.8) tends to a finite 
limit iff q/ (0) = ill exists. Now it wasshown in XVII,2a that this is the case iff our random 
walk obeys the generalized weak law of iarge numbers, namely iff 

(4.10) 

(~ signifying convergence in probability). It was shown also that for positive variables 
this implies that Il coincides with their expectation. Thus in (4.8) the left side appr<;>aches 
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a limit iff E(N) < 00, and the right iff cp' (0) exists. We have thus 

Lemma 4. When the random walk drifts to 00, then E(N) < 00 iff there exists a number 
/.l > 0 such that (4.10) holds. 

In XII,8 we could only show that the existence of E(XI ) suffices, and even for this weaker 
result we required the strong Jaw of large numbers together with its converse. 

5. TWO. DEEPER THEOREMS 

To illustrate the use of more refined methods we derive two theorems of 
independent interest. The first ~fines lemma 3 of the preceding section; 
~he second has applications in queueing theory. The proofs depend on deep 
Tauberian theorems, and the second uses Laplace transforms. 

Theorem 1. If F has zero expectlltion and variance 0"2' the series 

(5.1) 
00 1 -
1 - [P{S" > o} - 1] = c 
,,-I n 

converges at least conditionally, and 

(5.2) 

ThIS theorem i~ due toF. Spitzer. The convergence of the series played a 
roie in theorems la of XII,7 and.8. 

Proof. Differentiating (3.6) with respect to , and setting ,=:= 0 one gets 

(5.3) -i . d X(s;o.) = 1 s"1°O x F"*{dx} . exp [- I s" P{S" > O}]. d, ,,==1 n 0 ,,==1 -n -

Both series converge absolutely for lsi < I since the coefficients -of s" 
remain bounded.' Indeed. by the central limit theorem the moments of' 
order ~2 of S,,/O"y'n tend to the corresponding moments of the normal 
distribution, which means that as n -+ 00 

(5.4) [00 x F"* {dx} f'J a.J Ii . 
Jo 21T 

Accordingly, by the easy part of theorem 5 of XIII,5 as s -+ 1 

00 s" ,,* - ,0".00 S" 0" _! 
(5.5) 1 - F {dx} f'J .J- 1 .J- f'J .J- U- s) . 

,,==1 n f 21T ,,-In 2 

The left side in (5.3) tends to E(SN) which may be finite or infinite, but 
cannot be zero. Combining (5:3) and (5.5) we get therefore 

(5.6} E(SN) = .JO" lim exp r I s" (l - P{S" > on]. 
21T ,"'1' _,,-1 n 
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The exponent tends to a finite number or to + 00. The same argument 
applies to N-, that is, to the exponent with Sn > 0 replaced by Sn < O. 
But- the sum of the two exponents equals ~ (sn/n) P{Sn = O} and remains 
bounded as s ~ I. It follows that the exponent in (5.6) remains bounded, 
and hence tends to a finite limit -c. Since its coefficients are o(n-l) this 
implies5 that for s = I the series converges to -c. This concludes the proof. 

~ 

Next we consider random walks with a drift to - 00 and put 

(5.7) 

It may be recalled from VI,9 that in applications to queueing theo_ry Mn 
represents the waiting time of the nth customer. However, the pr~of of the 
following limit theorem is perhaps more interesting than the theorem itself. 

Theorem 2. If the random walk drifts to - 00 the distributions Un of 
Mn tend to a limit distribution U with characteristic function ()) gillen by 

(5.8) 

Note that .2 n-IP{Sn > O} < 00, in consequence of (4.3), and so the 
series in (5.8) converges absolutely for all , with positive imaginary part. 

Proof. Let ())n denote the characteristic function of Un' We begin by 
showing that for lsi < 1 

(5.9) 

The event {Mv E I} occurs iff the following two conditions are satisfied. 
First, for some 0 < n < 11 the point (11, Sn)' is a ladder point with Sn E /; .. 
second, Sir. - Sn < 0 for all n < k < 11. The first condition involves only, 
Xl' ... ,Xn, the second only X?"+l"" ,Xv, The two events are therefore 
independent and so 

(5.10) 

where 

bn = P{N > n}. 

The probabilities an occur on the left in (4.1), and we saw that their trans
form is given by [I-X(s, ,)]-1. The generating function of {b n } is given by 
[l-'T(s)]/(1-s) with 'T defined in (4.3). In view of the convolution property 

5 By the elementary (original) theorem of Tauber. See, for example, E. C. Titchmarsh, 
Theory of Functions~ 2nd ed., Oxford 1939, p. to. 
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(5.10) the product of these functions represents the transform of the prob
abilities P{M" E I}, and (5.9) merely records this fact. 

We have already noticed that the exponents in (5.8) and (5.9) are regular 
for all , with positive imaginary part. For A > 0 we may therefore put 
, = iA which leads us to the Laplace transforms . 

(5.12) ro.(iA) = r' e-" U .{dx} = A f' e-" U .(x) dx. 

From the monotone character of the sequence of maxima M" it follows that 
for fixed x the sequence {U,,(~.)} decreases, and hence for fixed A the 
Laplace transforms W,,{iA) form a decreasing sequence. In view of (5.9) 
we have as s -+ 1 

(5.13) i S"w,,(iA) ~ 1 w(iA), 
,,=0 1 - s 

and by the last part of the Tauberian theorem 5 of XIII,5 this implies that 
w,,{iA) -+ w{iA). This implies the asserted convergence U" -+ U. ~ 

6. CRITERIA FOR PERSISTENCY 

The material of this sectio? is independent of the preceding theory. It 
is devoted to the method developed by K. L. Chung and W. H. J. Fuchs 
(1950) to decide whether a random walk is persistent or transient. Despite 
the criteria and methods developed in chapters VI and XII the Fourier
analytic method preserves its methodological and historical· interest and is 
at present the only method applicable in higher dimensions. In the following 
F stands for a one-dimensional distribution with characteristic function 
?p(O = u(,) + iv(,). 

For 0 < s < 1 we introduce the finite measure 

(6.1) 
00 

Us = Ls"F"*. 
,,=0 

According to the theory developed in VI, 1 0 the distributidn F is transient iff 
,for some open ~nterval I about the origin Us{I} remains bounded as s -+ 1; 
in this case Us{I} remains bounded for every open interval I. Non-transient 
distributions are called persistent. . 

Criterion. The distribution F is transient iff for some a > 0 

(6.2) 

remains bounded as s -+ 1 from below. 

(It will be seen that in the c~ntrary case the i~tegral tends to 00.) 
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Proof. (i) Assume that the integral (6.2) remains bounded for some fixed 
a > o. The Parseval relation XV,(3.2) applied to F n * and a triangular 
density (number 4 in XV,2) reads 

(6.3) 21+ 00 1 - ~02S ax Fn*{dx} -: ! lei (1 - "') tpna) d,. 
-00 a x a -CJ a 

Multiplying by sn and adding over n we get 

(6.4) 

2 (+00'1 - ~o: ax Us{dx} =! (el (1 _ "') d' 
J-oo a x . a J-CJ a 1 - stpa) 

(because the real part of tp is even and the imaginary part is odd). Let / 
stand for the interval Ix~ < 2/a. For x E I the integrand on the left is >! 
and so U.{/} remains bounded. The condition of the theorem is therefore 
sufficient. 

(ii) To prove the necessity of the condition we use Parse val's relation with 
the distribution number 5 in XV,2 which has- the characteristic function 
1 - '{I/a for '" < a. This replact?s (6.4) by 

(6.5) 

For a transient F the left side remains bounded, and so the integral (6.2) 
remains bounded. ~ 

As an application we prove a lemma which was proved by different methods 
in theorem 4 of VI,IO. For further exa~ples see problems 13-16.' 

Lemma 1.6 A probability distribution with vanishing expectation is persistent . 

. . Proof. The characteristic function has a derivative vanishing at the origin, 
and hence 'we can choose a· so small that 

for 0 s ,< a. 

Then 1 - sue ') S 1 - s + £, and using the inequality 2 Ixyl S x 2 + y2 
it is seen that the integral in (6.2) is 

> ! Lei (1-s) d, = 1.. arc tan a£ -+ 7T' • 

- 3 0 (1-S)2 + £2,2 3£ . 1 - S 6£ 

6 The fact that E(X;) = 0 implies persistency was first established by Chung and Fuchs! 
It is interesting to reflect that in 1950 this presented a serious problem and many attempts 
to solve it had ended in failures. Attention on this problem was focused by the surprise 
discovery of the unfavorable "fair" random walk in which P{Sn > n/log n} -1. See 1; 
X,3 and problem 15 in 1; X,8.For a related phenomenon see the footnote to problem 13. 



616 APPLYING FOURIER METHODS TO RANDOM WALKS XVIII.7 

The right side can be made arbitrarily large, and so the integral (6.2) tends 
to 00. 

The passage to the limit involved in the criterion is rather delicate, and it is therefore 
useful to have the simpler sufficient conditions stated in the following 

Corollary. The probability distribution F is persistent if 

(6.6) 

for every a > 0, 

(6.7) , 

f (1_lu;: v' d, = <Xl 

and transient if for some a > 0 

ia~<oo .. 1 - u o . 

Proof. The integrand in (6.2) is decreased when 1 - su in the numerator is replaced by 
1 - u, and sv in the denominator by v. Then (6.6) follows by monotone convergence. 
Similarly, the integrand in (6.2) increases when the term s2v2 is dropped, and then (6.7) 
follows by monotone convergence. ~ 

These criteria apply without change in higher dimensions except that then u and v 
become functions of several variables ';, and the integrals are extended over spheres 
centered at the origin. In this way we prove the following criteria. 

LeJDDla 2. A truly two-dimensional probability distribution with zero expectations and 
finite variances is persistent. 

Proof. The characteristic function is twice continuously differentiable, and from the 
two-term Taylor expansion it is seen that in a neighborhood of the origin the integra~d of 
(6.6) is >~/af+ ,~). The integral corresponding to (6.6) therefore diverges. ~ 

Lemma 3. Every truly three-dimensional distribution is transient. 

Proof. On considering the Taylor expansion of cos (xl 'l +x2'2+x3'S> in some x
neighborhood of the origin one sees that for any characteristic function there exists a 
neighborhood of the origin in which 

1 - ual , '2' '3) ~ ~.af+'~+'~)· 
The three-dimensional analogue to (6.7) is therefore dominated by an integral of 
('f+,~+,~)-l extended over a nei~hborhood of the origin, and in three dimensions this 
integral converges. ~ 

7. PROBLEMS FOR SOLUTION 

1. Do the example of section 1 for the case of anunsymmetric interval -a, b. 
(Derive two linear equations for two generating functions corresponding to the 
two boundaries. Explicit solutions are messy.) 

Problems 2-5 refer to a symmetric binomial random walk, that is, 9'(') = cos ,. 
The notations are those of section 1. 

2. Let A consist of the two poi~ts 

that X(s ') = - e-iC +- e2iC 1 (S S2'
J . ' 1 - 1s2 2 4 

(1.9). 

·0, 1. Show by elementary considerations 

and ,,(s, .) = I ~ i"'( I +~ eIC). Verify 
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3. If in the preceding problem the roles of A and ~' are interchanged one gets . _,~-1 

. S _ ,- [1 - v 1 ...... r J 
X(s, ~) = 2 eii; + }(1 - v 1 -S2), y(s, ') = 1 -. s • 

Interpret probabilistically. 
4. If A' consists of the origin alone X depends only on sand y must be the' 

sum of two power series in eii; and e-ii;, respectively. Using this information 
derive Z and y directly from (1.9). . '. . 

5. If A' consists of the origin alone one has X = srp and y =1. 
6. Alternative proof of the identity (1.9). With the notations of section 1 spow that 

(*) Fn*{I} = f r Hk{dy} F(n-k)*{I ~y} '+ Gn{I} 
. k=l JA' . 

(a) by a direct probabilistic argument, and (b) by ipduction.Show that (*) is 
equivalent to 0.9). -

7. In the case of a (not necessarily symmetric) bi~omial random walk Wald~s 
approximation insection 2 leads to a rigorous solution. Show that (2.12) reduces 
to a quadratic equation for 'T = e-A and that one is led to the solution known 
from 1; XIV, (4.11) .. Specifically, Q(s) agrees with Uz except that the latter 

( -
refers to a basic interval 0; a rather than -a, b, and to a starting point z. 

8. As in section 2 let Gn{I} be the probability that. 8n E I C A and that no· 
exit from A = -a, b has taken place previously. Sh~w that if two distributions 
F and F# agree within the interval Ixl "<' a + b they lead to the same probabilities 
Gn • Use this and an appropriate truncation for an alternative proof that the series 
(2.1) converges for some s > 1. . 
_ 9. Random walks in which-the distribution F is concentrated on finitely many 
integers were treated in example XII,4(c). Show that the formulas derived there' 
contain implicitly the Wiener-Hopf factorization for 1 - 'P.' 

10. (Khintchini-Pollaczek formula.) Let F be the convolution of an exponential 
with expectation .1/a concentrated on 0, 00 and a distribution B concentrated 
on . - 00, O. Denote the characteristic function of B by P, its expectation by 
-b "< o. We 'suppose that the expectation a-I - b of F is positive. Then 

a (a ) ( 1 - P( '») I - 'Pa) = 1 - . pa) = 1 - . 1 - a . . 
a - " a - " " .I 

Note: This formula plays an important role in queueing theory. For alternative 
treatments see examples XII,5(a-b) and XlV,2(b). 

11. (Continuation.) If ab > 1 show that there exists a unique positive number 
K between 0 and a such that 

ap( -iK) = a - K. 

Prove that x-(1, ') = a -.K ~ aP(O. Hint: Apply problem 10 to the associated 
" - K 

random walk with characteristic function afPa) = 'Pa - iK). Recall that 
x-(I, ') = ax-(1, , - iK). [See exampleXII,4(b)·1 
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12. Let Un = max [0,81 , .•• ,8n ] and V n = 8n - Un. By a very slight 
change of the argument used for (5.9) show that the bivariate characteristic function 
of the pair (Un, V n) is the coefficient of sn in? 

13.8 Suppose that in a neighborhood of the origin .11 - tpa)1 < A . 1'1. Then 
F is persistent unless it has an expectation f..l ¢ O. 

Hint: The integral in (6.6t exceeds f.rI.d , P" x2 F{dx}. Substitute ,= l/t 
OJ-I" 

and interchange the order of integration to see that this integral diverges unless 
f..l exists. It 

·14. Using the criterion (6.7) show that if t-1- p x2 F{dx} -- 00 for some 
-t 

p > 0 as t -- 00 the distribution F is transient. 9 

15. The distribution with characteristic function tpa) = e-1 L lIn! cos (n!,) 
is transient. 

Hint: Use (6.7) and the change of variable ,= (lln!)t. 
16. The unsymmetric stable distributions with characteristic exponent ex = 1 are 

transient, but the Cauchy distribution is persistent. 

? First derived analytically by F. Spitzer, Trans. Amer. Math .. Soc., vol. 82 (1956) 
pp. 323-339. 

8 This problem commands theoretical interest. It applies whenever tphas a derivative 
at the origin. We saw in XVII,2a that this is possible even without F having an expectation, 
and that in this case the weak law of large numbers applies nevertheless. Thus we get 
examples of random walks in which for each sufficiently large n there is an overwhelming 
probability that Sn > (1 - E)np. with p. > 0, . and yet there is no drift to 00: the random 
walk is persistent. 

9 This shows that under slight regularity conditions F is transient whenever an absolute 
moment of order p < 1 diverges. The intricacies of the problem without any regularity 
conditions are shown in L. A. Shepp, Bull. Amer. Math. Soc., vol. 70 (1964) pp. 540-542. 



CHAPTER XIX 

Harmonic Analysis 

This chapter supplements the theory of characteristic functions presented 
in chapter XV and gives applicati<>ns to stochastic processes a~d integrals. 
The discussion of Poisson's summation formula in section 5 is practically 
independent of the remainder. The whole theory is independent of chapters 
XVI-XVIII. 

1. THE PARSEVAL RELATION 

Let U be a probability distribution with characteristic function 

(1.1) 

Integrating thi.s relation with respect to some other probability distribution 
F we get 

(1.2) i
+OO i+oo 

-00 wa) F{d~} = -00 p(x) V{dx}, 

where p is the characteristic function of F. This is one form of the Parse val 
relation from which the basic results of XV,3 were derived. Surprisingly 
enough, a wealth of new information can be obtained by rewriting Parseval's 
formula in equivalent forms and considering special cases. ,A simple example 
of independent interest may illustrate this method, which will be used 
repeatedly. 

Example. The formula 

(1.3) i+
OO i+oo 

-00 e-ia/;wa) F{d~} = -00 p(x) U{a + dx} 

differs from (1.2) only notation ally. We apply the special case where F 

is the uniform distribution in -t, t and p(x) = sin tx/tx. This function 
does not exceed 1 in absolute value and as t ~ 00 it tends to 0 at all points 

619 
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x #0. By bounded convergence we get therefore 

(1.4) U(a) - U(a-) = lim lit e-ia{w(') d,. 
t-+oo 2t -t 

This fonnula makes it possible to decide whether a is a point of continuity 
and to find the weight of the atom at a, if any. The most interesting result 
is obtained by applying (1.4) to the symmetrized distribution °U with 
characteristic function Iw1 2

• If PI' P2, . .. are the weights of the atoms of 
U then 0 U has an atom of weight .2 P: at the origin (problem 11 in V, 12) 
and so 

(1 .. 5) ~ i· t 1wa)1 2 d' ~.2 p;. 
2t -t 

This formula shows, in particu~ar, that the characteristic functions of 
continuous distributions are, on the average, small. ~ 

A versatile and useful variant of the Parsevai formula (1.2) is as follows. 
If A and B are arbitrary probability distributions with characteristic functions 
(X. and {J, respectively, then 

+00 

(1.6) II w(s-t)"A{ds} B{dt} = I rx(x)'{J(x) U{dx} 
-00 -00 

where Il is the conjugate of p. For a direct. verification it suffices to integrate 

(1.7) 1
+00 

w(s-t) = -00 ei(s-tlZU{dx } 

with respect to A and B. This argument produces the erroneous impression 
that (1.6) is more general than (1.2), whereas the relation (1.6) is in reality 
the special case of the Parseval relation (1.2) corresponding to F = A * -B 
where - B is the distribution with characteristic function /l [that is, 
-B(x) = 1 - BC -x) at all points of continuity] .. Indeed, F has the 
characteristic function cpo = rx/l, and so the right sides in (1.2) and (1.6) 
are identical. That the left sides differ only notationally is best seen using 
two independent random variables X and Y with distributions A and B, 
respectively. The left side in (1.6) represents the direct definition of the 
expectation E(w(X- V)), whereas the left side in (1.2) expresses this 
expectation in terms of the distribution F of X - Y. 

(We return to Parseval's formula in section 7.) . 

2. POSITIVE DEFINITE FUNCTIONS 

An important theorem due to. S. Bochner (1932) makes it possible to 
describe the class of characteristic functions by intrinsic properties. The 
following simple criterion will point the way. 
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Lemma 1. Let w be a bounded c.0ntinuous (complex-valued) function that 
is integrable! over - 00, 00. Define u by 

(2.1) u(x) = l... (+00 e-iCz wa) d~. 
21T J-oo 

In order that (tJ be a characteristic function it is necessary and sufficient that 
w(O) = 1 and that !I(x) ~ 0 for all x. In this case u is the probability 
density corresponding to . w. 

Proof. The Fourier inversion formula XV,(3.5) shows that the conditions 
are necessary. Now choose an arbitrary even density f with integrable 
characteristic function cp > 0.' Multiply (2.1) by cp(tx)eiaZ and integrate 
with respect to x. Since the inversion formula XV,(3.5) applies to the pair 
f, cp the res ult is 

(2.2) r+ooll(x) cp(tx)iaz dx = r+ooWa)f(~ - a)d~ . 
J-oo J-oo t t 

The right side is the expectation of w with respect to a probability distri
bution, and hence it is bounded by the maximum of Iwl. For the particular 
value a = 0 the integrand on the left is non-negative and tends to u(x) 
as t ~ O. The boundedness of the integral therefore implies that u is 
integrable. Letting t ~ 0 in (2.2) we get ther~fore 

(2.3) r+ oo 
J-oo u(x)e

iaZ 
dx = w(tJ) 

(the left side by boul1ded convergence, the right ;;ide because the prcbability 
distribution involved tends to the distribution concentrated at the point a). 
For a' 0 we see that u is a probability density, and w is indeed its 
characteristic function. ~ 

The integrability condition of the lemma looks more restrictive than it is. 
In fact, by the continuity theorem a continuous function w is characteristic 
iff wa)e-E

,2 is a characteristic function for every fixed € > O. It follows 
that a bounded continuous function with w(O) = I is characteristic iff for 
all x and € > 0 

(2.4) 

This criterion is perfectly general, but it is not easy to apply in individual 
situations; moreover, the arbitrary choice of the convergence factor e-£'z is a 
drawback. For this reason we restate the criterion in a form in which the 
condition is sharpened. 

1 As elsewhere this means absolute integrability. 
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Lemma 2. A bounded continuous function w is characteristic iff w(O) = 1 
and if for every probability distribution A and all x 

(2.5) 

where °A = A * -A is the distribution obta.ined by symmetrization. 

Pr~of. (a) Necessity. If ex is the characteristic function of A then °A has 
the characteristic function lexl 2 and the necessity of (2.5) is implicit in the 
Parseval relation (1.3). 

(b) Sufficiency. It was shown in (2.4) that the condition is sufficient if A 
is restricted to normal distributions with arbitrary variances. ~ 

Vve have seen that (2.5) may be rewritten in the form (1.6) with B = A. 
In particular, if A is concentrated at finite1y many points t1 , t2 ,! • •• , tn 
w.ith corresponding weights PI' P2, ... 'Pn' then (2.5) takes on the form 

(2.6) .2 w(t i - t k)e-iz( t;-tk)p iPk > o. 
j .1e 

If this inequality is valid for all choices of tj and Pi then (2.5) is satisfied 
for all discrete distributions A with finite1y many atoms. As every distri
bution is the limit of a sequence of such discrete distributions the condition 
(2.6) is necessary and sufficient. With the change of notation zi = Pie-izt; 

it takes on the form 

(2.7) .2 W(ti-tk)zizk > O. 
i.k 

For the final formulation of our criterion we introduce a frequently used t~rm. 

Definition. A complex-valued function w of the real variable t is called 
positive definite iff (2.7) holds for every choice of finitely many real numbers 
t I , ..• ,tn and complex numbers ZI,·' . , Zll' 

Theorem. (Bochner.) A continuous function co is the characteristic function 
of a probability dIstribution iff it is positive definite and w(O) = 1. 

Proof. We have shown that the condition is necessary, and also that it is 
sufficient when. w is bounded. The proof is completed by the next lenlma 
which shows that all positive definite functions are bounded. ~ 

Lemma 3. For any positive definite w 

(2.8) 

(2.9) 

w(O) > 0, Iw(t)1 < w(O) 

w( -t) = wet). 
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Proof. We use (2.7) with n = 2 letting t2 = 0 and Z2 = 1. Dropping 
the unnecessary subscripts we get 

(2.10) w(0)[1+lzI2] + w(t)z + w(-t)z > O. 

For z = 0 it is seen that w(O) > O. For positive z we get (2.9) and it 

follows that w = 0 if w(O) = O. Finally, if w(O) ¥= 0 and z = -wet)! 
w(O) then (2.10) reduces to Iw(t)12 < W2(0). . ~ 

3. STATIONARY PROCESSES 

The last theorem has important consequences for stochastic processes 
with stationary covariances. By this is meant a family of random variables 
{X t } defined for - 00 < t < 00 and having covariances such that 

(3.1) Cov (Xs+t' Xs) = pet) 

is independent of s. So far we have considered only real random variables, 
but now the notations will become simpler and more symmetric if we admit 
complex-valued random variables. A complex random variable is, of course, 
merely a pair of real variables written in the form X = U + iV and nothing 
need be assumed concerning the joint distribution of. U and V. The variable 
X = U - iV is called the conjugate of X and the product XX takes over 
the role of X2 in the real theory. This necessitates a slight unsymmetry in the 
definition of variances and covariances: 

Definition. For complex random variables with 

we define 

(3.2) 

E(X) = E(Y) = 0 

Cov (X, Y) = E(XY). 

Then Var (X) = E(IXI2) > 0, but Cov (Y, X) IS the conjugate of 
Cov (X, V). 

Theorem. Let {X t } be a family of random variables such that 

(3.3) pet) = E(Xt+sXs) 

is a continuous function 2 independent of s. Then p is positive definite, that is, 

(3.4) pet) = r+<Xlei).t R{d)'} 
"'-<Xl 

where R is a measure on the real line with {otal mass p(O). 

2 Continuity is important: for mutually independent variables Xi one has p(/}- == 0 
except when t = 0, and this covariance function is not of the form (3.4). See problem 4. 
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{( the variables X t are real the measure R is symmetric and 

(3.5) i
+<Xl 

p(t) = -<Xl cos At R{dA}. 

Proof. Choose arbitrary real points t l' ... , t n and complex constants 
ZI' ••• ,zn' Then 

(3.6) I p(tj-fk)ZjZk = I E(X(jXtk)ZjZk = 

= E(I XtiZjXtkZk) = E(II XtjZjl2) >. 0 

and so (3.4) is true by the criterion of the last section. When 
r~lation (3.,4) holds also for the mirrored measure obtained 
x to -x, and because of the uniqueness R is symmetric. 

p is real the 
by changing 

~ 

The measure R is called the spectral measure3 of the process; the set 
f~rmed by its points of increase is called the spectrum of {X t }. In most 
applications the variables are centered so that E(Xt ) = 0, in which case 
p{t) = Cov (X t+s , XJ. For this reason p is usually referred to as the 
covariance function of the process.· Actually the centering of X t has no 
influence on the properties of the process with which we shall be concerned. 

Examples. (a) Let ZI' ... , Zn be mutually uncorrelated random 
variables with zero expectation and variances a;, ... ,a!. Put 

(3.7) 

with ,11"" ,An real. Then 

(3.8) pet) = a;eiA1t + . ~ . + a;eo.nt 

and so R is concentrated at the n points AI"'" An' We shall see that 
the most general stationary process may be treated as a limiting case of this 
example. 

If the process (3.7) is real it can be put into the form 

(3.9) X t = VI cos A1t+· '. '+Vr cos Art +. VI sin AIt+·· '+Vr sin Art 

where the Vj and Vj are real uncorrelated random variables and 

E(U;) = E(V;) = a~. , 

A typical example occurs in III,(7.23). The corresponding covariances are 
pet) = a; cos Alt + '.' .. + a; cos J·rt. 

(b) Markovian processes. If the variables X t are normal and the process 
is Markovian, then pet) = e-a1tl [see III,(8.14)]. The spectral measure is 
proportional toa Cauchy density. 

3 In communication engineering, also called the "power spectrum." 
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(c) Let X t = ZeitY where Y and Z are independent real random 
variables, E(Z) = O. Then 

pet) = E(ZZ)E(eity
) 

which shows that the spectral measure R is given by the probability 
distribution of Y multiplied by the factor E(Zl). ~ 

Theoretically it matters little whether a process is described in terms of -its 
covariance function p or, equivalently, in terms of the corresponding 
spectral measure R, but in practice the description in terms of the spectral 
measure R is usually simpler and preferable. In applications to com
munication engineering the spectral analysis has technical advantages in 
instrumentation and measurement, but we shall not dwell on this point. 
Of greater importance from our point of view is that linear operations (often 
called "filters") on the variables X t are more readily described in terms of 
R than of p. 

Example. (d) Linear operations. As the simplest example consider the 
family ofTandom variables Y t defined by 

(3.10) Yt = I CkXt- Tk 

where the Ck and Tk are constants (Tk real) and the sum is finite. The 
covariance function of Y t is given by the double sum 

(3.11) py(t) '= :L cjck p(t-T;+Tk)· 

Substituting into (3.4) one finds 

py(t) = i+oooo'I cje-iTj).12. e
it

). R{d}.}. 

This shows that the spectral measure Ry is determined by 

(3.12) Ry{d)'} = I:L cje-iTjAl2 R{d)'}. 

In contrast to (3.11) this relationship admits of an intuitive interpretation: 
the "frequency" ;. is affected by a "frequency response factor" I(}.) which 
depends on the gi"ven transfonnation (3.10). 

This example is of much wider applicability than appears at first sight 
because integrals and derivatives are limits of sums of the form (3.10) and 
therefore a similar remark applies to them. For example:, if X t serves as 
input to a standard electric circuiL the output Y t can be represented by 
integrals involving X t ; the spect;"al measure Ry is again expressible by R 
and a frequency response. The latte-r d~p~l1ds on the characteristics of the 
network, and our result can be used in two directions; namdy, to describe 
the output process and also to cons!.ruct networks which wiIi y;eld an output 
with certain prescribed properties. >-
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We turn to the converse of our theorem and show that given an arbitrary 
measure R on the line there exists a stationary process {Xt} with spectral 
measure R. Since the mapping X t ~ aX t changes R into a2R there is no 
loss of generality in assuming that R is a probability measure. We take 
the A-axis equipped with the probability measure R as sample space and 
denote by X t the random variable defined by Xt{A) = eitJ.. Then 

(3.13) 

and so the spectral measure of our process is given by R. We have thus 
constructed an explicit model of a stationary process with the prescribed 
spectral measure. That such a model is possible with the real line as sample 
space is surprising and gratifying. We shall return to it in section 8. 

It is easy to modify the model so as to obtain variables with zero expectation. Let Y 
be a random variable that is independent of all the X t and assumes the values ± 1 each 
with probability t. Put X; = YXt . Then E(X;) = 0 and E(X;+sX;) = E(y2) E(XHsXs). " 
Thus {X~} is a stationary process with zero expectations, and (3.13) represents its true 
covariance function. 

4. FOURIER SERIES 

An arithmetic distribution attributing" probability rpn to the point n 
has the characteristic function 

+00 

(4.1) rp({) = I rpneinl; 
-00 

with period 2"77". The probabilities rpn can be expressed by the inversion 
formula 

(4.2) 

which is easily verified from.(4.l) [see XV,(3.14)]. 
" We now start from an arbitrary function rp with period 21T and define 
rpk by (4.2). Our problem is to decide whether rp is a characteristic function, 
that is, whether {rpn} is a probability distribution. The method depends on 
investigating the behavior of the family of functions fr defined for 0 < r < 1 
by 

(4.3) 
-00 

Despite its simplicity the same argument will yield important results con
cerning Fourier series and characteristic functions of distributions con
centrated on finite intervals. 
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1---
In what follows it is best to interpret the basic interval -1T, 1T as a circle 

(that is, to identify the points 7T and -7T). For an integrable T the number 
Tk will be caNed the kth Fourier coefficient of T. The series occurring in 
(4.1) is the corresponding "formal Fourier series." It need not converge, 
but the sequence {Tn} being bounded, the series (4.3) converges to a con
tinuous (even differentiable) function fro When r -- 1 it is possible for fr 
to tend to a limit 1p even when the series in (4.1) diverges. In this case one 
says that the series is "Abel summable" to 1p. 

Examples. (a) Let Tn = 1 for n = 0, 1,2, ... , but Tn = 0 for n < O. 
Each term of the series in (4.1) has absolute value 1, and so the series cannot 
converge for any value ~. On the other hand, the right side in (4.3) reduces 
to a geometric series which converges to 

(4.4) 

As r -- 1 a limit exists at all points except {= O. 
(b) An important special c~se of (4.3) is represented by the functions 

(4.5) 

obtained when· Tll = 1/(27T) for all n. The contribution of the terms 
n > 0 was evaluated in (4.4). For reasons of symmetry we get 

(4.6) 
1 1 

27Tplt) = . + . - 1 
1 - rett 1 - re-tt 

or 
1 1 - r2 

Pr(t) = - . -------
27( 1 + r2 - 2r cos t 

(4.7) 

This fun~tio~ is of constant use in the theory of harmonic functions where 
Pr(t-{) is called the "Poissfln kernel." For reference we state its main 
property in the next lemma. 

. Lemma. For .fixed 0 < r'< 1 the fimction Pr is the density of a prob
ability distribution P r on the circle. As r -- 1 the latter tends to the probability 
distribution concentrated at the origin. 

Proof. Obviously Pr > O. That the integral of Pr over =-1T, 7T equals 
one is evident from (4.5) because for n 7Jf 0 the integral of' eint vanishes. 
For () < t < 1T the denominator in (4.7) is bounded away from zero. As 
r -- 1 it follows that in every open interval excluding the origin p;.(!) -- 0 
boundedly as r -- 1, and so Pr has a limit distribution concentrated at the 
0nglI1. ~ 
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Theorem 1. A continuous function rp with period 21T is a characteristic 
function iff its Fourier coefficients (4.2) satisfy rpk > 0 and rp(O) = 1. In 
this case rp is represented by the uniformly convergent Fourier series (4.1). 

[In other words, a formal Fo'urier series with non-negative coefficients rpk 
converges to a continuous function iff L rp,; < 00. In this case (4.1) holds.] 

Proof. In view of (4.2) and (4.5) the function fr of (4.3) may be put into 
the form 

(4.8) 

On the right we recognize the convolution of rp and the probability distri
bution Pr , and we conclude 

(4.9) r -+ 1. 

Furthermore, if m, is an tipper bound for Irpl then by (4.8) 

+00 

(4.10) fr(O) =~ rpnr1nl < m. 
-00 

The terms of the series being non-negative it follows for r -+ 1 that 
L rpn < m. Therefore L rpneint converges uniformly and it is evident from 
(4.3) that Ira) t~nds to this value. Thus (4.l) is true, and this concludes the 
proof ~ 

Note that (4.9) is a direct consequence of the convergence properties of 
,convolutions and hence independent of the positivjty of the coefficients rpno 
As a by-product we thus have 

Theorem 2.4 If rp is continuous with period 271',' then (4.9) holds uniformly 
in ,. 

(For generalizations to discontinuous functions see corollary 2 and 
problems 6-8.) 

Corollary 1. (Fejer.) A continuolls periodic function rp is the uniform 
limit of a sequence of trigonometric polynomials. 

4 The theorem may be restated as follows: The Fourier series of a continuous periodic 
function rp is Abel summable to rp. The theorem (and the method of proof) apply equally 
to other methods of summability. 
The phenomenon was first discovered by L. Fejer using Cesaro summability (see problem 
9) at a time when divergent series still seemed mysterious. The discovery therefore came as 
a sensation, and for historical reasons texts still use Cesaro summability although the Abd 
method is more convenient and unifies proofs. 
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In other words, given E > 0 there exist numbers a_N,'" , a,,\, such that 

N 
(4.11) <pa) - ~ anein~ < E 

for all ~. 
n=-N 

Proof. For arbitrary Nand 0 < r < 1 

N 

( 4.12) <pa) - L <pnrlnlein, < 1<p(O - Ira) I + L I({)nl' rlnl. 
n=-N Inl>N 

The claim is that we can choose r so close to 1 that the first term on the 
right will be < E/2 for all ~. Having chosen r we can choose N so 
large that the last series in (4.l2) adds to < E/2. Then (4.l1) holds with 
an = <pnr1nl . ~ 

The following result is mentioned for completeness only. It is actually 
contained in lemma 1 of section 6. 

Corollary 2. Two iniegrable periodic functions with identical Fourier 
coefficients differ at most on a set of measure zero (that is, their indefinite 
integrals are the same). 

Proof. For an integrable periodic <P with Fourier coefficients <Pn put 

(4.13) <ll(x) = 1:.['1'(1)-'1'0] dl. 

This <P is a continuous periodic function, and an integration by parts shows 
that for n =/= 0 its nth Fourier coefficient equals -i<pn/n. 

The relations (4.9) and (4.3) together show that a continuous function <P 
is uniquely determined by its Fourier coefficients <Pn' The coefficients <Pn 
with n =/= 0 therefore determine <P up to an additive constant. For an 
arbitrary integrable <P it follows that its Fourier coefficients determine the 
integral <D, and hence <P is determined up to values on a set of measure 
zero. ~ 

*5. THE POISSON SUMMATION' FORMULA 

In this section (F stands for a characteristic function such that I rpl is 
integrable over the whole line. By the Fourier inversion formula XV,(3.5) 

. this implies the existence of a continuous density f By the Riemann-Lebesgue 
lemma 3 of XV,4 both f and <P vanish at infinity. If rp tends to zero 
sufficis;:ntly fast it is pos~ible to use it to construct periodic functions by a 
method that may be described roughly as wrapping the '-axis around a 

* This section treats important special topics. It is not used in tbl! sequel, and it is 
independent of the preceding sections except that it uses theorem 1 of section 4. 
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circle of length 2A. The new function may be presented in the form 
+co 

(5.1) 1p( ') = L g;(' + 2kA). 
lc=-co 

(The sum ofa doubly infinite series L:=~co ak is here defined as lim L':=-N ak 
when this limit exists.) In case of convergence the function 1p is obviously 
periodic with period 2A. In its simplest probabilistic form the Poisson 
summation formula asserts that whenever 1p is continuous 1p(')/1p(O) is. a 
characteristic function of an arithmetic probability distribution with atoms of 
weight proportional to f(n1T/A) at the points n1T/A. (Here n = 0, ± I, 

. ±2, .... ) At first sight this result may appear as a mere curiosity, but it 
contains the famous. sampling theorem of communication theory aqd many 
special cases of considerable interest. 

. Poisson summation formula.5 Suppose that the characteristic function g; 
is absolutely integrable, and hence, the corresponding probability density f 
continuous. Then 

(5.2) 
+co +co 
~ g;a +2kA) = E:. L f(n 1T/A)ein (rrlJ.)C 
-co . A -co 

prQvided the series on the left converges to a continuous f1Jnction 1p 

. For ,= 0 this implies that 
+co 

(5.3) ~ g;(2kA) = (1T/A) 2'..f(n1T/A) 
-co 

is a positive number A, and so 1p(,)/A is a characteristic function. 

Proof. It suffices to show that the rigb.t side in (5.2) is the formal Fourier 
series of the periodic function "p on the left, that is 

(5.4) ..L LA 1p(')e-in (rrIA)C d, = ~ f(n1T A). 
2A -A A. 

In fact, these Fourier coefficients are non-negative, and 1p was assumed 
continuous; by theorem 1 of the preceding section the Fourier series there
fore converges to 1p, and so (5.2) is true. 

The contribution of the kth term of the series (5.1) for 1p to the left side 
in (5.4) equals 

(5.5) 

5 The iden.tity (5.2) is usually established under a variety of subsidiary conditions. Our 
simple formulation, as well as the greatly simplified proof, are made possible by a systematic 
exploitation of the positivity of f For .variants of the theorem and its proof see problems 
12 and 13. 
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and is in absolute value less than 

J,
(2k+1»). 

I <p(s) I ds. 
(2k-O). 

(5.f) 

The intervals (2k - I)A < s < (2k + I)A cover the real axis without 
overlap, and so the quantities (5.6) add up to the integral of 1<p1 which is 
finite. Summing (5.5) over -N < k < N and letting N -- 00 we get 
therefore by dominated convergence 

(5.7) l: i).1p(')e-in(rrl).), d, = l i+
co 

<p(s) e-in(rrl).)s ds. 
211. -). 2A -co 

The right side equals (1T/A)f(n1T/A) by the Fourier inversion theorem and this 
concludes the proof. ~ 

The most interesting special case arises when <p vanishes identically for 
1'1 > a where a < A. The infinite series in (5.1) redu~es to a single term, 
and 1p is simply the periodic continuation of <p with period 2A.. Then (5.2) 
holds. In (5.3) the left side reduces to 1 which shows that 1p is the character
istic function of a probability distribution. We have thus the 

Corollary. If a characteristic function vanishes for 1 'I > a then all its 
periodic continuations with period 2A > 2a are again characteristic functions. 

This corollary is actually somewhat sharper6 than the "sampling theorem" 
as usually stated in texts on communication engineering and variously 
ascribed to H. Nyquist or C. Shannon. 

"Sampling theorem." A probability density f whose characteristic function 

<p vanishes outside -a, a is uniquely determined7 by the values (1TfA)f(n1T/A) 

6 Usually unnecessary conditions are introduced because the proofs rely on standard 
Fourier theory which neglects the positivity of f germane to probability theory. 

7 An explicit expression for f(x) may be d~.rived as follows. For ! ~I <}. we have 
rpa) = V'a) and hence by the Fourier inversion formula 

1 I+Cf< f(x} = - 1p('}e-ix~ d,. 
27T -cc 

Now 1p is given by the right side in (5.2), and a trite integration leads to the tlnal formula 

f(x) = .!.- ~ ~ Ii. f (n ~)ei71(1T/A)~_i~X ds 
27T A .L ". -ex; -). 

sin Ax +cc ( 7T) (-on 
= -,- 2 f II -: •. 

". /. X - n7T/A 
-0:< 

This expansion is sometimes referred to as "cardinal series." It h,l~ m:lny aFpti~.Hions. 
[See theorem 16 in 1. M. Whittaker, Interpolatory function theory, Clmoridge Tnets ~o. J3 
J 935. For an analogue in higher dimensions see D. P. Pcters(;r1 and D. 'vI iJdktor., 
Information and CQntrol, vol. 5 (1962) pp. 279-323.] 
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for any fixed A > a. (Here n = 0, ± 1, .... ) (These values induce a 
probability distribution whose characteristic function is the periodic con
tinuation of cp with period' 2A.) 

Examples. (a) Consider the density f(x) = (I-cos X)j('iTX2) with the 

characteristic function cp(') = 1 - '" vanishing for '" > 1.' For A = 1 
and ,= 1 we get from (5.3) remembering that /(0) = 1/(277) 

. (5.8) ~+~l 1 =1. 
2 1T2 v=o (2v+ 1)2 . 

The periodic continuation of cp' with period .' 2A = 2 is graphed in figure 
2 of XV ,2, a contirtuation with period A > 2 in figure 3. 

(b) For a simple example for (5.2) see p~oblem 1). ~ 

As usual.in similar situatiens, formula (5.2) may be rewritten in a form 
that looks Illore general. .Indeed, applying (5.2) to the density f(x+s) we 
get the alternative form of the Poisson summation formula 

(5.9) 

Examples. (c) Applying (5.~) to the nonnal d~nsity and using only the 
special value ,= X one ,gets 

(5.10)" Ie- 1(2k+U
2

A
2 co~ (2k+l)As = ~Y'(_I)~n(2k+l)1T,+ s). 

-00 . .1. -00 . A 
. . 

This is a famous formula from the theory of theta functions which was 
proved in X,5 by more elementary methods. In, fact, differentiation with 
respect to x shows that' the identity of X· (5.8) 'and X (5.9) is equivalent to 

(5.10) \yith A = (1T/a)Jt and s = x/Jt. 
(d) For the' density f(x) = '1T-1(l +X2)-1 with characteristic function 

cpa) = e 1,1 we get from (5.2) for ,= 0 

(5.11) 

This is the partial fraction decomposition for the hyperbolic cotangent.· 
(e) Densities 011 the eircll! of length 277 may be obtained by wrapping the 

real axis around the circle as described in II,8. To a given density f 01) the 
line there correspo·nds on the circle the density given by· the . series 
J.f(21Tn + s). From (5.9) with {= 0 we get a new representation .of this 
density in terms of the original characteristic function. In the special case 
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J = n we get the analogue to the normal density on the unit circle in the form 

(5.12) -:== .2 exp - - (s+2n1T)2 = - L e-}T1 t cos ns. 1 +00 (1 ) 1 +00 2 

v21Tt -00 2t 21T -00 

The second representation shows clearly that the convolution of two normal 
densities with parameters tl and t2 is a normal density with parameter 
tl + t2· ~ 

6. POSITIVE DEFINITE SEQUENCES 

This section is concern·ed with probability distributions on a finite interval; 
for definiteness its length will be taken to be 21T. As in section 4 we identify 
the two endpoints of the interval and interpret the latter as a circle of unit 
radius. Thus we conside[ F as a propability distribution on the unit circle 
and define its Fourier coefficients by 

(6.1) 1 iT: . (P k = - e-tk t F { d t }, 
21T -rr 

k=O,±I, .... 

Note that ifJk = CP-k. It will now be shown that the coefficients Tk 
uniquely determine the .distribution. Allowing for a trivial change of scale 
the assertion i.s equivalent to the following: A distribution concentrated on 

. -A, A is uniquely determined by the knowledge oJthe l'alues cp(n7T/A) assumed 
by its characteristic function at the multiples of 7TjJ... The assertion represents 
the dual to the sampling theorem of the preceding section according to which 

a characteristic function vanishing outside - }.,}, is uniq uely determined by 
the values J(n1T/A) of the density. 

Theorem 1. A distribution F on the circle is uniquely determined by its 
Fourier coefficients CPk. 

Proof. As ip (4.3) we put for '0 < r < I 

+00 

(6.2) Ji') = ~ CPn . ,Inl . ei1t
(. 

~fhe trite calculation that led to (4.8) shows that no'vv 

(6.3) 

where Pr stands for the Poisson kernel defined in (4.7). \Ve know that Pr. is 
. a probability density, and we denote the corresponding distribution Pro 
Then fr is the density of the convolution Pr * F which tends to F as 
r -- 1., and so F is actually c~lculable in terms of Jr. ~ 
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Lemma 1. Let {Tn} be an arbitrary bounded sequence of complex numbers. 
In order that there exists a measure F on the circle with Fourier coefficients 
CPn it is necessary and sufficient that for each r < 1 the function fr defined in 
(6.2) be non-negative. 

Proof. The necessity is obvious from (6.3) and the strict positivity of Pro 
Multiply (6.2) by e-ik( and integrate to obtain 

(6.4) .• 11. 1=-.LJ1I" fC .... )-iHd y 
'fk r " Jr S e «;,. 

277 -11" 

For the particular value k = 0 it is seen that CPo > 0 and without loss of 
generality we may assume that (Po = 1/(277). With this norming fr is the 
density of a probability distribution Fr on the circle, and (6.5) states that 
tpkr1kl is the kth Fourier coefficient of Fr. By the selection theorem it is 
possible to let r -+ I in such a manner that Fr converges to a probability 
distribution F. From (6.5) it is obvious that Tk satisfies (6.1), and this 
completes the proof. ~ 

Note that this lemma is stronger than corollary 2 in section 4. We proceed 
as in section 2 and derive a counterpart to Bochner's theorem; it is due to 
G. Herglotz. 

Definition. A sequence {CPk} is called positive definite if for every choice 
of finitely many complex numbers ZI,' .. , zn 

(6.5) ~ CPi-k Z;Zk > O. 
j,k 

Lemma 2. If {CPn} is positive definite then. 'Po > 0 and ICPnl < CPo· 

Proof. The proof of lemma 3 of section 2 applies. (See also problem 14.) 

Theorem 2. A sequence {'Pn} represents the Fourier coefficients of a 
measure F on" the circle iff it is positive definite. 

Proof. (a) A trite calculation shows that if the cP" are given by (6.1) the 
left side in (6.5) equals the integral of (1/277) 12: e-iitzil2 with respect to F. 
The condition is therefore necessary. 

(b) To show its sufficiency choose Zk = rke ikt for k > 0 and Zk = 0 for 
k < O. With this seq uence the sum in (6.5) takes on the form 

00 00 +00' 00 +00 

(6.6) 2: ~ ~i_kri+kei(j-k)t = ~ cpneint~ rlnl+2k = (1- r2)-1 ~ CPnrlnl~illt, 
;=0 k=O n=-oo k=O n=-oo 

and by the definition (6.2) the l~st sum equals /"(t). It is true that the in
equality (6.5) \vas postulated only for finite sequences {zn}, but a simple 
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passage to the limit shows that it applies also to our infinite sequence, and we 
have thus proved that fr(t) > O. By lemma 1 this implies that the CfJn are 
indeed the Fourier coefficients of a measure on the unit circle. ~ 

From this criterion we derive an analogue to the theorem of section 3: 

Theorem 3. Let {Xn} be a sequence of random variables defined on some 
probability space such that 

(6.7) 

is independent of 'V. Then there exists a unique measure R on the circle 
I 
-77, 77 such that Pn is its nth Fourier coefficient. 

Proof. Clearly 

(6.8) ~ Pj-lcZiZk = ~ E(XjZjXlcZk) = E(II XjZj12) 

which shows that the sequence {Pn} is positive definite. 

The converse is also true: to any measure on the circle there exists a 
sequence {Xn} such that (6.7) yields its Fourier coefficients. This can be 
seen by the construction used at the end of section 3, but we shall return to 
this point in section 8. 

Examples. (a) Let the Xn be real identically distributed independent 
variables with E(Xn) = f' and Var (Xn) = 0'2. Then Po = 0'2 + p,2 and 
Pk = p,2 for all k -:;rf O. The spectral measure is the sum of an atom of 
weight p,2 at the origin plus a uniform distribution with density 0'2/(277). 

(b) The construction in section 4 shows that the density defined for fixed 
r < 1 and 0 by Pr(t-O) has Fourier coefficients Pn = rlnleinB. 

(c) lv/arko1) processes. It was shown in III,8 that stationary Markov 
sequences of real normal variables have covariances of the form Pn = rlnl 
with 0 < r < 1. A similar argument shows that the covariances of arbitrary 
complex stationary Markov sequences are of the' form rlnleinB. When 
r < 1 the spectral measure has density Pr(t - 0); when r = 1 it is con
centrated at the point O. ~ 

7. L2 THEORY 

For purposes of probability theory it was necessary to introduce character
istic functions as transforms of measures, but other approaches to harmonic 
analysis are equally natural. In partIcular, it is possible to define Fourier 
transforms of functions (rather- than measures) and the Fourier inversion 
formula makes it plausible that greater symmetry can be achieved in this way. 
It turns out that the greatest simplicity and elegance is attained when only 
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square integrable functions are admitted. This theory will now be developed 
for its intrinsic interest and because it is extensively used in the harmonic 
analysis of stochastic processes. 

For a complex-valued function u of the real variable x we define the 
norm Ilull > 0 by 

(7.1) 
(+00 

Ilu 11° = )-(1) lu( x)1
2 

dx. 

Tl,ro functions differing only on a set of measure zero will be considered 
identical. (In other words, we are actually dealing with equivalence classes 
of functions, but indulge in a usual harmless abuse of language.) With this 
convention Ilu/! = 0 itT II = O. The class of all functions with finite norm 
will be denoted by L2. The distance of two functions u, v in L2 is defined 
by lIu - vII· With this definition L2 is a metric space and a sequence of 
functions Un in L2 converges in this metric to u iff lIun - ull -+ O. This 
convergenceS will be indicated by u = l.i.m. Un or Un Lm.)o U. It is also called 
"convergence in the mean square". {un} is a Cauchy sequence iff 

Ilu n - urnll -+ 0 as fl, m -+ 00. 

We mention without proof that the metric space L2 is complete in the sense 
that every Cauchy sequence {urJ possesses a unique limit U E L2 .. 

Examples. (a) A function u in L2 is integrable over every finite interval 
because lu(x)1 < lu(x)12 + 1 at all points. The statement is not true for 
infinite intervals since (1 + IX\)-l is in L 2 but not integrable. 

(b) Every bounded integrable function is in L 2 because lui < M implies 
lul 2 < M lui. The statement is false for unbounded functions since x-! is 

integrable over 0,1, but not square integrabfe. 

The inner product (u, l') of two functions is defined by 

(7.2) 
(+00 

(u, v) = )-00 u(x) vex) dx. 

It exists for every pair of functions in L2 since by Schwarz' inequality 

(7.3) f: 00 luvl dx < Ilull . Ilvll. 

In particular, (u, u) = Ilul\2. With this definition of the inner product L2 

8 Pointwise convergence of Un to a limit v does not imply that Un ~ V [see example 
IV,2(e)]. However, if it is known that if also U = I.i.m. Un exists, th'yn Ii = v. In fact, 
by Fatou's lemm'l 

(+00 (+00 
)-00 Iu(x) - t'(x)12 dx < lim )-CfJ \u(x) - un(x)1

2 dx = O. 
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becomes a Hilbert space. The analogy of the inner product (7.2) with the 
covariance of two random variables with zero expectations is manifest and 
will be exploited later on. 

After these preparations we turn to our main object, namely to define 
transforms of the forin 

(7.4) u(~) = 1 i+ClJu(x)ei'Xdx. 
J27r -CIJ . 

When u is a probability density, u differs by the factor J 27r from the 
characteristic function and to avoid confusion u will be called the Plancherel 
transform of u. The definition (7.4) applies only to integrable functions 
u but we shall extend it to all L2 . . The following examples may facilitate an 
understanding of the procedure and ofthe nature of the generalized transform. 

Examples. (c) Any function u in L2 is integrable over finite intervals, 
and hence we may define the truncated transforms 

uCn )({) = -:::::: u(x)ei'X dx. 1 in 
J27r -n 

Note that uCn ) is the true Plancherel transform of the function U Cn ) defined 
by u(n)(x) = ~(x) for Ixl < nand ucn)(x) = 0 for all other x. As n -- 00 

the values ucn)(O need not converge for any particular " but we shall 
show that {a cn )} is a Cauchy sequence and hence there exists an element 
a of L 2 such that a = l.i.m. aCn ). This a will be defined to be the 
Plancherel transform of u even though the integral in (7.4) need not con
verge. The particular mode of truncation plays no role, and the same a 
might have been obtained by taking any other sequence of integrable functions 
UCn ) converging in the mean to u. 

(d) If u stands for the uniform density in -1, 1 then its Plancherel 

transform a = sin x/(xJ27r) is not integrable. However, a is in L2 and 
we shall see that its Plancherel transform coincides with the original density 
u. In this way we get a generalization of the Fourier inversion formula 
XV,(3.5) applicable to densities whose characteristic functions are not 
integrable. ~ 

We proceed to the definition of the general Plancherel transform. For any 
integrable function u the transform a is defined by (7.4). Such a is con
tinuous (by the principle of dominated convergence) and lal is bounded by 
(21T)-! times the integral of lui. In general a is not integrable. For brevity 
we now agree to call a function u "good" if it is bounded and continuous, 
and u as well as u is integrable. Then also a is good, and both u and 
a belong to L2 [see example (b)]. 
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First we show that the inversion formula 

(7.5) u(t) = 1 (+00 u({)e-i{t d{ 
J27r )-00 

XIX.7 

holds for good functions. We repeat the argument used for the inversion 

formula in XV,3. Multiply (7.4) by (l/J27r)e-W - h2
{2 and integrate to 

obtain 

(7.6) 1 (+ooua)e-i{t-IE2,2 d~ =L+oou(X) n(t - X)' dx 
J27r )-00 00 € € 

where n denotes the standard normal density. As € -+ 0 the integral on 
the left tends to the integral in (7.5) whil~ the convolution on the right tends 
to u(t). Thus (7.5) holds for good functions. 

Now let. v be ,another good function. Multiply (7.5) by the conjugate 
vet) and integrate over -' 00 < J < 00. The left 'side equals the inner pro
duct (u, v) and after interchanging the order of integration the right side 
reduces to (u, v). Thus good functions satisfy the identity 

(7.7) (u, iJ) = (u, v) 

which will be referred to as the Parseval relation for L2. For v = u it 
reduces to 

(7.8) Ilull = Ilull· 
It follows that the distance of two transforms u and v is the same as tlie 
distance between u and v. We express this by saying that among good 
functions the Plancherel transform is an isometry: 

Next we show that the relations (7.7) and (7.8) remain valid for arbitrary 
integrable functions u and v belonging to L2; The ~ransforms are not 
necessarily integrable, but (7.8) implies that they belong to L2 [comp~re 

examples (a) and (d)]. 
First we ob.serve that an integrable function w with two integrable 

derivatives is necessarily good; indeed, from lemma 4 ofXV,4 one concludes 
that Iwa)1 -= O(~-2) as t -+ ± 00, and so w is certainly integrable. 

Suppose now that u is bounded' and integrable (and hence in L 2). By 
the mean approximation theorem of IV,2 it is pos,sible to find a sequence of 
good functions Un such that 

(7 .. 9) 
(+00 
)-00 lu(x) - un(x)1 dx -- O. 

If lui < M these Un may be chosen such that also Iunl < M. Then Un 

tends in the mean to u because Ilu - un l1 2 cannot exceed 2M times the 
integral in (7.9). The isometry (7.8) for good functions therefore guarantees 
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that {un} is a Cauchy sequence. On the other hand, un(() -- u(n for every 
fixed ( because lu(O - un(OI cannot exceed the integral in (7.9). But, as 
pointed out in the last footnote, the pointwise convergence of the elements of 
a Cauchy sequence eMails the convergence of the sequence itself, and thus 
we have 

(7.10) ~ I' ~ u = .Lm. un' 

<\pplying (7.7) to the pair Un and v and letting n -- 00 we see now that 
(7.7) remairis valid whenever ~ is bounded and integrable while v is good. 
Another such passage to the limit shows that (7.7) remains valid for any pair 
of bounded integrable functions. 

It remains to show that (7.7) is valid also for unbounded functions u 
and v provided they are integrable and belong to L2. For the proof we 
repeat the preceding argument with the sole change that the approximating 
functions Un are now defined by truncation: un(x) = u(x) if lu(x)1 < n 

and un(x) = 0 for all other x. Then (7.10) holds and Un ~ U, and the 
proof applies without further change. 

We are now ready for the final step, namely to extend the definition of the 
Plancherel transform to the whole of L2. As shown in example (c), every 
function U in L2 is the limit of a Cauchy sequence of integrable functions 
Un in L2. We have just shown that the transforms Un defined by (7.4) 
form a Cauchy sequence, and we now define u as the limit of this Cauchy 
sequence. Since two Cauchy sequences may be combined into one the limit 
u is independent of the choice of the approximating sequence {un}. Also, if 
u happens to be integrable we may take Un = U for all n, and thus it is 
seen that the new definition is consistent with (7.4) whenever u is. integrable. 
To summarize: 

A Plancherel transform u is defined for every u in L2; for integrable u 
it is given by (7.4), and in general by the rule that 

(7.11 ) if u = l.i.m. Un then u = !.i .. m. Un' 

The Parseval relation (7.7) and the isometry (7.8) apply generally. The mapping 
. u -- u is one-to-one, the transform of z: being given by u( -x). 

The last statement is a version of the Fourier inversion formula (7.5) 
applicable when u or u are not integrable 'So that the integrals in (7.4) and 
(7.5) are not defined in the usual sense. This complete symmetry in the 
relationship between the original functions and their transforms represents 
the main advantage of Fourier theory in Hilbert spaces. 

The theory as outlined is widely used in prediction theory. As an example 
of a probabilistic application we mentionl a criterion usually ascribed to A. 
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Khintchine although it appears in the classical work of N. Wiener. For 
reasons of historical tradition even newer texts fail to notice that it is really 
merely a special case of the Parseval formula and requires no elaborate proof. 

Wiener-Khintchine criterion. In order that a function cp be the characteristic 
function of a probability density f it is necessary and sufficient that there exist 
afunction u such that IIul1 2 = I and 

(7.12) i+OO 

cp(J.) = -00 u(x) U(X+A) dx 

In this case f = Ilu11 2
• 

Proof. For fixed J. put vex) = u(x+}.). Then ii( 0 = u( Qe-iJ.{. The 
Parseval relation (7.7) reduces to 

(7.13) [:ool u(x)12 e'" dx = [+0000 u(x) u(x+J.) dx. 

and since II ul1 2 = 1 the left side represents the characteristic function of a 
probability density. Conversely, given a probability density f it is possible 
to choose u such that f = Illl2, and then (7.12) holds. The choice of u is 
not unique .. (One problem of prediction theory concerns the possibility of 
choosing u vanishing on a half-line.) ~ 

The L2 theory for Fourier integrals carries over to Fourier series. The 
functions are now defined on the circle, but to the Fourier (or Plancherd) 
transfoi'ms there correspond now sequences of FOHner coefficients. Except 
for this formal difference the two theories run parallel, and a brief summary 
will suffice . 

. To our L2 there corresponds now' the Hilbert space L2( -71', 71') of 
square integrable functions on the circle.· The norm and inner product are 
now defined by 

(7.14) 1 iU 

IIU Il2 .= 271' _u1u(x)1
2 

dx, 1 iU 

-(u, v) = - u(x) vex) dx 
271' -u 

it being understood that the integrals extend over the whole circle (the points 
-71' and 71' being identified). The rf)le of "good functions" is played by 
finite trigo~ometric polynomials of the form 

(7.15) 

whose Fourier coefficients Un are given by 

(7.16) 1 iU 

• Un = - u(x)e-tnX dx. 
271' -u 

To a good function there corresponds the finite .sequence {unJ of its coeffi
cients, and, conversely, to every finite sequence of complex numbers there 
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corresponds a good function. The relations (7.16) and (7.15) define the 
Fourier transform u = {un} and its inverse. Formal multiplication and 
integration shows that for two good functions 

(7.17) 11· -- u(x) vex) dx = ~ Ui;k' 
217' -. 

We now consider the Hilbert space .b of ir:tfinite sequences u = {un}, 
V = {v n }, etc.,-with norm and inner product defined by 

(7.18) lIuli = 2: IU n I2, (u, v) = ~ Unvn. 

This space enjoys properties analogous to L 2 ; in particular, finite sequences 
are dense in the whole space. It follows that there exists a one-to-one 
correspondence between the sequences u = {un} in .b and the functions 

I " 
u in L2( -17', 17'). To each sequence {un} such that ~ ~unl2 < 00 there 
corresponds a square integrable function u with Fourier coefficients un and 
conversely. The mapping U ~ {un} is again an isometry, and the Parseval 
relation (u, v) = (u, v) holds. The Fourier series need not converge but the 
partial sums 2:'::n Ukeikx form a sequence of continuous functions that 
converges to u in the L2 metric. The same statement is true of other 
continuous approximations. Thus ~ ukrlkleikX tends to U as r -+ 1. 

As above, we consider the special case of the Parseval relation represented 
by 

(7.19) 1 fir ( ) -( ) -inx d '" -- U x v x e x = £.. Uk+nVk. 
217' -. k 

Choosing v = u one sees again that a sequence {qJn} represents the Fourier 
I 

coefficients of a probability density on -17', 17' iff it is of the form 

(7.20) qJn = ~ Uk+nUk where ~ lukl
2 = 1. 

A covariance of this form occurs in III,(7.4). (See also problem 17.) 

8. STOCHASTIC PROCESSES AND INTEGRALS 

F or notational simplicity we refer in this section to sequences {Xn} of 
ran"dom variables, but it will be evident that the exposition applies to families 
depending on a continuous time parameter with the sole change that the 
spectral measure is not confined to a finite interval and that series are replaced 
by integrals. 

Let, then, {XrJ stand for a doubly infinite sequence of random variables 
defined on some probability space 6 and having finite second moments. 
The sequence is assumed stationary in the restricted sense that 

E(Xn~){v) = Pn 
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is independent of Y. According to theorem 3 of section 6 there exists a unique 
I 

measure R on the circle -71', 71' such that 

(S.1) 1 ITf . 
P = - e- tnX R{dx 1. 

n 2 J' 
71' -Tf 

n = 0, ± 1, .... 

We shall now elaborate on the idea mentioned in section 3 that the circle 
eq uipped with the spectral measure R may be used to construct a concrete 
representation for the stochastic process {Xn} (at least for all properties 
depending only on second moments). The description uses Hilbert space 
terminology, and we shall consider two Hilbert spaces. 

(a) The space LJz. We construct a space of functions on the circle by 
literal repetition of the definition of L2 in section 7, except that the line 

I 
is replaced by the circle -71', 71' and Lebesgue measure by the measure R. 
The norm and the inner product of (complex-valued) functions on the circle 
are defined by 

1 11t (S.2) IIul1 2 = - lu(x)12 R{dx}, 
271' -11' 

1 {. 
(u, v) = 271' J_.u(x) vex) R{dx}, 

respectively. The basic convention now is that two functions are considered 
identical if they differ only on a set of R-measure zero. The impact of this 
convention is serious. If R is concentrated on the two points 0 and 1 then a 
"function" (in our sense) is completely determined by its values at these 
two points. For example, sin n71'X is the zero function. Even in such radical 
cases no harm is done in using the customary formulas forcontinuous functions 
and in referring to their graphs. Thus reference to a '~step function" ~s always 
meaningful and it simplifies the language. 

The Hilbert space Lh consists of all functions on the circle with finite norm. 
If I\un - ull -- 0 the sequence {un} is said to converge to u in our metric 
(or in mean square with respect to the weight distribution R). The Hilbert 
space LJz is a complete metric space in which the continuous functions are 
dense. (For definitions see section 7.) 

(b) The Hilbert space ~ spanned by {X n }. Denote by ~o the family of 
random variables with finite second moments defined in the arbitrary, 
but fixed, sample space 6. By Schwarz's inequality E(UV) exists for any 
pair of such variables, and it is natural to generalize (S.2) from the circle 
to the sample space G using the underlying probability measure instead of 
R. We accordingly agree again to identify two random variables if they differ 
vnly on a set of probability zero and define inner products by E(UV); the 
norm of U is the positive root of E(ufn. W'ith these conventions ~o again 

. becomes a Hilbert space; it is a complete metric space in which a sequence of 
random variables Un is said to converge to U if EOD ~ - Ull) -- O. 



XIX.S STOCHASTIC PROCESSES AND INTEGRALS 643 

In dealing with a sequence {X n } one is usually interested only in random 
variables that are functions of the X k and in many connections one considers 
only linear functions. This restricts the consideration to finite linear com
binations ~ akXk and limits of sequences of such finite linear combinations. 
Random variables of this kind form a subspace ~ of ~o, called the Hilbert 
space ~panned by the Xk • In it inner products, nonns, and convergence are 
defined as just described and ~ is a complete metric space. 

In the present context the expectations E(Xn) play no role whatever, 
but as "covariance" sounds better than "inner product" we introduce the 
usual convention that E(Xn) = O. The sole purpose ~f this is to establish Pn 
as a covariance, and no centering is necessary if one agrees to call E(XY) 
the covariance of X and Y. We come now to the crucial point, namely that 
for our purposes t~e intuitively simple space L1 may serve as concrete model 
for f). Indeed, by definition the covariance Pi-k = Cov (X;, Xk ) of any 
pair equals the inner product of the functions ei;x and eikx in L1. It 
follows that the covariance of two finite linear combinations U = ~ ajXj 
and V = ~ bkXk equals the inner product of the corresponding linear 
combinations u = ~ ajeijX and v = ~ bkel'kx. By the very definition of 
convergence in the two spaces this mapping now extends ,to all random 
variables. We have thus the important result that the mapping Xk~ eikx 

induces a one-lo-one correspondence between the random variables in ~ and 
the functions in Lk, and this correspondence preserves inner products and 
norms (and hence limits). In technical language the two spaces are isometric.9 

We are in a position to study f) and {Xn} referring explicitly only to the 
concrete space Lh. This procedure has theoretical advantages in addition 
to being an aid to intuition. Since functions on the circle are a familiar object 
it is relatively easy to discover sequences {u(n)} of functions in L~ with 
desirable structural properties. To u(n) there corresponds a random variable 
Zn on the original sample space 6 ; if the Fourier coefficients of u(n) are 
known it is possible to represent Zn explicitly as a limit of finite linear 

9 Readers acquainted with Hilbert space theory should note the connection with the 
standard spectral theorem for unitary operators. The linear operator which maps .5 into 
itself in such a way that Xn - Xn+1 is ca!led a shift operator, and L ~ serves as a model 
in which the action of this shift operator becomes multiplication by eiz . Conversely, given 
an arbitrary unitary operator T on a Hilbert space .50 and an arbitrary element XoE .50' 

the sequence of elements Xn = Tnxo may be treated as a stationary sequence and T as 
the shift operator on the subspace .D spanned by this sequence. If Xo can be chosen such 
that .5 = .50 we have obtained the standard spectral theorem for T except that we have 
a concrete representation of the "resolution of the identity" based on the choice of ~. 
If .5 c .50 , then .Do is the direct sum of two invariant subspaces, and the presentation 
applies to each of them. By a simple change of notations one derives the general spectral 
representation, including the theory of multiplicity for the spectrum. 
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combinations of the variables Xk • If the joint distributions of the Xk are 
normal the same is true for those of the Zn. 

In practice this procedure is usually reversed. Given a complicated process 
{Xk} our aim is to express it in terms of the variables Zn of a simpler process. 
A practical way to achieve this is to proceed in L~ rather than in the original 
space. A few examples will explain this better than a theoretical discourse. 

Examples. (a) Representation of {Xn} by independent variables. As 
elsewhere in this section {Xn} stands for a given process with co variances Pn 
and spectral measure R defined by (8.1). In our mapping Xn corresponds 
to the function einx on the circle. We show now that for certain functions y 
the random variables corresponding to einx/y(x) are uncorrelated. We con-

. sider only the situation when the spectral measure R has an ordinary density 
r. For simplicitylO r will be assumed strictly po.sitive and continuous. 
Choose a function y such that 

(8.3) ly(x)12 = rex). 

The Fourier series of y converges in the L2 norm as explained in section 7. 
Denoting the Fourier coefficients of y by Yk we have .2 IYkl 2 < 00 and by 
the Parseval relation (7.20) . 

+00 
(8.4) Pn =.2 Yk+nYk' 

k=-oo 

Consider now the doubly infinite sequence of functions uCn ) defined by 

einx 
(8.5) uCn)( x) = - . 

y(x) 
Substituting into (8.2) it is seen that 

(8.6) lIuCn ) II = 1, (u Cn ), uCm» = 0 

for m:;c n. For the random variables Zn corresponding to the functions 
UCn ) this implies that they are uncorrelated and of unit variance. In particular, 
if the X k are normal the Zk are mutually independent. 

It is interesting that the space spanned by the variables Xk contains a 
stationary sequence {Zn} of uncorrel~ted variables. An explicit expression 
of Zn in terms of the Xk can be obtained from the Fourier expansion of the 
function UCn ), but it is more profitable to proceed in the opposite direction: 
the structure of {Zn} being simpler than that of {X k } it is preferable to 
express the X k in terms of the Zn. Now 

(8.7) 
N eikX N 
.2 Yn UCn+k)(x) = - .2 yneinX. 

n=-N y(x) n=-N 

10 The restriction is not used except to avoid trite explanations of what is meant by 
r(x)/y(x) when r(x) = y(x) = 0 and of how series converge. 
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The sum on the right is a se~tion of the Fourier series for y and tends in the 
Hilbert space metric to y. It follows that the quantity (8.7) tends to eikX • 

In our mapping u(n+k) corresponds to Zn+k and so the series L YnZn+k 

converges, and we can write 

(8.8) 
n=-C() 

We have thus obtained an explicit representation of X k as a "moving average" 
in a stationary sequence of un correlated variables Zk. 

The representation (8.8) is evidently not unique. The natural question 
arises whether it is possible to express Xk solely by the variables Zk' 
Zk-l, Zk-2, . .. (representing the "past"), that is, whether the function Y 
in (8.3) can be chosen such that 'Yn = 0 for n > 1. This problem is 
fundamental in prediction theory, but lies outside the scope of the present 
volume. For typical examples see 111,(7.5), and problem 18. . 

(b) The associated process with uncorrelated increments. For each t with 
-71" < t < 71" define Yt by 

(8.9) 
1 

Yt(x) = 
o 

for x < t 
for x> t 

and denote by Y t the corresponding random variable in ~ .. The increments 
Y t - Ys for non-overlapping intervals have obviously covariance 0; 

I 
furthermore Var (Y t ) = R{ -71", t}. Thus {Y t } is a process with un correlated 
increments and variances given by R. If the X t are normal, the increments 
of the Y t process are actually independent. 

With every stationary sequenc'e {Xk } there is in this way associated a 
process with uncorrelated increments. An explicit expression of Y t in 
terms of the Xk is obtainable in the standard way by expanding the function 
Y t in (8.9) into a Fourier series. Once more it is preferable to proceed in the 
opposite direction. This will be done in the next example. 

(c) Stochastic integrals. The representation of a random variable U 
in terms of the Xk depends (as we have seen) on the Fourier expansion of 
the function corresponding to U. By contrast, the following representation in 
terms of the variables Y t is almost too simple for comfort. It refers to the 
graph of the function, and for simplicity we assume the latter continuous. 

Consider first a step function w, that is, a function of the form 

(8.10) 

where the aj are constants and -71" < II < t2 < ... < In-l < TT. The 
associated random variable W is obtained on replacing in this expression 
each Yt. by Y t .• Now an arbitrary continuous function w can be approxi-, , 
mated uniformly by tep functions wIn) of the form (8.10). Uniform con-
vergence. .)f ~(n) to w implies the convergence in the norm or' L1 and 
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hence also the convergence of the corresponding random variables wen) to 
W. This gives us a prescription for finding the image W of an arbitrary 
continuous function w by a simple limiting procedure: approximate w 

by step functions of the form (8.l 0) and replace Y t; by Y t
j

• Remember 
that (8.l0) is a function, and not a number, just as the limit w of wen) is a 
function rather than a number. But (8.10) looks like a Riemann sum and 
our procedure is formally reminiscent of the definition of the Riemann 
integral. It has therefore become standard practice to use the notation 

(8.11) W = f:lTW(t) dYt 

to indicate the described limiting process. The random variable (8.11) is 
caned the stochastic integral of the continuous function w. The name is 
arbitrary and the notation mere shorthand for the limiting procedure which 
we have rigorously defined. By definition the function eint corresponds to 
the random variable Xn and hence we can write 

(S.12) 

This is the basic spectral representation of the arbitrary stationary sequence 
{Xn} in terms of the associated process with un correia ted increments. 

The notation for stochastic integrals is, perhaps, more suggestive than 
logical but we are not concerned with this usage. Our aim was to show that 
this useful concept and the important representation (8.12) are easily 
established by means of Fourier analysis. This illustrates the power of the 
canonical mapping used in this section and first introduced by Cramer. ~ 

The theory depends only on the second moment~ of {Xn} and is in practice 
.applicable only when these moments are truly significant. Such is the case 
when the process is normal, because normal distributions are completely' 
determined by their covariances. In other applications one may trust that the 
process is "not too far off a normal process" just as the oldest regression 
analysis trusted in a universal applicability of methods developed for normal 
variabies. Unfbrtunately the mere existence of a beautiful theory in no way 
justifies this trust. In example (3.c) the sample functions of the process are 
strictly periodic. The future of an individual path is completely determined 
by the data for a full period, but the prediction theory based on the L2 
theory takes no account of this fact and identifies all processes with the same 
spectral measure. One who observes the -sequence 1, -1, 1, -1, . .. going 
on since time immemorial can safely predict the next observation, but L2 
methods will lead him to predict the miraculous occurrence of O. This 
example shows that the L2 methods are not universally applicable, but they 
are the ideal tool for treating normal processes. 
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9. PROBLEMS FOR SOLUTION 

1. Curious characteristic junctions. Let Tk(x) = 1 - Ixl/h for Ixl::; hand 
Th(x) = 0 for Ixl ~ h. Put 

+00 

(9.1) rl(x) = L Un Tk(x -n) .. 
n= - 00 

When the an are real and h = 1 the graph of rl is the polygonal line with vertices 
(n, an). When h < l the graph of rl consists of segments of the x-axis and the 
sloping sides of isosceles triangies with vertices (n, an). 

Using the criterion of lemma 1 in section 2 show that rl( C)/ rl(O) is a characteristic 
function if the an are real and such that a_n = an and laII + la21 + ... ::; lao· 

2. (Generalization.) The last statement remains true when Tk is replaced by an 
arbitrary even integrable characteristic function. (Using the characteristic functions 
exhibited in fig. 1 of XV,2 you may construct characteristic functions ~ith ex
ceedingly weird polygonal graphs.) 

3. (Continuation.) The preceding result is a special case of the following: Let 
T be an even integrable characteristic function; if the A.n are rl~al, and the an 
complex constants with L lanl < 00, then 

(9.2) 

is a characteristic function iff rl(O) = 1 and L ake-i)·/cf; > 0 for all C. (It suffices 
actually that the last series be Abel summable to a positive function.) 

4. The covariance function p defined in (3.3) is continuous everywhere iff it 
is continuous at the origin. This is the case iff E(X t - Xo)2 - 0 as t - O. 

5. (Difference raOos and derivatives). Let {X t } pe a stationary process with 
pet) = E(Xt+sXs) and spectral measure R. For h > 0 a new process is defined 
by X~h) = (XHh - Xt)/h. 

(a) Show that the spectral measure R(h) of the new process is given by 
R(h){dx} = 2h-2 [l -cos hX]R{dx}. The covariances p(h)(t) tend to a limit as h - 0 
iff a continuous second derivative p"(t) exists, that is, if the measure x2 R{dx} 
is finite. 

(b) In the latter case EqX~() - X~6)12) - 0 as € - 0 and 0 - O. 
Note: In the Hilbert space terminology of section 7 this means that for fixed 

t as En - 0 the sequence {X~(n)} is Cauchy, and hence a derivative X; = l.i.m.X~h) 
exists. 

6. (See theorem 2 of section 4.) If lp is continuous except for a jump at the origin, 
then fr( n -- lp( C)· uniformly outside a neighborhood of the origin and 
fr(O) -- i [<p(O +) - <p(O - )]. 

7. Continuation. If <p is the difference between two monotone functions then 
frC C) -- i [<p( C +) - <p( {-)] at all points. 

8. A bounded periodic function <p with non-negative Fourier coefficients lpn 
is necessarily continuous and L lpn < 00. The example lpn = lin shows that 
this is false if lp is only supposed to be integrable. Hint: Use the main idea of the 
proof of theorem 1 in section 4. 
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9. Cesarosummability. Replace (4.3) by 

fr( ') = L ({Jnaneinr; 

where an '""= 1 - Inl(2N + 1)-1 for Inl ~ 2N and an = 0 for Inl > 2N. Show that 
the theory of section 4 goes through with Pr(t) replaced by 

(t) = 1 sin2 (N +i-)t 
qN 2N + 1 sin2 it 

which is again a probability density. 
10. Continuation. Show, more generally, that the theory goes through if the 

an are the Fourier coefficients of a symmetrized probability density on the circle. 
11. Use the Poisson summation formula (S.2) to show that 

XhY-X~2k') + n(Y+X~2k')) = ~X exp ( -ltn' ~) cosn
; X· COS '~" y, 

where n stands for the standard normal density. [This is the solution· of the 
reflecting barrier problem in example X,S(e).] 

12. In the Poisson summation formula (S.2) the condition that 2: ({J(' + 2k.A.) 
converges to a continuous function tp may be replaced by the condition. that 
2:f(n'TTj).) < 00. Hint: tp is under any circumstances an integrable function. 
Use corollary 2 in section 4. 

13. Alternative derivation of the Poisson summation formula. Let ({J be the 
characteristic function of an arbitrary probability distribution F. If pr stands 
for- the Poisson kernel of (4.S) and (4.7) show (without further calculations) .that 
for 0 ~ r < 1 

1 +00 f+OO. 
(9.3) 2'TT n=~oo ({Ja +n)rlnlein,l = -00 eir;x Pr(x +).) F{dx}. 

Hence the left side is a characteristic function. Letting r - 1 conclude that if F 
has a density f then 

(9.4) 
1 

2'TT 
n=-oo 

+00 L ei ,(-J.+2klT) f( -). +2k'TT) 
k=-oo 

whenever 2:f< -J. +2k'TT) < 00. Show that (9.4) is equivalent to the general 
version (S.9) of the summation formula. 

Note: The reSult may be restated to the effect that the left side in (9.4) is Abel 
summable to the right side ~henever the latter is continuous. . 

14. The sequence {({In} is positive definite iff {fPnrinl} is positive definite for 
every 0 < r < 1. Necessary and sufficient is that L ({JnrlnleinJ. > 0 for all ). 
and 0 < r < 1. . 

IS. From problems 1 and 14 derive (without calculations) the following theorem 
(observed by L. Shepp): Let {({In} be positive definite and denote by ~ the piecewise 
linear function with vertices at (n, ({In). Then ~ is positil1e definite. 

16. Let ({J be a characteristic function and denote by ~ the piecewise linear 
function with vertices (n, ({J(n». Then ~ is a characteristic function. (This merely 
paraphrases problem IS and is a special case of problem 1 for h = 1.) Use the 
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other cases of problem 1 to describe other curious characteristic functions obtainable 
from ({J. 

17. If r < 1 the covariances Pn = rlnleinB of Markov sequences 'satisfy (7.20) 
with Uk = v'1 - r2 rktfkB for k ~ 0 and Uk = 0 for k < O. Find alternative 
representations. 

18. Continuation. Let {Xn} be Markovian with covariances Pn = rlnleinB. 

If . r < lone has Xn· v'1 - r2 L:'-o rkeikBZn-k ~here the Zk are uncorrelate,d. 
If r = lone has Xn = einBZo. 



Answers to Problems 

CHAPTER I 

(ii) ~ e-cz(~3)/:& for z > 1 
. 2 

(iv) (lira, z>O 

~ VI) cxe-czz + -' -;-= e-ta - ex 1 + - -= e-ra-ra .. ex 1 l ( 1 1) i 
3 {lx2 3 ~z2 

2. (i) ~ ;x
2 

for /zl' < 1 (ii)! for 1 < t < S 

(iii) HI -1;1) for Ixl < 2 

(v) 1 -·Ixl + /2x- f for Ixl < 1 

(iv) 1 -: for 0 < z < 2 
2 

(vi) i + Ix! + /2 x- i for Izl < 1. 

3. (i) h-l(l-e-ta) for 0 < z < h, and h-l(e«A-l)e-tJQ: forz > h. 
(ii) h-1(l-e-CZ(z+hl) for :"'h < x < 0, and h-I(I-e-f'h)C«z for z > O. 

4. (i) hl3 if h ~ 1 and 1/(3 v'],) if h ~ 1. 

(ii) v;; e1cz(l-91(v ex/2». 
5. (i) 1 - x-I for x > 1; (ii) x2(x+l)-2. 

7. ?{Z ~ x} = 1 - e-cz:e for x < t and =1 for x > t. 
10. (b) The platoon together with cars directly ahead or trailing form a sample in 

which the smallest element is at the last place, the next smallest at the second. 

16. p = 1'r+Z-I
)2:"'-k

• For m = I,n = 2 one gets p = 1· 

18. ntn- l - (n-l)tn. 

651 
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19. (i) 2 J.' dx f (I-z) dz = I 

(ii) The density is 2t - t 2 for 0 < t ~ 1 and (2 -t)2 for 1 < t < 2 
(iii) The density is 2t2 for 0 < t < 1 and again (2 -t)2 for 1 < t < 2. 

20. 2 J.\(I-X) dx = 1· Two out of six permutations produce an intersection. 

1 . . 1 
21. Xu: 4 log 4x for x < 1; X12 and X21 : 4 log 2 ;or x < t, 4 log 2x for 

! <x <!; X22 : 410g4x for i <x <!, 410g- for t <x < 1. The 
t t · 1 3 9 X expec a Ions are 16' 16' 16. 

27. Distributions ~. arc sin!x and i X2 ; densities ~ v 1 and!x for 
o < x < 2. '1T '1T 4 - x 2 

28. 2'1T-1 arc sin ix. . 
1 2 l+vI-Xl 

30. (a) log -x ' (b) - log . where 0 < x < 1. 
'1T X 

31. ~ r sin2 0 dO = ~ f.x vl-y2 dy = 2'1T-1 [arc sin x+xvl-x2 ] 
Jo<cos (J<x '1T 0 . 

where 0 < x < 1. 

'1T J.1T12' ( t ) 32. F(t) ="2 0 V cos 0 (I-cos 20) dO. 

35. The substitution s = F(y) ,reduces the integral to the corresponding integral 
, fo'r the uniform distribution. Note that F(m + x) ~ ! + f(m)x for small x. 

CHAPTER II 
4. g * g(x) = ie-1xl(I +Ixl) 

g3*(x) = 116e-lxl(3 +3 Ixl +x2) 

gh(x) = }2e- 1zl (5 +5 Ixl +2x2 +1 Ix(3). 
10. (a) A,u(e-U -e-Pt)(,u - A) as a convolution of two exponentials. (b) Using 

(a) one gets Ae-).t. 

12. For a person arriving at random the density is 1 - !t2 for 0 < t < 1 and 
!<2 -t)2 for all 1 < t < 2. The expectation equals 172. 

13. e+k ;r-I)(m + n + ; =: r k - I) / (m + n + ; + l' - I). 

CHAPTER III 

7. (a) 'e~x:~and 1 - e-x - e-1I + e-X- 1I--a:1:'11 for x > 0, Y > o. 
1 + a + ax 

(b) E(Y I X) = (1 +ax)2 ' 

1 2a a2 

Var (Y I X) = (1 +ax)2 + (1 +ax)3 - (1 +ax)4 . 
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8. If f has expecta~ion P and variance u2 then E(X) = E(Y) = iPI 
Var (X) = Var (y) = lat' + -/2p2, Cov (X, Y) = ius - -h#2. 

9. Density 2x2 in unit square. In n variables (n - l)!XsX: ' .. X:::f. 

~53 

10. le-(:c+lI) for y > x > 0 ,and le"1l+2z for y> x, x < o. Interchange x and 
y when y < x. 

II. (a) 4 J.:f(S)f(~) :' ' 0 < x < i· 

(b) 8 f f(S)f(~)f(1 11 S)S(I~S) 
where 0 < x < i < y < 1 and the domain of integration satisfies the &on
ditions that 2x < s < t and also 1 - 2y < s < 1 - y. 

12. Bivariate nonnal with variances m, n and covariance V min. Conditional 

density has expectation m tand variance m' n - m as is cleat intuitively. 
n n . 

13. Xf + ... + X! has the gamma density /1/2,n/2 [seell,(2.2»). From (3.1) 
therefore 

.Ut = ;(~):lb) (~r-'(I _;j'-H~. 
For m = 2, n = 4 we get example 3(a). 

15. (a) 4xy when x + y < 1, x > 0, y > 0 
4Xy -4(x+y_1)2 when ~ +y > 1,0 <x, y < 1 
4x(2-x-y) when y > 1, x + Y < 2, :li > 0 
4y(2-x-y) when x > 1, x -+ y < 2, y > O. 

(b) 2(l-x-y)2 for 0 <.x, y < 1, x + 8 < 1 
2tl _x)2 for x > 0, Y < 0, x -+- y > o. 
2(1 +y)2 for x > 0, g <0, z + y < O. 
For x < 0 by sYJiDIlletry. 

I~ 2~(arccos~ -iA. 
17. f." f(p) p dp f.'g( v',.. + p' - 2r p COS 8) dO. 

20. (a) Xn = U cos t1Tn + V sin t1Tn 
(b) U + V( _1)n 
(c) U cos t1Tn + V sin t1Tn + w. 

21. (0) Var (Yn+l) -- Var (Yn>. Var (e,J - 2 Cov (Yn, en> + 1 whence 
(b) cx2 - 2cxO'p + 1 == 0 

(c) a = ~(IX + ~), YA = ~: 9"4,-> + q.Yo + (bp - a)(1 - qA)/P wher, 

q =- 1 - p. 

22. ... ~ H IX + ~)" + N. 
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. CHAPTER VI 

11. Not necessarily. It is necessary that n[l-F(~n)] -0. 
12. For. x > 0 the densities are given by 1 and t(1-e-~). 
13. qU(x) = 1. - qe-PCf. The Gumber of renewal epochs is always geometrically 

distributed. 
19. Z = z + F* Z where z(t) = 1 - e-ct for t ~ e, z(t) = z(e) for t ~ e and. 

£(t) = e-cs - c-" for t > e. . 
20. V .. A + B * V. where A{dx} = [l-G(x)] F{dx} and B{4x} = G(x) F{dx}. 

23. The arc sine density g(y) = ! v' 1 
1T y(I -y) 

CHAPTER vn 

6. Ca) (:) pI'(1 -p)~' with 'F concentrated at p. 

1 
(b) n + 1 ' density {(x) = 1. 

2(k+l) . 
(c) (n+1)(n+2)' density Zz. 



Some Books on Cognate Subjects 

A.~ODUCTORY TEXTS 

Krickeberg, K. [1965], Probability Theory. (Translated from the German 1963) 
Addison-Wesley, Reading, Mass. 230 pp. 

Loeve, M. [1963], Probability Theory. 3rd ed. Van .Nostrand, Princeton, N.J. 
685 pp. 

Neveu, J. [1965], J.,fathematical Foundations of the Calculus ofProbability. (Trans
lated froin the French 1964.) Holden Day, San Francisco, Calif. 233 pp. 

B. SPEOFIC SUBJECTS 

Boclmer, S. [1955], Harmonic Analysis and the Theory of Probability. Univ. of 
California Press. 176 pp. 

Grenander, U. [1963], Probabilities on Algebraic Structures. John _Wiley, New 
York. 218 pp. 

Lukacs, E. "[1960], Characteristic Functions. Griffin, London. 216 pp. 
Lukacs, E. and R. G. Laha {l964], Applications ofCharacterist~c Functions. Griffin, 

London. 202 pp. 

C. STOCHASTIC PROCESSES WITH _ EMPHASIS ON THEORY 

Chung, K. L. [1967], Markov Chains with Stat;o~ry Transition Probabilities. 
2nd ed. Springer, Berlin. 301 pp. 

Dynkin, E. B. [1965], Markov Processes. Two vols. (Translation from the-Russian 
1963) Springer, Berlin. 174 pp. 365 + 271 pp. _ 

Ito, K. and H. P. McKean Jr. [19651 Diffusion Proceises tiruJ- Their Sample Paths. 
Springer, Berlin. 321 pp. _ 

Kemperman, J. H. B. [1961], The Passage Problem for a Station4 7y Markov Chain. 
University of Chicago Press. 127 pp. . 

Uvy, Paul [1965], Processlls Stochast;ques et Mouvement Brownie.n. 2nd cd. 
Gauthier-Villars,· Paris. 438 pp. 

Spitzer, Frank [1964], Principles of Random Walle. Van N6strand,Princeton. 
406 pp. 

Skorokhod, A. V. [1.965]. Studies in the Theory ofRa!tdDm Processes. (Translation 
from the Russian 1961.) Addison~Wesley, Reading, Mass. 199 pp. 

655. 



656 SOME BOOKS ON CQGNA TE SUBJECTS 

Yaglom, A. M. [1962], Stationary Random Functions. (Translation from the 
Russian.) Prentice-Hall, Englewood Cliffs, Nj. 235 pp. 

D. STOCHASTIC PROCESSES WITH EMPHASIS ON 
APPLICATIONS OR EXA!\.fPLES 

Barucha-Reid, A. T. [1960], Elements of the Theory of Stochastic Processes and Their 
Applications. McGraw-Hili, New York. 468 pp. 

Ben~, V. E. {l963], General Stochastic Processes in the Theory of Queues. Addison
Wesley, Reading, Mass. 88 pp. 

Grenander, U. and M. Ro~nblatt [19571, Statistical Analysis of Siationary Time 
Series. John Wiley, New York. 300 pp. 

Khintchine, A. Y. [1960], Mathematical Methods in the Theory of Queueing. (Trans-
lation from the Russian.) Griffin, London. 120 pp. 

Prabhu, N. U. [1965], Stochastic"Processes. l\iacmillan, New York. 233 pp. 
--- [1965], Queues and Inventories. John Wiley, New York. 275 pp. 
Riordan~ J: [1962], Stochastic Service Systems. John Wiley, New York. 139 pp. 
Wax, N. (editor) [1954], Selected Papers on Noise and Stochastic Processes. Dover, 

New York. 337 pp. 

E. BOOKS OF mSTORICAL INTEREST 

Cramer, H. [1962], Random Variables and Probability Distributions. 2nd ed. (The 
first appeared in 1937.) Cambridge Tracts.. 119 pp. ' 

Doob, J. L. [1953], Stochastic Processes. !ohn Wiley, New York. 654 pp. 
Gnedenko; B. V. and A. N. Kolrnogorov [1954], Limit Distributions/or Sums of 

Indeper,dem Ri1ndom Variables. (Translated from the Russian 1949) Addison
Wesley, Reading, Mass. 264 pp. 

Kolmogorov, A. N. [1950], Foundations of the Theory of Probabi/ity~ Chelsea Press, 
New York. 70 pp. (The German original appeared in 1933.) 

Levy, P. [1925], Calcul des Probabilites. Gauthier-Villars, Paris. 350 pp. 
Uvy, P. [1937 and 1954], Theorie df! l'Addition des Variables A!eatoires. Gauthier

Villars, Paris. 384 pp. 

F. SEMI-GROUPS AND GENERAL ANALYSIS 

Hille, E. and R. S. Phillips [1957], Functional Analysis and Semi-groups. (Revised 
edition.) Amer. Math. Soc, 808 pp. 

Karlin, S. and W. Studden [1,966], TchebychefJ Systems:, With Applications in 
Analysis and Statistics. Interscience, New York. 586 pp. 

Yosida,'K. [1965], FunctiolUl/ Analysis.' Springer, Berlin. 458, pp. 



Index 

ABELIAN theorems, 418, 445 
ABEL's integral equation, 33 
ABEL summabUity, 627,628,648 
Absolute continuity, 139, 140 
Absolutely fair, 210 
Absolutely monotone functions, 223-224, 

439,441 
Absolute probabilities, 207-209 
Absorbing barriers, 340-:342, 464, 477-479 
Absorption (ph~ical), 25, 31,323 
Accidents, 57, ~81 
Additive set functions, 107 

countably = sigma, 108, 119, 129-130 
Age, see Duration 
Algebra of sets, 112-113, 116 

generation of, 163 
AMBARZUMIA.,.~, V. A., 206, 325 
Anomalous numbers, 63 
Arc sine distributions, 50 

and limit theorems, 470-473 
in random walks, 417-423 

Arithmetic distributions, 138,407-408; see 
also lattice distributions 

Arrays, null, 177-178, 585 
triangular, 177-178,216,308-312,583-

588,596 
ARZELA-ASCOLI theorem, 270 
Ascending ladder variables, strict, 391 

weak,,392-393 
Associatedrahdomwalks,406 
Astronomy, ap!llications to, 33, 172, 173 .. 

174,206,215,325-326 
Asymptotic behavior, 521; 572 
Asymptotic estimates, 375-377, 410-411 
Asymptotic properties, of regularly varying 

functions, 279-284 
Asymptotically dense, 147 
Asymptotically negligible, 178 
Asymptotically unbiased estimators, 220 
Atomic measures, 137-138 

Atoms (of measures), 137 
under convolutions, 147, 149.~166 

Attraction, see Domain of attraction 
Auto-regressive process, 89, 96 

BACHELlER process, see BROWNIAN 
motion 

Backward equ.ations, 357 
for diffusion, 334, 336-337, 344 
for jump processes, 327-328; 484-487 
of KOLMOGOROV, 327-328 
minimal solution of, 329-331, 322,.486 
for semi-groups, 352, 356-357 
for semi-MARKOV processes, 497 

Bad luck, 15-17 
BArRE functions, 104-106, 109, 114, 130, 

305,351 
BANACH space, 257, 350, 487,'~ee also 

HILBER T space 
Barriers, see Absorbing barrier&; Boundary 

conditions; and Reflecting barriers 
BARUCHA-REID, A.T., 656 
BAXTER, G., 404, 424,571,605 
BAYES, T., 56 

v 
BENES, V.E., 379, 656 
BENFORD, F., 63 
BERGSTROM, H., 581 
BERNOUILLI trials, 1, 141-142 
BERNSTEIN, S., 79, 439 
BERNSTEIN polynomials, 222-223 

in Rl, 245 
BERRY, A. C., 531, 536, 542 
BERRY-ESSEEN theorems, 538, 542-546, 

5,51 
BESSEL functions. 58-61, 523 

characteristic fun~tion of, 503 
and infmite divisibility, 177,451,566 
and LAPLACE transfo:.ms, 437. 438, "79~ 

482 
and related distributions, 58-61, 149. 166 

657 



658 

in stochastic A,rocesses, 58-61, 323 
BESSEL density, 502 
Beta density, 50 

in renewal, 471 
Bet.1 integral, 47 
BICKEL, P. J., 388 
Bilateral exponential, 49-50, 502 

characteristic function of, 503 
Bilateral ~APLACE transform, 434 
BILLINGSLEY, P., 39,265,343 
Binary orbits, 33 
~inomial random walks, 608-609 
Birth processes, 41, 266~267, 488-491 
. bilaterial, 491 ' 

INDEX 

Birth-and:.death processes, 479-483, 496 
busy periods in, 482-483 
and diffusion, 496 
see also Randomized random walks 

Bivariate normal density, 70 
BIZLEY, M. T. L., 420 
BLACKWELL, D., 360, 381 
BLUM, J. R., 287 
BOCHNER, S., 321, 347, 454,620,622, 

634,655 
BOCHNER integral, 455 
BOHL,268 
BOREL algebra, 113, 119 

measurable functions, 116 
BOREL ~t, 114, 116, 117, 123,125,130 

approximation of, 11'5, 124 
convention for, 127 

]~OREL-CANTELLI, 105,317 
BOTTS, T. A., 103 
BOUDREAU, P. E., 196 
Boundary conditions, 337-343, 477 
BOURBAKI, N., 103 
Branching processes, 244, 441, 474-475 
BRELOT,M.,2.44 
BROWNIAN motion, 99, 181,322-349, 

475-479 
continuity of paths in, 181, 332 
with elastic force, 335 
fust-pauage times,in, 174-175,340,476 
one absorbing barrier, 340, 477 
in R,r, 175,344 
subordir.ation of CAUCHY process to, 34H 
two.absorbing barriers, 341, 478 

nUFPON's needle problem, 61-62 
Bihn.MANN, H. t 229 
BuSea, 22, 55, 188 
BusY periods, 194-195, 198-20Q, 473-474, 

482-483 

CAMPBELL's theorem, 179, 287, 595 
Canonical measures, 560-565 
CANTELLI, see BOREL-CANTELLI 
CANTOR, G., 267 
CANTOR distribution, 35-36,141, 593 

convolutions of, 146 
CANTOR's diagonal method, 267-268 
Cap and cup, 104 

. CARLEMAN, T.~ 227, 515 
CAUCHY, A., 172,509 
CAUCHY distribution, 50, 64, 173, 50'2 

bivariate, 524 
in BROWNIAN motion, 175,348 .. 
in Rr, 70-71,73, 100,524,594 
and random walks, 204,618 
and stability, 173, 555 

CAUCHY semi-groups, 303 
Centering, 45, 137, 584-588 

in infmittly divisible distributions, 559 
Central limit theorem. 258-265,287,291. 

529-530 
applications of, 209,. 529-530 
for densities, 533-536 
for equal compon~nts, 515-518 
expansions related to, 531-553 
with infInite variances, 260 
and large; deviations, 548-553 
in renewal, 372 

, , 
CESARO summability, 628, 648 
Chains, random, 206-207 

strength of, 9 
CHANDRASEKHAR, S., 32 
CHAPMAN-KOLMOGOROV equations, 60 

334,338,346-347,353,566 
continuous time, 322, 486-488 
discrete time, 98 
and semi-groups. 351 

CHAPMAN-KOLMOGOROV identity, 98 
Characteristic exponents of R, 170 
Characteristic functions, 498-526 

derivatives of, 565-566 
factorization of, 506" 593,631 
fmitely divisible, 557 
infmitely divisible, 554-557,560-564 
logarithms and roots of, 554-555 
periomc;511, 626,630, 631 
in Rr, 521-524 
TAYLOR-development of, 514-515 
see also POISSON summation 
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CHEBYSHEV~HERMITE polynomials, 533 
CHEBYSHEV's inequality, 151-152,310, 

354 
generalized, 234 
for martingales, 246 

Checkerboard partitions, 133 
CHERNOFF, H., 287 
Chi-square density, 48 
CHOQtmT, G., 382, 593 
CHOW, Y. S., 360 
CHUNG, K. L., 105, 167, 231,3.55,381, 

483,614,615,655 
Circles, covering theorem for, 28-29 

densities on, 632-633 
distributions on, 29, 61-64, 627 
equidistribution on, 268, 273 
probability distribution on, 274 

Coin-tossing, 210, 211-212,405,417 
and random choice, 35 

CoinCidences, 217 
Collisions of particles, 206, 322-323, 325 
Compactness of triangUlar arrays, 309 
cOmplete mono tonicity , 224-227. 439-442, 

450,464 
abstract, 454 

Completion of me~ures, 126 
Composition of kernels, 206 
Compound POISSON processes, 180-181, 

305,326 
and ruin problems, 182 .. :184, 198,469-470 
and semi-groups, 295, 299-300 
.tnd subordination, 348-349 

Concentration, 4, 45, 137 
Concave functions, 153 
Concordant func;tions, 210-211, 244 
Conditional distributions and expectations, 

71-74,156-159,160-165 
Conditional probability, 157 
Contagion, 57 .. 58 
Continuity of semi-groups, 353; see also 

Fixed discontinuities 
Continuity theorem, 431-433, 508 

characteristic function of, 508 .. 509, 510· 
for densities, 510 
and LAPLACE transforms, 433 
and quasi-<:haracteristic functions of, 557 
and semi-groups, 460 

Contractions, 350, 456 
Cvnvergence, of densities, 252 

dominated, 111 
in the mean square, 636 
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of measures, 247-252, 267-270, 284-285 
notations.and principles of, 248-251 
of moments, 251-252, 269 
i,n norm = strong, 257,352 
of operators, 257, 285,352 
in probability, 253-254 

Convex functions, 153-155 
of martingales, 214-215 

Convex polygons, 505 
Convolutions, 143-148,277,278 

on circles, 64, 143, 27.3-274 
and covering theorems, 26-29 
definition of, 7, 8 
of densities, 7-8, 46, 71 
infmite, 265-267, 317, 592~593 
and LAPLACE transforms, 434-435 
of sinau1ar distn'"butioris, 146 

Convolution semi-groups,293-296 
Coordinate variables, 4, 68 
Correlation, 68 
Countably many intervals, 108 
Counters for particles, 372; see also 

GEIGER counters; Queues . 
Covariance, 68 

matriX, 82 .. 83 
of processes, 88-94,623-626, 643-646 

Covering theorems, 76, 216,469 , 
and convolutions, 26-29 

CRAMER, H., 182,403,522.5:31,542, 
546, 548, 552', 646,.656 

CRAMER's estimate for rtiin~ 182, 377-378, 
403,411-412 

CRAMER-LEvY theorem, 525 
Cup, 104 

Dams, 195 
DARLING, D. A~, 465 
Decision functions, 213 
Decompositions, 570-571 
Defective distributiOnl, 115, 129, 130. 205 

in renewal, 187 . 
de FINEITI, B., 179, 230 
Degenerate distributions, 83, 87 
Degenerate processes, 90 .. 91 
Delayed renewal processes, 187, 3b8 
Delays in traffic, 190,380,387,474-475. 

496 
Densities, 3-6, 49-53, 66~71, l38 .. 143 

notations'and conventions (or, 45-46 
Denumberable sample sp~c ,3.31 .. 332 
DENY,J.,382 
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Derivatives and LAPLACE transforms, 435 
pERMAN, C~, 493 
Descending ladder, variables, 393-394 
Differences, notation for, 221-222 
O:.fferential equations, KOLMOGOROV, 

483-488 
Diffusion processes, and birth-and-death 

proceSses, 496 
with elastic force, 335-336 
in geneti~s, 336-337 
in higher ,dimensions, 344-345 
inRr:,-332-337,344-3~5, 436, 461, 46'4, 

475-479,496 
Digits, distribution of, 34, 63-64 
Directmg process, 347 
Dicectional changes of particles, 323 
Directions, random, 29-33 
Directly RIEMANN integrable functions, 

362-363 
DIRICHLET integral, 511 
Discontinuities,.318 
Discontinuous semi:.groups, ~OS 
Discrepancies, see Empirical distributions 
DiScrete distributions, 55-58 
Distance function for 4istributions, 285 
Distribution functions, defInition of, .3 
DOBLIN;W., 173, 592 , 
DOBLIN's "Universal laws," 590-592 
Domain of attraction, 172 

criteria {or, 312-316, 320, 448, 574-581 
normal~ 581 
partial, 320,568,590-592 
and stable distributions, 574-581 

Dominated convergence, 111 
OONSKER,'M. F., 39, 343 
DOOB,J. L.~ 103, 164, 210, 244, 656 
Drift, in diffusion, 335 

'in r~dom walks, 397,610-611 
Duality, 394-398,609-610 
Duplication form.ula, 64 
Duration, of birth processes, 490 

of busy period, 473-474, 482-483 
of dead period, 190 
of diffusion, 341-342 
of renewal process, 187, 216,374-377 

estimates for, 377 
DVORETZKY, A., 274 
DYNKIN, E. B., 321, 333, 472, 655 

Economics, stable distributions in, 175 
EDGEWORTH expansion, 535, 542 

EINSTEIN, Albert Jr., 182,333 
Elastic forces, 33?-336 
Electric transmission lines, 208-209 
Empirical distributions, 36-39 
Empirical interpretations, 22 
Endomorphisms, 350 
Energy losses, 25, 323; see also Collisions 
Ensembles, of circles and splieres, 9-10 

random, of points in space, 9 
Entrance probability, see Hitting points 
Equicontinuity,. 252, 270 
Equidistribution theorem, 268 , 
Equivalent functions, 125,636,642 
ERDOS, P., 343, 360 
Ergodic limits, 491-493 
Ergodic stochastic kernels, 271 
Ergodic theorems, 270-274, 491 
ESSCHER, F., 552 
ESSEEN, G., 540, 542, 544,54.5; see also 

BERR Y-ESSEEN 
Estimator, 41 
Exchangeable variables, 228 .. 230, 423 

central limit theorem for, 287 
Expansions, and the ,central limit theorem 

, 53~-553 
for, distributions, 538-542 
involving varying components, 546-548 

Expectations, U 7-118, 133 
conditional, 162-165 
defmition of, 5 

Explicit expressions, 193 
Expon~ntial distributions, 1,8-21,39-43, 

74-77 
bilateral, 49, 148 
bivariate, 100 
as limits, 24,43,370 
redu.ttion to, 25-26 
and uniform distributions, 44,74-77 
see also Gamma distributions 

Exponential formula of semi-groups, 231, 
353-355 

Extension theorem, 118-121, 123 

Fair, absolutely, 210 
FATOU's theorem, 110-111, 636 

for boundary ~alue~, 244 
FEJER, L., 628 
FELLER, W., 53,61, 179, 194,262,279, 

289,325,331,333,337,360,381, 
430,483,496,497,546,5521 581 

Filter~, 88, 625 
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FINETI'I, B. de., 42, 179, 230 
Finite arithmetic distributions, 608-609 
First entry, see Hitting points; Ladder 

variables 
First passages, birth-~nd-death processes, 
·1 60-61,481,494-495 
I in diffusion, 174-175,340-341,475-476 
and MARKOV chains, 492 

First return" 391,424, 495 
FISHER, R. A., 77, 277, 336 
FISHER's Z-statistic, 49 
Fishing, 182 
Fixed discontinuities, 324-326,328 
FOKKER-PLANCK equation, 296,323, 

324,325,328 
Forward equations, 337-343, ~84 

and diffusion, 337-343,475-479 
and jump processes, 324,.328 
of KOLMOGOROV, 324,328 
minimal solution for, 329, 331-332, 

485-488 
'and semi-groups, 352 

FOU1UER analysis, applications of to random 
walks, 598-616 

FOURIER coefficients, 628, 634,647-648 
FOURIER inversions, 509-510,511,639 
FOURIER series, 626-629, 641 
FOURIER transforms, 499, 532 
FOURIER-STIELTJES transform, 499,606 
Fractional parts, 148, 268 
FRECHET's,ma.ximal distributic;m, 166 
Free paths, 10-11 
Frequency functions, defmition of, 8 
FUBINI's theor~m, 111, 122, 144 
FUCHS, W. H.J., 614,615 
Functional, linear, 120 

GALTON, Fo, 73 
Gamma distributions, 11,47-48, 176,435; 

502,503 
alternate na~e for, 48 
approximation by, 220 
infmitelv divisible, 176,451,567 
limit of order s~::istics, 24 
randomized, 58-59 
subordination, 336-337 

Gamma functions, 47 
Gamma process, direction of by POISSON 

process, 349 
direction of POISSON process by, 348-

349 

Gaps, large, 188,378,468 
small, 217 

GEARY, R. C., 86 

661 

GEIGER counte~s, 189, 190,372-373,387, 
468 

Generating functions, characterization of, 
223 

mortality interpretation for, 424 
Generation, of algebras, 163 

of expo~entially distributed variables, 44 
Generators, 294-296,356-357,456-457, 

476 
Genetics, diffusion in, 336-337 
GILBERT, E.N., 217 
GNEDENKO, B. V., 38,39,277,531,540, 

581,592,656 
GNEDENKO-KOROLJUK theorem, 43 
GOOD, I. J., 473 
Gravitational fields, 173-174, 215 
Green function, 334, 476, 496 
GREENWOOD, M., 57 
GRENANDER, U., 77, 655,656 
GRIFFIN, J. S., Jr., 196 
Grouping of data, 4-5 
Growth, logistic, 52 
GUMBEL, E. Jo, 165 

HADAMARD's factorization theorem, 525 
HALMOS, P. R., 103, 213 
HAMEL equation, 298,305 
HARDY, G. H., 155,268,445 
Harmonic analysiS, 619-646 
Harmonic functions, 244 
IiARlUS, T. Eo, 244 
HAt]S~ORFF, F., 226 
Height distribution, 73 
HEITLER, W., 323 
HELLY, E., 267 
HENNEQUIN, E., 103 
HERGLOTZ, G., 634 
HERMITE polynomials, 523-533, 535 

expansion of, 542 
HEWITT, E., 124, 229 
HEYDE, C. Co, 227 
Hidden periodicities, 76 
HILBERT spaces, 271, 637,639-643,645 
HULLE,E.,231,294,408,454,525,656 
HULLE-YOSIDA theorem, 458-463, 476 
Hitting points, in random walles, 426, 598-

599 
in renewal, 188~ 371-372,426 
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see also Ladder variables 
HOBBY ,Co, 389 

INDEX 

HOLDER's inequality, 155 . 
.HOLTSMARK distribution, 172,.173-174, 

215 
HOPF, Eo, 403; see also WIENER-HOPF 
HUNT, Go, 210 
HUYGENS' principle, 51 
Hyperbolic functions and densities, .'502-

503,527,567,632-633 

IBRAGIMOV, I. Ao, 167 
Idle servers, 200 
Images, method of, 340 
Imbedded renewal processes, 1 ?1-193, 379 
Improper, see Proper distributions 
Increase, point of, 137, 147 
Independence of random variables, 6, 69, 71, 

121-125,134 
and complex variables, 498 
criterion for, 136 

Independent increments, 95-96, 179-182, 
293,304:317,645 

and "discontinuities, 305, 317-318 
and subordination, 347 

Index of the fIrst maximum, 417 
Indicators, 104 
Induced partitions, 22 
Induced random walles, 390 
Inequalities, 152-156 

of HOLDER, 155 
of JENSEN, 153-154 
of KOLMOGOROV, 156 
moment, 155 
of SCHWARZ, 152-153 

Infmite convolutions, 265-267, 317,592-
593 

Infinit'e differenti3.bility, 256, 293 
Infmitelydivisible distributions, 176-179, 

292-293, 449-4~2, 554-595 
in Rr, 593, 596 
and semi-groups, 290-318,457·45-8 
special properties of, 570-574 

Infmite~al generators, 456 
Infmitesimal speed and variance, 335 
Inner products, 636 
Inspection paradox, 187,372 
Insura,nce, see Risk theory 
Integrals, stochastic, 645-64-6 
Integration by pms, 150-151 

and LAPLACE tnn;forms, 435-436 

Interval functions, 106-112, 128, 129 
Interval of continuity, 248 
Invariance principle, 343 
Inventories, 195-196 
Inversion formulas, 140, 221-222, 638 

characteristic functions for, 510-511, 524 
for LAPLACE transforms, 232-234,440-

441,462 
and moment problems, 227 

Ionization, 323 
Isometry, 638 
ITO, Ko, 333, 655 

JACOBI's theta functions, 342, 345, 632 
JANOSSY, L., 323 
JENSEN's inequality, 153-154. 214 
Joint distributions, 68,423-425 
JORDAN decomposition, 138, 142 
JOSEPH, Ao W., 420 
Jump processes, 326-332 

with infmitely many jumps, 331, 484 

KAC, Mo, 79, 196,343 
KARAMATA,Jo, 173, 247, 275, 279,445 
KARLIN, So, 228,381,656 
KATZ, M. L., 545 

. KELVIN; Lord, 340 
KEMPERMAN, Jo Ho B., 655 
KENDALL, D. Go, 194, 231,473 
Kernels, stochastic, 159, 205, 270-272 
KHINTCHINEA., 137, 173,179,406,527, 

565,588,592,639-640,656 
KHINTCHINE-POLLACZEK formula, 410, 

470,617 
KHINTCHINE's criterion, 639-640 
KHINTCHINE's law oflarge numbers, 235, 

436 
KHINTCHINE's unimodality criterion, 158, 

527 
KIEFER, J.,.200 
KINGMAN,J. F. C., 184 
KOLMOGOROV, A. N., 39,123,124, 179, 

325,333,531,540,656; see also 
CHAPMANo KOLMOGO ROV 

KOLMOGOROV-SMIRNOV theorem, 39, 
342-343 

KOLMOGOROV's backward equation, 327 
328 

KOLMOGOROV's different~ equations, 
331, 483-488 

X.oLMOGOROV's forward equation, 
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324,328 
KOLMOGOROV's inequality, 156, 246 

for martingales, 242 
for positive submarting-ales, 241-242 

KOLMOGOROY's ~hree~series theorem, 317 
KOROL]UK, V. S., 33, 38, 39, 43; see also 

GNEDENKO-KOROLJUK 
KRICKEBERG, K., 103, 655 
KRONECKER delta kernel, 206, 484 
KRONECKER's lemma, 239, 243 

Ladder epochs, distribution of, 413-417 
Ladder heights, 191,398-400 
Ladder indices, 412-413 
Ladder points, 390 
Ladder variables, ascending"strict, 391 

weak, 392-393 
descending, 393-394 

LAHA, R. G., 655 
LAMPERTI, A., 189 
LANDAU, E., 342, 446 
LANDAU, L., 323 
LAPLACE-STIEL T]ES transferm, 432, 

470,495,496 
LAPLACE transforms, 232-233, 429-458 

applications ,of, 466-495 
and convolutions, 434-435. 
and derivatives, 435 
elementary properties of, 434-436 
examples of, 436-439 

. and integration by parts, 435-436 
inversion formulas for, 232-234 
and moments, 435 
in Rr, 452-454 
and random walks, 614 
for semi-groups, 454-458 

LAPLACE's second law, 50 
Last come flrst served, 190 
Lattice distributions, 138 

central limit theorem for, 517-518, 540 
characteristic functions for, 511 
see,also POISSON's summation formula 

Lattices (algebraic), 350 
Law of large numbers, 219-246, 286, 

436,513 
converse, 241 
for identically distributed variables, 234-
2~7 

KHINTCHINE's law, 235 
for staticmary sequences, 245 
strong law, 237-241 
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for triangular arrays, 316-317, 596 
weak law, 235-236 . 

LEBESQUE completion, 126 
LEBESQUE decomposition theorem, 142 
LEBESQUE measure, 33-36, 126 
LEBESQUE-NIKODYM theorem, 140;see 

also RIEMANN-LEBESQUE theorem 
LEBESQUE-STIELT]ES integral, 110, 119. 

121~ 131-132 
LE CAM, L., 286 
LEFFLER, see MITr AG-LEFFLER 
LEGENDRE's duplication formula, 64 
u;ngth of random chains, 206-207 
LEVY,P., 173,179,181,210,262,274, 

. , 

285,305,314,318,49'7,515,525, 
565,567-568,571, 575, ~88, ~92, 
655,656; see also CRAMER-LEVY 
theorem 

LEVY-PARETO distribution, 172;see also 
PARETO distribution , 

LEVY's canonical measure, 564 , 
L~VY's examples, 215,319,567-568 
LEVY's metric, 285 
Lifetime, see DUration; Recurrence time 
Light, absorption of, 31 

HUYGENS' principle of, 51 
intensity of, 25 
in stellar systenis, 206,325-326 
transmission of through matter, 25,31,43 

Likelihood ratios, 211 
Limit theorems, 24, 342-343 

and arc sine distributions, 470-473 
basic, 247-288 
and queues, 380 

LINDEBERG,]. W., 515 
LINDEBERG conditions, 262, 263, 286, 

518-521, ?30 
in diffusion, 333 

LINDLEY, p. V., 194, '389 
Linear functional, 120 
Linear increments,injump processes, 324-

326 
Linear operators on stochastic processes, 

625-626 
LITTLE,]. D. C., 474 
LITTLEWOOD,]. E., 155,445 
L]APUNOV's condition, 286 
Locally compact sp3ces, 120, 123, 248 
Loc,ked period, 189 
LOEVE, M., 103, 104.229, ,265,321,655 

. Logarithmic distribution, 63 
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Logistic distribution and growth, 52-53 
Lost calls, 190, 495. 
Luck, persistence of, 15-17 
LUKACS, E., 86, 655 
LUNDBERG, F., 182 

MC KEAN, H. P. ]r., 333, 655 
MC SHANE, E. J., 103 
MANDELBROT, B., 175, 288 
Marginal distribution, 67, 134, 157 

normal,100 
prescribed, 165 

MARKOV, A., 228 
MARKOV processes with continuous 

time. 96,321-345,624-625 
in countable spaces, 483-488 
and ergodic theorems, 369, 491-492 
and semi-groups, 349-357, 454-458 
see also ~irth-and-death processes; Semi

MARKOV processes 
MARKOV processes with discrete time, 94-

99, 101-102, 205-209, 217 
and ergodic theorems, 270-274 
and martingal~s, 244 
and ~pectral aspects, 635, 649 

MARKOV property, 8-9 
strong,20 

MARSHALL, A. W., 246 
Martingales, 209-215,241-244 

inequalities for, 241-242, 246 
Matrix calculus, 82-83, 484-485 
Maximal partial sums, 198,402,408--412, 

419-423 
estimate of, 412 
see also Duration 

Maximal recurrence time, 189,386 
Maximal row sums, 320, 597 
Maximal term, 172,277,287, 465; see also 

Order statistics; Record values 
MAXWELL distribution, 32,48,78-79 
Mean approximation theorem, 111-112 
Mean square convergence, 636 
Mean value theorem, 109 
Measurability,113-115 
Measure space, 115 
Median. 17, 137 
Metrics for distributions, 285; see also 

BANACH space; HILBERT spaces 
Micror.copes, 31 
MIDDLETON, D., 631 
Milky Way brightness, 325 

MILLER, H. D., 603 
MILLS, H. 0., 101 
Minimal solutions, and diffusions, 339 

and jump process, 329-331 
of KOLMOGOROV differential equations, 

485-488 
and semi-MARKOV processes, 497 
and WIENER-HOPF equation, 402 

Mirror experiment, 51 
MITI AG-LEFFLER fUnction, 453-454 
Mixtures, 53·55, 73, 159, 167 

and transforms, 437, 504 
Moments,S, 136, 151,570 

convergence of, 251-252, 269 
and derivatives, 435 
generating function, 434 
HAUSDORFF moment problems, 224-

228,245 
inequalities, 155 
in renewal, 375 
uniqueness problem, 227,233,514-515 

in Rr, 529 
Monotone convergence principle, 110 

property of, 350-352 
Monotone functions, 275-277 
Monotone sc.quences, 105 
Mortality, random walks with, 424 
Moving average processes, 88-89, 645 
Multivariate normal characteristic functions, 

522-523 
MUNTZ, H. Ch., 245 

Natural scale in diffusion, 333 
Nearest neighbors, 10 
Needle problems, BUFFON's, 61-62 
NELSON, E., 100,347 
NEUMANN,]. V., 44 
NEUMANN, K., identity of, 60 
NEVEU,]., 103, 655 
NEWELL, G. F., 40 
NEYMAN,]., 182 
NIKODYM, see RADON-NIKODYM; 

LEBESQUE-NIKODYM 
Noise, see Shot effect 
Nonlinear renewals,,387 
Norm,256,350,636,642 

topology, 286 
Normal distributions, 46, 64, 87, 173, 503, 

566 
bivariate, 70, 7.2, 101 
characterization of, 77-80, 85, 525-526 



degenerate, 87 
domain of attraction, 313, 577-578 
marginal,99-100 
MARKOVIAN, 94 
jnRr, 83-87,522 

"Normal" domain of attraction, 581 
Normal semi-groups, 299,307,319 

INDEX 

Normal stochastic processes, 87-94, 641-646 
Nucleons, 323 
Null arrays, 177-178,583-588 
Null sets, 125-126, 140 
NYQUIST, N., 631 

Operational time, 181,345 
Operators associated with distributions, 

254-258 
Optional stopping, 213 
Orbitt, b"inary, 33 
Order relation in Rl, 82, 132 
Order statistics, 18, 20-21, 100 

application to estimations, 41 
and limit theorems, 24, 43 

OREY, S., 381 
ORNSTEIN-UHLENBECK ilrocess, 99, 

335-336 
Oscillating random walks, 204, 395 
OSIPOV, L; V., 545 

Paradoxes, 11-14,23, 187 
PARETO distribution, 50, 175; see also , 

LEVY-PARETO 
PARSEVAL relation, 463, 507,615,619-

620,638,641,644 
as KHINTCHINE criterion, 639-640 

Partial attraction, 320, 568, 590-592 
Partial ordering, 82, 132. 
Particles, collisions' of, 206,322-323,325 

counters for, 372 
directional changes of, 323 
energy, losses of, 323,325 
splitting of, 25.42,100 

Patients, scheduling of, 183 
:BEARSON, K., 48 
PEARSON's system of distributions, 48, 

50 
PedestTiaIis, 189, 37S, 387 
Periodograms,76 
Persistency, see Transient disqibutions 
Petersburg game, 236 
PETERSEN;D. P., 631 
FETROV, V. V., 545. 552 

PHILLIPS, R. S., 231, 294,454,656 
PINKHAM, R" S., 63 
PITMAN, E. J. G., 565 
PLANCHEREL theorem, 510 
PLANCHEREL transform, 637-640 
PLANCK, see FOKKER-PLANCK 
Platpon formation, 40 ,. " 

POINCARE, H., 62 , 
POINCARE's roulette problem, 62-63 
Point functions, 128 
POISSON distributions, 566 

approximations by, 286 
compound, 555, 557-558 
difference of, 149, 166, 567 

POISSON ensembles, 15; see also 
Gravitational fields 

POISSON kernel, 627, 648 
POISSON processes, 12, 14-15 
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direction of by gamma process, 348-349 
girection of gamma process by, 349 
gaps in, 378 
as limit in renewal, 370 
supremum in, 183 
see also Coin pound POISSON processes; 

Pseudo-POISSON processes 
POISSON's summation formula, 63,343, 

629-633, 648 
Polar coordinates, 68 
POLLACZEK, F., 198; see also 

KHINTCHINE-POLLACZEK 
POLLAK, H. 0., 217 
POLLARD, H., 360, 381 
POLYA, G., 155, 172, 182 
POLY A distribution, 57 
POL Y A's criterion, 505, 509 
POLYA's urn, 210, 229-230, 243 
Polymers, 206 
Population growth, 337 

logistic, 52-53 
random dispersal of, 261-262 

PORT,S. C., 279 
Positive defmite functions,.620-623 
Positive defmite matrices, 81 
Positive· defmite sequences, 633-635 
Positive variables, 571-572 
Potentials, 488 
Power spectrum, 624 
PRABHU, N. U., 656 
Probability density, see Densities 
Probability disuibutions, 130 

in Rr, 127-165 
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Probability measures and spaces, 103--
116,133 

Processes with independent increments, 
179-184 

Product measures and spaces, 121-123 
PROHOROV, Yu. V .. 39, 343 
'Projection, 67 

of random vectors, 30, 32, 33 
Proper distributions, 13C 
Proper convergence, 248, 285 
Pseudo-POISSON processes, 322-324, 345 

and exponential formula, 354 
with linear increments, 324-325 
and semi-groups, 354-357,459 

Pure birth process, 488-491 
PYKE, R., 183,389,470,497 

Quasi-stable distributions, 173 
Queues, 54-55, 65, 196-197, 208,481-482 

joint distribution for residual and spent 
waiting times, 386 

and. limit theorems, 380 
one-server, 194-195 
and paradoxes, 12-14 
paralJel, 17, 18,41 
for shuttle trains, 196-1'8 
see also Busy periods 

Queuing processes, 194-200,208,380,410 

Radiation, ste14r, 206 
RADON-NIKODYM derivative, 139 
RADON-NIKODYM theorem, 139, 140, 141 
RAIICOV's theorem, 571 
Random chains, 206-207 
Random choice, 2, 21-25, 69 

and coin tessing, 35 
see .uso t:overing theorems 

Random ~irections, 29-33,42, 43, 142 
addition of, 31-33,207,523 

Random dispersal, 261-262 
Random flights, 32~33 
Random partitions, 22J23, 74-75; see also 

Covering theorems 
Random splittings, 2

0

5-26,42, 100 
Random sums, 54, 159,167,504 

central limit theorems for, 265, 530 
c~acteristic function for, 504 

Randoinovariables, 4, 68,116-118,131 
complex. 499 

Random vectors, 31, 33, 107-108 
Random walks in Rl, 190-193, 200-204, 

389-425, 598~616 
associated, 406 
empirically.distributed,38 
simple ( = Bernouilli), 213-214,318,393, 

395,425,437 
see also Hitting points; Ladder variables 

Randonrization, 53-64 
and exchangeable variables, 228 
and semi-groups, 231, 355 
and subordination, 345-349 

Randomized random walks, 58-61,479-483, 
566-567 

Random walks in Rr, 32-33 
central limit theorem for, 261 

Ratios, 16-17,24-25,54 
RAY,D.,333 
RAYLEIGH, Lord, 32-33, 523 
Record values, 15-16, 40; see also 

o Order statistics 
Rectangular density, 21, 50 
Recurrence time, 184 

maximal, 189,386 
observed, 13, 187 

Recursive procedures,26 
Reflecting barriers, 340, 343, 464 
Reflection principle, 175,477,478 
Regeneration epochs, 184 
Registrations, 191,373 
Regression, 72, 86 
Regular stochastic kernels, 271-273 
Regular variation, 275-284, 288, 289

0 

Reliability theory. 52 
Renewal epochs, 184,372-374 
Renewal equation, 185-187,359,366-368, 

385-388' 
theory of, 466-468 

Renewal processes, 12, 184-187,216,358-
388 

applications of; 377-378 
imbedded, 191-193 
nonlinear, 387 
superposition of, 370-371 
transient, 374-377 
two-stage, 380 

Renewal theorems, .J5R-372 
proof of, 364-366 
on the whole line, 201,380-385, 42f' 

RENYI, A., 343 
Reservoirs, 182, 183, 195; see also Storage 

and inventories 
Residual waiting time, 188 

limit theorem for, 369, 370, 386, 471-472 
Resolution of identity, 643 
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Resolvents, 42"9,452-453,455,487 
and comple'te monotonicity, 461 

Resultant of random vectors, 31, 146,523 
Returns to the origin, 424 
RICHTER, W., 552 
RIEMANN integrable, directly, 362-363 
RIEMANN-LEBESQUE theorem; 513-514, 

538,629 
RIESZ, F., representation theorem of, 120, 

134,251 
RIESZ, M., 231 
RIORDAN,] .. , 656 
Risk theory, 182-183; see also Ruin problems 
ROBBINS, H.E., 99, 26~, 360 
ROSENBLATI, M., 77,287,656 
Rotational symmetry, 523-524 
Rotations, 78, 84, 101 , 
ROUCHE's theorem, 408 
Roulette, 22, 62 
Rounding errors, 22,62 
Row vectors, 83 
ROYDEN,"H. L., 228 
Ruin problems, 198, 326 

in compound POISSON processes, 182-
184,469-470 

estimates for, 377-378, 411-412 
Runs., see Record values 
RVAGEVA, E. L., 39 
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